
Functions Structures The Standard Map The Julia Set Program Arguments Recursion

Introduction to Computing
IV - Functions and Structures in C

Jonathan Mascie-Taylor
(Slides originally by Quentin CAUDRON)

Centre for Complexity Science,
University of Warwick

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Functions Structures The Standard Map The Julia Set Program Arguments Recursion

Outline
1 Functions

Definition
Types
Declaring Functions

2 Structures
Definition
Using Structures

3 The Standard Map
The Standard Map
Coding the Standard Map

4 The Julia Set
The Julia Set
Coding the Julia Set

5 Program Arguments
Arguments Syntax

6 Recursion
Recursion

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Functions Structures The Standard Map The Julia Set Program Arguments Recursion

Definition

Functions : a Definition
Functions are short sets of instructions that do something and then
generally return some output. You’ve used some before : printf and
scanf are functions. You can write your own :

1 int biggest(int x, int y)

2 {

3 if(x > y)

4 {

5 return x;

6 }

7

8 else

9 {

10 return y;

11 }

12 }

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Functions Structures The Standard Map The Julia Set Program Arguments Recursion

Definition

Functions : a Definition
Functions are short sets of instructions that do something and then
generally return some output. You’ve used some before : printf and
scanf are functions. You can write your own :

1 int biggest(int x, int y)

2 {

3 if(x > y)

4 {

5 return x;

6 }

7

8 else

9 {

10 return y;

11 }

12 }

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Functions Structures The Standard Map The Julia Set Program Arguments Recursion

Types

Function Types

Functions always have a type in C. Just like variables can be int,
double or other types, because functions return some output, they are
declared with a type. Those that simply do something without
returning anything also have a type, called void.

int biggest(int x, int y)

This function is of type int - we expect it to do something, and then
return an integer. It also takes two int arguments, x and y. It will do
something with those variables, and then give us something back. We
can call the function like this :

int hello = 5;

int goodbye = 8;

int ourResult;

ourResult = biggest(hello, goodbye);

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Functions Structures The Standard Map The Julia Set Program Arguments Recursion

Types

Function Types

Functions always have a type in C. Just like variables can be int,
double or other types, because functions return some output, they are
declared with a type. Those that simply do something without
returning anything also have a type, called void.

int biggest(int x, int y)

This function is of type int - we expect it to do something, and then
return an integer. It also takes two int arguments, x and y. It will do
something with those variables, and then give us something back. We
can call the function like this :

int hello = 5;

int goodbye = 8;

int ourResult;

ourResult = biggest(hello, goodbye);

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Functions Structures The Standard Map The Julia Set Program Arguments Recursion

Types

Function Types

Functions always have a type in C. Just like variables can be int,
double or other types, because functions return some output, they are
declared with a type. Those that simply do something without
returning anything also have a type, called void.

int biggest(int x, int y)

This function is of type int - we expect it to do something, and then
return an integer. It also takes two int arguments, x and y. It will do
something with those variables, and then give us something back. We
can call the function like this :

int hello = 5;

int goodbye = 8;

int ourResult;

ourResult = biggest(hello, goodbye);

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Functions Structures The Standard Map The Julia Set Program Arguments Recursion

Types

Returning a Value
A function of a certain type always returns that type of output. When
we calculated π, we noticed that there was no version (overload) of the
pow function that takes in integers. Let’s write our own.

1 int pow(int base , int exponent)

2 {

3 int i;

4 int result = 1;

5

6 for(i = 0; i < exponent; i++)

7 {

8 result *= base;

9 }

10

11 return result;

12 }

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Functions Structures The Standard Map The Julia Set Program Arguments Recursion

Types

Returning a Value
A function of a certain type always returns that type of output. When
we calculated π, we noticed that there was no version (overload) of the
pow function that takes in integers. Let’s write our own.

1 int pow(int base , int exponent)

2 {

3 int i;

4 int result = 1;

5

6 for(i = 0; i < exponent; i++)

7 {

8 result *= base;

9 }

10

11 return result;

12 }

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Functions Structures The Standard Map The Julia Set Program Arguments Recursion

Declaring Functions

Declaring Functions

Functions are best declared using a prototype under your #includes
and then defined after main().

int myFunction(int a, int b); //Prototype

Alternatively, you can just put the full function definition instead of
the prototype, above main(), and nothing after main().

Finally, functions can be declared in a separate file, and that file can
then be included, but note the slightly different syntax :

#include "myfile.h"

A requirement is that your function be declared before you call it
anywhere, and defined somewhere.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Functions Structures The Standard Map The Julia Set Program Arguments Recursion

Declaring Functions

Declaring Functions

Functions are best declared using a prototype under your #includes
and then defined after main().

int myFunction(int a, int b); //Prototype

Alternatively, you can just put the full function definition instead of
the prototype, above main(), and nothing after main().

Finally, functions can be declared in a separate file, and that file can
then be included, but note the slightly different syntax :

#include "myfile.h"

A requirement is that your function be declared before you call it
anywhere, and defined somewhere.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Functions Structures The Standard Map The Julia Set Program Arguments Recursion

Declaring Functions

Declaring Functions

Functions are best declared using a prototype under your #includes
and then defined after main().

int myFunction(int a, int b); //Prototype

Alternatively, you can just put the full function definition instead of
the prototype, above main(), and nothing after main().

Finally, functions can be declared in a separate file, and that file can
then be included, but note the slightly different syntax :

#include "myfile.h"

A requirement is that your function be declared before you call it
anywhere, and defined somewhere.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Functions Structures The Standard Map The Julia Set Program Arguments Recursion

Declaring Functions

Declaring Functions

Functions are best declared using a prototype under your #includes
and then defined after main().

int myFunction(int a, int b); //Prototype

Alternatively, you can just put the full function definition instead of
the prototype, above main(), and nothing after main().

Finally, functions can be declared in a separate file, and that file can
then be included, but note the slightly different syntax :

#include "myfile.h"

A requirement is that your function be declared before you call it
anywhere, and defined somewhere.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Functions Structures The Standard Map The Julia Set Program Arguments Recursion

Declaring Functions

Declaring Functions

Functions are best declared using a prototype under your #includes
and then defined after main().

int myFunction(int a, int b); //Prototype

Alternatively, you can just put the full function definition instead of
the prototype, above main(), and nothing after main().

Finally, functions can be declared in a separate file, and that file can
then be included, but note the slightly different syntax :

#include "myfile.h"

A requirement is that your function be declared before you call it
anywhere, and defined somewhere.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Functions Structures The Standard Map The Julia Set Program Arguments Recursion

Declaring Functions

Declaring Functions in a .c File
1 #include <stdio.h>

2

3 double addTwo(double); // Prototype

4

5 int main()

6 {

7 double x = 0.63;

8 printf("%lf\n", addTwo(x));

9 return 0;

10 }

11

12 // Definition

13 double addTwo(double aNumber)

14 {

15 return aNumber + 2;

16 }

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Functions Structures The Standard Map The Julia Set Program Arguments Recursion

Definition

Structures
A structure is a type of variable that you define yourself, and that
contains any number of other variables. They provide a way to store
a group of variables (of potentially different types) under the same
name.

1 struct Location

2 {

3 double latitude;

4 double longitude;

5 int elevation;

6 };

To create a variable of type Location, you declare one like this :

1 struct Location myLoc;

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Functions Structures The Standard Map The Julia Set Program Arguments Recursion

Definition

Structures
A structure is a type of variable that you define yourself, and that
contains any number of other variables. They provide a way to store
a group of variables (of potentially different types) under the same
name.

1 struct Location

2 {

3 double latitude;

4 double longitude;

5 int elevation;

6 };

To create a variable of type Location, you declare one like this :

1 struct Location myLoc;

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Functions Structures The Standard Map The Julia Set Program Arguments Recursion

Definition

Structures
A structure is a type of variable that you define yourself, and that
contains any number of other variables. They provide a way to store
a group of variables (of potentially different types) under the same
name.

1 struct Location

2 {

3 double latitude;

4 double longitude;

5 int elevation;

6 };

To create a variable of type Location, you declare one like this :

1 struct Location myLoc;

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Functions Structures The Standard Map The Julia Set Program Arguments Recursion

Using Structures

Using Structures

1 struct Location myLoc;

2

3 myLoc.latitude = 52.38408;

4 myLoc.longitude = -1.56047;

5 myLoc.elevation = 81; // meters

6

7 printf("At %lf degrees North and %lf"

8 "degrees West , \n the elevation above"

9 "sea level is %d meters or %f feet.",

10 myLoc.latitude ,

11 myLoc.longitude ,

12 myLoc.elevation ,

13 myLoc.elevation * 3.2808);

Note the way we use quotes to break up a long line.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Functions Structures The Standard Map The Julia Set Program Arguments Recursion

Using Structures

Exercise

Write some code that calculates the area of a box.

Define your box as a structure which consists of three doubles -
the width, height and depth.
Create a function that takes one argument - the box structure.
Use the return keyword inside the function to return the area.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Functions Structures The Standard Map The Julia Set Program Arguments Recursion

The Standard Map

The Standard Map

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Functions Structures The Standard Map The Julia Set Program Arguments Recursion

The Standard Map

The Standard Map System

The Standard Map is a chaotic map that describes the motion of a
stick, pinned at one tip, and periodically kicked at the other tip. The
2D system describes its angular momentum (ρ) and angle (θ):

ρn+1 = ρn + K sin θn ∈ [0, 2π]

θn+1 = θn + ρn+1 ∈ [0, 2π]

Trajectories in phase space can be calculated easily in C. However, in
order to capture the true behaviour of the system, we need to
constrain it to the torus - that is, give it periodic boundaries in both
dimensions.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Functions Structures The Standard Map The Julia Set Program Arguments Recursion

The Standard Map

The Standard Map System

The Standard Map is a chaotic map that describes the motion of a
stick, pinned at one tip, and periodically kicked at the other tip. The
2D system describes its angular momentum (ρ) and angle (θ):

ρn+1 = ρn + K sin θn ∈ [0, 2π]

θn+1 = θn + ρn+1 ∈ [0, 2π]

Trajectories in phase space can be calculated easily in C. However, in
order to capture the true behaviour of the system, we need to
constrain it to the torus - that is, give it periodic boundaries in both
dimensions.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Functions Structures The Standard Map The Julia Set Program Arguments Recursion

The Standard Map

Exercise : A Modulo Function

Write a function of a variable x that returns x modulo 2π.

Write a function of type double

Define it to take one argument of type double

Use a while loop to subtract 2π repeatedly until it is less than 2π

Use another while loop to add 2π until it is positive
Return the variable you modified
Use #include <math.h> and M_PI for π.

Test your function by passing it different values.

Can you think of a better way to implement this function?

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Functions Structures The Standard Map The Julia Set Program Arguments Recursion

The Standard Map

Exercise : A Modulo Function

Write a function of a variable x that returns x modulo 2π.

Write a function of type double

Define it to take one argument of type double

Use a while loop to subtract 2π repeatedly until it is less than 2π

Use another while loop to add 2π until it is positive
Return the variable you modified
Use #include <math.h> and M_PI for π.

Test your function by passing it different values.

Can you think of a better way to implement this function?

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Functions Structures The Standard Map The Julia Set Program Arguments Recursion

Coding the Standard Map

Coding the Standard Map

ρn+1 = ρn + K sin θn ∈ [0, 2π)

θn+1 = θn + ρn+1 ∈ [0, 2π)

Declare some variables for momentum, angle and kick strength
Open a file to write results to
Write a for loop to generate 25 trajectories :

Set your momentum to some value ∈ (0, 2π), either random or
otherwise; set your angle to π
Generate a thousand steps on each trajectory using another for
loop, using your modulo function to constrain the values each time
Write momentum and angle to file each step, separated by a space

Close your file
Plot in MATLAB using plot(myData(:, 1), myData(:,2));

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Functions Structures The Standard Map The Julia Set Program Arguments Recursion

The Julia Set

The Julia Set

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Functions Structures The Standard Map The Julia Set Program Arguments Recursion

The Julia Set

The Julia Set

The Julia Set is connected to the Mandelbrot set :

zn+1 = z2
n + c

Whereas in the Mandelbrot set, z0 = 0 and c is a point on the plain,
the Julia set uses z0 as the starting point on the plane, and c is a
constant. There are therefore an infinite number of Julia sets, one for
each c.

This all occurs in the complex plane, but we’re going to run the
computations with real values. Given that z = a + ib, then
z2 = a2 + 2 abi− b2, with real components Re(z2) = a2 − b2 and
imaginary components Im(z2) = 2 abi.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Functions Structures The Standard Map The Julia Set Program Arguments Recursion

The Julia Set

The Julia Set

The Julia Set is connected to the Mandelbrot set :

zn+1 = z2
n + c

Whereas in the Mandelbrot set, z0 = 0 and c is a point on the plain,
the Julia set uses z0 as the starting point on the plane, and c is a
constant. There are therefore an infinite number of Julia sets, one for
each c.

This all occurs in the complex plane, but we’re going to run the
computations with real values. Given that z = a + ib, then
z2 = a2 + 2 abi− b2, with real components Re(z2) = a2 − b2 and
imaginary components Im(z2) = 2 abi.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Functions Structures The Standard Map The Julia Set Program Arguments Recursion

The Julia Set

Exercise : Updating Values

Write two functions, to calculate the real and the imaginary parts of a
point in the complex plane, according to the rules of the Julia set.

Write a function of type double to calculate the real component
of a point
Define it to take three arguments of type double, for the real and
imaginary values of the point as well as the real part of c
Return the real component according to our arithmetic
Write a similar function for the imaginary component, passing it
the real and imaginary values of the point as well as the
imaginary part of c

Test your function by passing it different values. Try z = π + i
2 and

c = −0.7 + 0.27i. You should get z2 + c = 8.92 + 3.41i.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Functions Structures The Standard Map The Julia Set Program Arguments Recursion

The Julia Set

Exercise : Updating Values

Write two functions, to calculate the real and the imaginary parts of a
point in the complex plane, according to the rules of the Julia set.

Write a function of type double to calculate the real component
of a point
Define it to take three arguments of type double, for the real and
imaginary values of the point as well as the real part of c
Return the real component according to our arithmetic
Write a similar function for the imaginary component, passing it
the real and imaginary values of the point as well as the
imaginary part of c

Test your function by passing it different values. Try z = π + i
2 and

c = −0.7 + 0.27i. You should get z2 + c = 8.92 + 3.41i.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Functions Structures The Standard Map The Julia Set Program Arguments Recursion

Coding the Julia Set

Coding the Julia Set
Declare some parameters : resolution (500), Re(c) = −0.7, Im(c) = 0.27015
Declare your simulation variables for real and imaginary parts of a point, as well
as a temporary variable to enable you to simultaneously update values
Open a file to write your results to
Iterate over your resolution in 2D (for loop on i and j)
Set your real and imaginary variables to some point in space
Use a while loop over two conditions (use && for logical and) to run while the
magnitude of the point is less than 1000 and you apply less than 255 applications
of the Julia function :

Set the temporary variable to the current value of the real part of your point
Calculate a new value for the real part, using your function
Calculate a new value for the imaginary part, using your function, and
passing it the temporary value of the real part (before its update)
Increment a counter for the number of applications

Print to file the number of applications of the Julia function
Reset your applications counter
Between the loops in i and j, remember to print a new line to file
Close your file

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Functions Structures The Standard Map The Julia Set Program Arguments Recursion

Arguments Syntax

main() as a Function

1 #include <stdio.h>

2

3 int main(int argc , char * argv [])

4 {

5 printf("%s, %s", argv[1], argv [2]);

6 return 0;

7 }

Remember that in C, arrays index from 0. Notice that argv[] is a
character array, and that we are printing argv[1] and argv[2]. This
is because argv[0] is always reserved for the name of the program
itself.

The array is of type char *, and so, we pass %s to printf. This has a
downside - we can’t naturally use the values as numerical values.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Functions Structures The Standard Map The Julia Set Program Arguments Recursion

Arguments Syntax

main() as a Function

1 #include <stdio.h>

2

3 int main(int argc , char * argv [])

4 {

5 printf("%s, %s", argv[1], argv [2]);

6 return 0;

7 }

Remember that in C, arrays index from 0. Notice that argv[] is a
character array, and that we are printing argv[1] and argv[2]. This
is because argv[0] is always reserved for the name of the program
itself.

The array is of type char *, and so, we pass %s to printf. This has a
downside - we can’t naturally use the values as numerical values.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Functions Structures The Standard Map The Julia Set Program Arguments Recursion

Arguments Syntax

main() as a Function

1 #include <stdio.h>

2

3 int main(int argc , char * argv [])

4 {

5 printf("%s, %s", argv[1], argv [2]);

6 return 0;

7 }

Remember that in C, arrays index from 0. Notice that argv[] is a
character array, and that we are printing argv[1] and argv[2]. This
is because argv[0] is always reserved for the name of the program
itself.

The array is of type char *, and so, we pass %s to printf. This has a
downside - we can’t naturally use the values as numerical values.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Functions Structures The Standard Map The Julia Set Program Arguments Recursion

Arguments Syntax

More Flexibility in Parameters

Modify your code so that main(int argc, char * argv[]) takes
arguments.

Standard Map : change your value of K to
double K = atof(argv[1]);

Julia Set : change your value of Im(c) to
double cIm = atof(argv[1]);

Because the argument is a string, we need to use atof(myString)

(alphanumeric to float) to convert user input into something we can
store in a float or double.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Functions Structures The Standard Map The Julia Set Program Arguments Recursion

Arguments Syntax

Calling the Program with Arguments

Windows Users :

Open a command prompt (Start→ “cmd”)
Browse to your directory (using cd and dir)
myprogram.exe 1.265

Mac / Linux Users :

Open a terminal
Browse to your directory (using cd and ls)
./myprogram 0.28

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Functions Structures The Standard Map The Julia Set Program Arguments Recursion

Recursion

Recursion

We can also create functions which repeatedly call themselves. This is
called recursion.

An example of this is Euclid’s algorithm for the greatest common
divisor of two numbers. Eculid’s Algorithm is defined as

gcd(a, 0) = a
gcd(a, b) = gcd(b, a mod b).

Exercise: Code up a version of Euclid’s algorithm that works from the
command line. (For example, gcd.exe 10 5 should print 5.)

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

	Functions
	Definition
	Types
	Declaring Functions

	Structures
	Definition
	Using Structures

	The Standard Map
	The Standard Map
	Coding the Standard Map

	The Julia Set
	The Julia Set
	Coding the Julia Set

	Program Arguments
	Arguments Syntax

	Recursion
	Recursion

