
Arrays File I/O Random Numbers Cellular Automata

Introduction to Computing
III - Arrays, Files and Random Numbers in C

Jonathan Mascie-Taylor
(Slides originally by Quentin CAUDRON)

Centre for Complexity Science,
University of Warwick

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Arrays File I/O Random Numbers Cellular Automata

Outline
1 Arrays

Definition
Exercise
Multidimensional Arrays

2 File I/O
Writing
Reading
Exercise

3 Random Numbers
Random Numbers

4 Cellular Automata
Introduction
Rule 30
Exercise

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Arrays File I/O Random Numbers Cellular Automata

Definition

Arrays

Arrays are a series of elements of the same type that are accessed
from the same variable via an index :

int myArray[10];

This is an array of integers, ten integers long. In general, arrays are
declared like this :

type name[elements];

Arrays can have most types. You can even declare a custom data
structure and make arrays from those.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Arrays File I/O Random Numbers Cellular Automata

Definition

Arrays

Arrays are a series of elements of the same type that are accessed
from the same variable via an index :

int myArray[10];

This is an array of integers, ten integers long. In general, arrays are
declared like this :

type name[elements];

Arrays can have most types. You can even declare a custom data
structure and make arrays from those.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Arrays File I/O Random Numbers Cellular Automata

Definition

Initialising Arrays

In order to populate an array with data, you need to iterate through
it.

1 int evens [10];

2

3 int i;

4 for(i = 0; i < 10; i++)

5 {

6 evens[i] = i * 2;

7 }

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Arrays File I/O Random Numbers Cellular Automata

Definition

Accessing Array Elements
You can access the elements of an array as if it were a normal
variable, but with the index after it :

printf("%d", evens[3]);

Result : 6

The elements of an array can only be accessed one by one, unlike
Matlab’s range (:) notation. Therefore, we need to iterate :

1 int i;

2 for(i = 0; i < 10; i++)

3 {

4 printf("%d, ", evens[i]);

5 }

Result : 0, 2, 4, 6, 8, 10, 12, 14, 16, 18,

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Arrays File I/O Random Numbers Cellular Automata

Definition

Accessing Array Elements
You can access the elements of an array as if it were a normal
variable, but with the index after it :

printf("%d", evens[3]);

Result : 6

The elements of an array can only be accessed one by one, unlike
Matlab’s range (:) notation. Therefore, we need to iterate :

1 int i;

2 for(i = 0; i < 10; i++)

3 {

4 printf("%d, ", evens[i]);

5 }

Result : 0, 2, 4, 6, 8, 10, 12, 14, 16, 18,

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Arrays File I/O Random Numbers Cellular Automata

Exercise

Exercise : Reverse your Input

Write some code that will take in n integer values from user input,
and repeat them back to the user in reverse order.

Ask the user for the value of n
Use a for loop to populate your array
Use another for loop to print the values in the array

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Arrays File I/O Random Numbers Cellular Automata

Exercise

Exercise : Reverse your Input

Write some code that will take in n integer values from user input,
and repeat them back to the user in reverse order.

Ask the user for the value of n
Use a for loop to populate your array
Use another for loop to print the values in the array

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Arrays File I/O Random Numbers Cellular Automata

Multidimensional Arrays

Multidimensional Arrays

Using multidimensional arrays is very intuitive, as they are simply
“arrays of arrays”.

1 int twoD [5][3];

2

3 int i, j;

4 for(i = 0; i < 5; i++)

5 {

6 for(j = 0; j < 3; j++)

7 {

8 twoD[i][j] = i*j;

9 }

10 }

0 0 0

0 1 2

0 2 4

0 3 6

0 4 8

0

1

2

3

4

0 1 2

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Arrays File I/O Random Numbers Cellular Automata

Writing

Writing to Files
1 // Declare a file handle pointer

2 FILE * myfile;

3

4 // Open a file in Write Text mode

5 myfile = fopen("results.txt", "wt");

6

7 for(i = 0; i < 5; i++)

8 {

9 for(j = 0; j < 3; j++)

10 {

11 fprintf(myfile , "%d, ", twoD[i][

j]);

12 }

13

14 fprintf(myfile , "\n");

15 }

16

17 fclose(myfile);Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Arrays File I/O Random Numbers Cellular Automata

Reading

Reading from Files
1 // Declare a file handle pointer

2 FILE * myfile;

3

4 // Open a file in Read Text mode

5 myfile = fopen("results.txt", "rt");

6

7 int x;

8

9 while(fscanf(myfile , "%d, ", &x) !=

EOF)

10 {

11 printf("%d\n", x);

12 }

13

14 fclose(myfile);

EOF is end of file. This is a special character sequence that defines the
point where input ends.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Arrays File I/O Random Numbers Cellular Automata

Reading

Reading from Files
1 // Declare a file handle pointer

2 FILE * myfile;

3

4 // Open a file in Read Text mode

5 myfile = fopen("results.txt", "rt");

6

7 int x;

8

9 while(fscanf(myfile , "%d, ", &x) !=

EOF)

10 {

11 printf("%d\n", x);

12 }

13

14 fclose(myfile);

EOF is end of file. This is a special character sequence that defines the
point where input ends.Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Arrays File I/O Random Numbers Cellular Automata

Exercise

Exercise : Indirect Addition

Modify your previous code such that it :

Takes in input, then outputs everything in the array to a file
Closes the file
Reopens the file with a new (read) stream
Reads the integers, summing them into a new variable
Prints the result of the addition to screen

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Arrays File I/O Random Numbers Cellular Automata

Random Numbers

Random Numbers - Basics

Random number generators, as we saw in Matlab, do not generate
truly random numbers. They are generated by algorithms which
produce long sequences of apparently random numbers that are, in
fact, determined by a shorter initial value, called a seed. The output is
deterministic.

In C, we generally use the number of seconds since 1 January, 1970.
This value is easily obtainable using time(0), as this date is defined
as the current “calendar time”.

We have to #include <time.h> in order to use the time function,
and we also need to #include <stdlib.h> to get access to the
random number generation function, rand(). This function takes no
arguments.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Arrays File I/O Random Numbers Cellular Automata

Random Numbers

Random Numbers - Basics

Random number generators, as we saw in Matlab, do not generate
truly random numbers. They are generated by algorithms which
produce long sequences of apparently random numbers that are, in
fact, determined by a shorter initial value, called a seed. The output is
deterministic.

In C, we generally use the number of seconds since 1 January, 1970.
This value is easily obtainable using time(0), as this date is defined
as the current “calendar time”.

We have to #include <time.h> in order to use the time function,
and we also need to #include <stdlib.h> to get access to the
random number generation function, rand(). This function takes no
arguments.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Arrays File I/O Random Numbers Cellular Automata

Random Numbers

Random Numbers - Basics

Random number generators, as we saw in Matlab, do not generate
truly random numbers. They are generated by algorithms which
produce long sequences of apparently random numbers that are, in
fact, determined by a shorter initial value, called a seed. The output is
deterministic.

In C, we generally use the number of seconds since 1 January, 1970.
This value is easily obtainable using time(0), as this date is defined
as the current “calendar time”.

We have to #include <time.h> in order to use the time function,
and we also need to #include <stdlib.h> to get access to the
random number generation function, rand(). This function takes no
arguments.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Arrays File I/O Random Numbers Cellular Automata

Random Numbers

Generating Random Numbers

In order to seed the random number generator, we call the seeding
function with the calendar time as argument : srand(time(0)).
Then, we can call rand() to generate a random integer between 0 and
some large integer, called RAND_MAX.

Therefore, if we want to generate random floating-point numbers
distributed uniformly ∈ [0, 1], we have to divide our random number
by RAND_MAX. However, dividing an integer by an integer results in
an integer, and so we get 0. We need to tell the program that our
random number is a double.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Arrays File I/O Random Numbers Cellular Automata

Random Numbers

Generating Random Numbers

In order to seed the random number generator, we call the seeding
function with the calendar time as argument : srand(time(0)).
Then, we can call rand() to generate a random integer between 0 and
some large integer, called RAND_MAX.

Therefore, if we want to generate random floating-point numbers
distributed uniformly ∈ [0, 1], we have to divide our random number
by RAND_MAX. However, dividing an integer by an integer results in
an integer, and so we get 0. We need to tell the program that our
random number is a double.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Arrays File I/O Random Numbers Cellular Automata

Random Numbers

Generating Random Numbers

1 // Seed the random number generator

2 srand(time (0));

3

4 printf("Here are some random doubles :\n");

5

6 // Generate ten random numbers

7 int i;

8 for(i = 0; i < 10; i++)

9 {

10 // Cast rand() as a double

11 printf("%lf \n", (double) rand() / RAND_MAX);

12 }

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Arrays File I/O Random Numbers Cellular Automata

Introduction

Cellular Automata : a Definition

Cellular automata consist of a regular grid of cells, each have a finite
number of possible states.

An initial state configuration is selected at t = 0 by assigning a state
to each cell, and then the system propagates forward in discrete time,
with a new generation being created at every timestep by a set of
system-wide rules.

The rules for the system that governs the state of each cell at a specific
timestep is based on the state of the cell and its neighbouring cells in
the previous timestep.

The simplest automata are one-dimensional (on a line) and have two
states : 0 or 1.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Arrays File I/O Random Numbers Cellular Automata

Introduction

Cellular Automata : a Definition

Cellular automata consist of a regular grid of cells, each have a finite
number of possible states.

An initial state configuration is selected at t = 0 by assigning a state
to each cell, and then the system propagates forward in discrete time,
with a new generation being created at every timestep by a set of
system-wide rules.

The rules for the system that governs the state of each cell at a specific
timestep is based on the state of the cell and its neighbouring cells in
the previous timestep.

The simplest automata are one-dimensional (on a line) and have two
states : 0 or 1.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Arrays File I/O Random Numbers Cellular Automata

Introduction

Cellular Automata : a Definition

Cellular automata consist of a regular grid of cells, each have a finite
number of possible states.

An initial state configuration is selected at t = 0 by assigning a state
to each cell, and then the system propagates forward in discrete time,
with a new generation being created at every timestep by a set of
system-wide rules.

The rules for the system that governs the state of each cell at a specific
timestep is based on the state of the cell and its neighbouring cells in
the previous timestep.

The simplest automata are one-dimensional (on a line) and have two
states : 0 or 1.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Arrays File I/O Random Numbers Cellular Automata

Introduction

Cellular Automata : a Definition

Cellular automata consist of a regular grid of cells, each have a finite
number of possible states.

An initial state configuration is selected at t = 0 by assigning a state
to each cell, and then the system propagates forward in discrete time,
with a new generation being created at every timestep by a set of
system-wide rules.

The rules for the system that governs the state of each cell at a specific
timestep is based on the state of the cell and its neighbouring cells in
the previous timestep.

The simplest automata are one-dimensional (on a line) and have two
states : 0 or 1.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Arrays File I/O Random Numbers Cellular Automata

Rule 30

The Rule 30 Cellular Automaton

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Arrays File I/O Random Numbers Cellular Automata

Rule 30

The Rule 30 Cellular Automaton

t = 0

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Arrays File I/O Random Numbers Cellular Automata

Rule 30

The Rule 30 Cellular Automaton

t = 0

t = 1

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Arrays File I/O Random Numbers Cellular Automata

Rule 30

The Rule 30 Cellular Automaton

t = 0

t = 1

t = 2

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Arrays File I/O Random Numbers Cellular Automata

Rule 30

The Rule 30 Cellular Automaton

t = 0

t = 1

t = 2

t = 3

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Arrays File I/O Random Numbers Cellular Automata

Rule 30

The Rule 30 Cellular Automaton

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Arrays File I/O Random Numbers Cellular Automata

Rule 30

Updating

The update value of a cell at t = n is dependent on its value at
t = n− 1 as well as the value of its neighbours at t = n− 1. However,
we can calculate a “neighbourhood update value”. For example, if
we have lattice sites Lleft = 1, Lmiddle = 0, Lright = 1, then we can
consider this a binary number 101, and hence a decimal number 5.

In order to update a lattice site, we can just calculate its
neighbourhood update value at its previous timestep, and use a
single if statement, instead of comparing the lattice site and its
neighbours independently (if Ll = 1, then if Lm = 0, then if Lr = 1,
then Lm updates to 0...)

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Arrays File I/O Random Numbers Cellular Automata

Exercise

Exercise : Rule 30
A challenging exercise : code up the Rule 30 automaton.

Declare two 1D integer arrays of size 1002, one to represent the
lattice, and the other as a temporary buffer
Populate the first lattice with mostly zeros and a few ones
Open a write-file stream for your results
Iterate 500 times, using a for loop
Within this loop, iterate over lattice positions from 1 to 1000,
calculating update values and updating the buffer array
accordingly
Then, iterate over the buffer, copying it into the main array
As you do so, output the value to file, separated by a space, and
enter a new line after completing the loop
Also try experimenting with periodic boundary conditions
(where L1 ≡ L1001)
To view the results import them in to MATLAB and use spy

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

	Arrays
	Definition
	Exercise
	Multidimensional Arrays

	File I/O
	Writing
	Reading
	Exercise

	Random Numbers
	Random Numbers

	Cellular Automata
	Introduction
	Rule 30
	Exercise

