
Program Arguments Recursion Warwick High-Performance Computing Diffusion-Limited Aggregation Exercises

Introduction to Computing
V - Linux and High-Performance Computing

Jonathan Mascie-Taylor
(Slides originally by Quentin CAUDRON)

Centre for Complexity Science,
University of Warwick

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Program Arguments Recursion Warwick High-Performance Computing Diffusion-Limited Aggregation Exercises

Outline

1 Program Arguments
Arguments Syntax

2 Recursion
Recursion

3 Warwick High-Performance Computing
Overview
The Linux Environment
Torque

4 Diffusion-Limited Aggregation
Background
Breakdown

5 Exercises

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Program Arguments Recursion Warwick High-Performance Computing Diffusion-Limited Aggregation Exercises

Arguments Syntax

main() as a Function

1 #include <stdio.h>

2

3 int main(int argc , char * argv [])

4 {

5 printf("%s, %s", argv[1], argv [2]);

6 return 0;

7 }

Remember that in C, arrays index from 0. Notice that argv[] is a
character array, and that we are printing argv[1] and argv[2]. This
is because argv[0] is always reserved for the name of the program
itself.

The array is of type char *, and so, we pass %s to printf. This has a
downside - we can’t naturally use the values as numerical values.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Program Arguments Recursion Warwick High-Performance Computing Diffusion-Limited Aggregation Exercises

Arguments Syntax

main() as a Function

1 #include <stdio.h>

2

3 int main(int argc , char * argv [])

4 {

5 printf("%s, %s", argv[1], argv [2]);

6 return 0;

7 }

Remember that in C, arrays index from 0. Notice that argv[] is a
character array, and that we are printing argv[1] and argv[2]. This
is because argv[0] is always reserved for the name of the program
itself.

The array is of type char *, and so, we pass %s to printf. This has a
downside - we can’t naturally use the values as numerical values.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Program Arguments Recursion Warwick High-Performance Computing Diffusion-Limited Aggregation Exercises

Arguments Syntax

main() as a Function

1 #include <stdio.h>

2

3 int main(int argc , char * argv [])

4 {

5 printf("%s, %s", argv[1], argv [2]);

6 return 0;

7 }

Remember that in C, arrays index from 0. Notice that argv[] is a
character array, and that we are printing argv[1] and argv[2]. This
is because argv[0] is always reserved for the name of the program
itself.

The array is of type char *, and so, we pass %s to printf. This has a
downside - we can’t naturally use the values as numerical values.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Program Arguments Recursion Warwick High-Performance Computing Diffusion-Limited Aggregation Exercises

Arguments Syntax

More Flexibility in Parameters

Modify your code so that main(int argc, char * argv[]) takes
arguments.

Standard Map : change your value of K to
double K = atof(argv[1]);

Julia Set : change your value of Im(c) to
double cIm = atof(argv[1]);

Because the argument is a string, we need to use atof(myString)

(alphanumeric to float) to convert user input into something we can
store in a float or double.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Program Arguments Recursion Warwick High-Performance Computing Diffusion-Limited Aggregation Exercises

Arguments Syntax

Calling the Program with Arguments

Windows Users :

Open a command prompt (Start→ “cmd”)
Browse to your directory (using cd and dir)
myprogram.exe 1.265

Mac / Linux Users :

Open a terminal
Browse to your directory (using cd and ls)
./myprogram 0.28

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Program Arguments Recursion Warwick High-Performance Computing Diffusion-Limited Aggregation Exercises

Recursion

Recursion

We can also create functions which repeatedly call themselves. This is
called recursion.

An example of this is Euclid’s algorithm for the greatest common
divisor of two numbers. Eculid’s Algorithm is defined as

gcd(a, 0) = a
gcd(a, b) = gcd(b, a mod b).

Exercise: Code up a version of Euclid’s algorithm that works from the
command line. (For example, gcd.exe 10 5 should print 5.)

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Program Arguments Recursion Warwick High-Performance Computing Diffusion-Limited Aggregation Exercises

Overview

Overview of Warwick HPC

Warwick have several high-performance computing and distributed
computing facilities which you can access.

CSC Linux Desktop
Cluster of Workstations
Apocrita
Minerva

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Program Arguments Recursion Warwick High-Performance Computing Diffusion-Limited Aggregation Exercises

Minerva

Minerva

396 nodes :

2× hexa-core 2.66 GHz
24 GB RAM

Total cores: 4752

12 GPU nodes :

2× NVIDIA Tesla M2050
48 GB RAM

Minerva has restricted access and is fairly expensive for the
department. To access you need to apply via the CSC website.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Program Arguments Recursion Warwick High-Performance Computing Diffusion-Limited Aggregation Exercises

Apocrita

Apocrita

150 nodes :

12 cores
24 GB RAM

Total cores: 1800

Apocrita is run by Queen Mary, University of London and like
Minerva has restricted access.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Program Arguments Recursion Warwick High-Performance Computing Diffusion-Limited Aggregation Exercises

Cluster of Workstations

Cluster of Workstations

Approximately 1000 cores on various computers in Physics, CSC and
Complexity.

The CoW’s performance per core isn’t much greater than that of a
decent laptop, but you can submit to many cores, and leave jobs
running for a long time.

The CoW is accessed via its frontend, Godzilla, which serves to access
the file servers and to allow users to submit compute jobs to Torque,
the queue for distribution among the CoW’s computers, via a
graphical desktop or a terminal.

Godzilla is not for computationally-intensive jobs. It is just a
front-end. You must submit your intensive jobs to the queue for
proper processing, or you risk being banned from the CoW.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Program Arguments Recursion Warwick High-Performance Computing Diffusion-Limited Aggregation Exercises

Cluster of Workstations

Cluster of Workstations

Approximately 1000 cores on various computers in Physics, CSC and
Complexity.

The CoW’s performance per core isn’t much greater than that of a
decent laptop, but you can submit to many cores, and leave jobs
running for a long time.

The CoW is accessed via its frontend, Godzilla, which serves to access
the file servers and to allow users to submit compute jobs to Torque,
the queue for distribution among the CoW’s computers, via a
graphical desktop or a terminal.

Godzilla is not for computationally-intensive jobs. It is just a
front-end. You must submit your intensive jobs to the queue for
proper processing, or you risk being banned from the CoW.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Program Arguments Recursion Warwick High-Performance Computing Diffusion-Limited Aggregation Exercises

Cluster of Workstations

Cluster of Workstations

Approximately 1000 cores on various computers in Physics, CSC and
Complexity.

The CoW’s performance per core isn’t much greater than that of a
decent laptop, but you can submit to many cores, and leave jobs
running for a long time.

The CoW is accessed via its frontend, Godzilla, which serves to access
the file servers and to allow users to submit compute jobs to Torque,
the queue for distribution among the CoW’s computers, via a
graphical desktop or a terminal.

Godzilla is not for computationally-intensive jobs. It is just a
front-end. You must submit your intensive jobs to the queue for
proper processing, or you risk being banned from the CoW.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Program Arguments Recursion Warwick High-Performance Computing Diffusion-Limited Aggregation Exercises

Cluster of Workstations

Connecting to Godzilla

Set up your SCP client to connect to godzilla.csc.warwick.ac.uk.
This is a protocol for transferring files to Godzilla and back. Once
you are connected, copy your code onto Godzilla, and then close the
client.

Using your CSC login and password, open Putty and connect to
Godzilla and try locating your code. You can also use NX Client to
access Godzilla.

Alternatively, use a terminal to ssh into Godzilla :
ssh usercode@godzilla.csc.warwick.ac.uk

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Program Arguments Recursion Warwick High-Performance Computing Diffusion-Limited Aggregation Exercises

Cluster of Workstations

Connecting to Godzilla

Set up your SCP client to connect to godzilla.csc.warwick.ac.uk.
This is a protocol for transferring files to Godzilla and back. Once
you are connected, copy your code onto Godzilla, and then close the
client.

Using your CSC login and password, open Putty and connect to
Godzilla and try locating your code. You can also use NX Client to
access Godzilla.

Alternatively, use a terminal to ssh into Godzilla :
ssh usercode@godzilla.csc.warwick.ac.uk

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Program Arguments Recursion Warwick High-Performance Computing Diffusion-Limited Aggregation Exercises

The Linux Environment

Bash Commands

From Putty try to learn how to navigate around your directory.

ls - list. Shows you all files in the current directory
cd - change directory. Use cd hello to get into a directory called
“hello”. If you want to go back up a level, try cd ..

These can be combined : cd ../../hello

cp - copy a file. Takes two arguments : cp fromhere tohere

mv - move a file. Takes two arguments, and can be used to
rename files : mv oldname newname

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Program Arguments Recursion Warwick High-Performance Computing Diffusion-Limited Aggregation Exercises

The Linux Environment

Other Commands

man <command> - bring up the manual on a certain command
mkdir <dirname> - create a directory
rmdir - remove directory - see also rm for files
cat - quick way to view the contents of a file

You can use a graphical text editor such as gedit or kwrite. For
editing directly in the terminal, try pico or nano. Great for quick
edits, you can use the shortcut to close the file once you’re done -
CTRL + x. For more functionality, pick a camp : vim or emacs.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Program Arguments Recursion Warwick High-Performance Computing Diffusion-Limited Aggregation Exercises

The Linux Environment

Compiling under Linux
The compiler we will use is the GNU C Compiler, or gcc. You can call
it from the terminal to compile like this :

gcc mycode1.c mycode2.c ... -o myoutput

This will generate a file called myoutput, which the system will be
able to run, from the source code in mycode.c. If you have included
math.h, you’ll need to add -lm to the end to link the maths library.

Executable files are run like this :

./myoutput

... but not directly on Godzilla !

The dot in the above means “this directory”, so ./myoutput is “in this
directory, run myoutput”.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Program Arguments Recursion Warwick High-Performance Computing Diffusion-Limited Aggregation Exercises

The Linux Environment

Compiling under Linux
The compiler we will use is the GNU C Compiler, or gcc. You can call
it from the terminal to compile like this :

gcc mycode1.c mycode2.c ... -o myoutput

This will generate a file called myoutput, which the system will be
able to run, from the source code in mycode.c. If you have included
math.h, you’ll need to add -lm to the end to link the maths library.

Executable files are run like this :

./myoutput

... but not directly on Godzilla !

The dot in the above means “this directory”, so ./myoutput is “in this
directory, run myoutput”.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Program Arguments Recursion Warwick High-Performance Computing Diffusion-Limited Aggregation Exercises

The Linux Environment

Compiling under Linux
The compiler we will use is the GNU C Compiler, or gcc. You can call
it from the terminal to compile like this :

gcc mycode1.c mycode2.c ... -o myoutput

This will generate a file called myoutput, which the system will be
able to run, from the source code in mycode.c. If you have included
math.h, you’ll need to add -lm to the end to link the maths library.

Executable files are run like this :

./myoutput

... but not directly on Godzilla !

The dot in the above means “this directory”, so ./myoutput is “in this
directory, run myoutput”.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Program Arguments Recursion Warwick High-Performance Computing Diffusion-Limited Aggregation Exercises

Torque

Torque

#!/bin/bash

#PBS -l nodes=1:ppn=1,pvmem=50mb,walltime=00:10:00

#PBS -V

cd $PBS O WORKDIR

jobid=‘echo $PBS JOBID | awk -F. ’{print $1}’‘
./dla 200 300 results.$jobid$.csv

This script will run myoutput on the CoW. To submit the script, you
need to send it to the queue : qsub -q taskfarm myscript.

In order for it to be run, you may need to allow the script to be
executed : chmod +x myscript.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Program Arguments Recursion Warwick High-Performance Computing Diffusion-Limited Aggregation Exercises

Being Nice

nice

Complexity has about 20 desktop computers you can also use. E.g.

adobo.complexity.warwick.ac.uk

bulalo.complexity.warwick.ac.uk

caldereta.complexity.warwick.ac.uk

These can be used for computation - but only with nice.

E.g. nice -n 10 command-name

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Program Arguments Recursion Warwick High-Performance Computing Diffusion-Limited Aggregation Exercises

Background

Diffusion-Limited Aggregation
“Diffusion-Limited Aggregation is the process whereby particles
undergoing a random walk due to Brownian motion cluster together
to form aggregates of such particles.”

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Program Arguments Recursion Warwick High-Performance Computing Diffusion-Limited Aggregation Exercises

Breakdown

The DLA Process

In order to build up the Brownian trees that occur as a result of
diffusion-limited aggregation, one can code up a DLA process on a
lattice. You begin this by creating one non-diffusing particle in the
middle of the lattice.

You then randomly add a particle which diffuses along the lattice
until it coalesces with the existing particle mass, at which point, it
stops and we create another new particle.

The continuation of this process generates a branching fractal
structure, with dimension ∼ 1.71.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Program Arguments Recursion Warwick High-Performance Computing Diffusion-Limited Aggregation Exercises

Breakdown

The DLA Process

In order to build up the Brownian trees that occur as a result of
diffusion-limited aggregation, one can code up a DLA process on a
lattice. You begin this by creating one non-diffusing particle in the
middle of the lattice.

You then randomly add a particle which diffuses along the lattice
until it coalesces with the existing particle mass, at which point, it
stops and we create another new particle.

The continuation of this process generates a branching fractal
structure, with dimension ∼ 1.71.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Program Arguments Recursion Warwick High-Performance Computing Diffusion-Limited Aggregation Exercises

Breakdown

The DLA Process

In order to build up the Brownian trees that occur as a result of
diffusion-limited aggregation, one can code up a DLA process on a
lattice. You begin this by creating one non-diffusing particle in the
middle of the lattice.

You then randomly add a particle which diffuses along the lattice
until it coalesces with the existing particle mass, at which point, it
stops and we create another new particle.

The continuation of this process generates a branching fractal
structure, with dimension ∼ 1.71.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Program Arguments Recursion Warwick High-Performance Computing Diffusion-Limited Aggregation Exercises

Breakdown

Computational Tips

Instead of looking at the neighbourhood of each particle, to see if it is
near the main aggregate, it may be easier to consider a three-state
lattice : empty, aggregate and “sticky patch”. The latter is equal to the
aggregate plus its nearest neighbours.

Thus, consider a lattice site to be empty if its state is 0, aggregate if 1
and sticky if 2. Then, when your particle performs its random walk,
check if it is on a site of state 2. If so, it doesn’t move - you change the
neighbouring lattice sites to 2 and the central position to 1.

When you view your results in MATLAB, ignore 2-states (use
mod(A,2)).

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Program Arguments Recursion Warwick High-Performance Computing Diffusion-Limited Aggregation Exercises

Breakdown

Computational Tips

Instead of looking at the neighbourhood of each particle, to see if it is
near the main aggregate, it may be easier to consider a three-state
lattice : empty, aggregate and “sticky patch”. The latter is equal to the
aggregate plus its nearest neighbours.

Thus, consider a lattice site to be empty if its state is 0, aggregate if 1
and sticky if 2. Then, when your particle performs its random walk,
check if it is on a site of state 2. If so, it doesn’t move - you change the
neighbouring lattice sites to 2 and the central position to 1.

When you view your results in MATLAB, ignore 2-states (use
mod(A,2)).

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Program Arguments Recursion Warwick High-Performance Computing Diffusion-Limited Aggregation Exercises

Breakdown

Computational Tips

Instead of looking at the neighbourhood of each particle, to see if it is
near the main aggregate, it may be easier to consider a three-state
lattice : empty, aggregate and “sticky patch”. The latter is equal to the
aggregate plus its nearest neighbours.

Thus, consider a lattice site to be empty if its state is 0, aggregate if 1
and sticky if 2. Then, when your particle performs its random walk,
check if it is on a site of state 2. If so, it doesn’t move - you change the
neighbouring lattice sites to 2 and the central position to 1.

When you view your results in MATLAB, ignore 2-states (use
mod(A,2)).

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Program Arguments Recursion Warwick High-Performance Computing Diffusion-Limited Aggregation Exercises

Exercise

Exercise
Draft up some code that allows you to generate random
numbers - remember to #include the relevant headers
Allow the user to input one argument as they call the program,
using argv - this will be the number of particles required
Generate an integer lattice with resolution 500×500, initialise it
to zeros expect one point in the middle, where it is equal to two
Declare two integers, px and py, the coordinates of the particle
Loop over the number of particles argv[1], using atoi() to
interpret it as a number
For each particle, give it a random initial condition on the lattice
While the particle is not on a lattice site equal to 2, perform a
random jump into one of its eight neighbouring sites, and check
that it hasn’t escaped the lattice (use periodic boundaries)
Once it’s on a sticky boundary, set this part of the lattice to 1 and
its neighbours to 2
After looping over all particles, print the resulting lattice to file

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Program Arguments Recursion Warwick High-Performance Computing Diffusion-Limited Aggregation Exercises

Exercises

Submit to the CoW

Copy your code for generating a DLA cluster onto the CoW. Then
write a Torque submission script with 20 MB of memory and one
minute of walltime, then submit your job to the queue.

qsub -q taskfarm mytorquescript.pbs

Note that we’re specifying which queue we want to submit to.

Once submitted, you can check on progress using qstat -u[your

login code].

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Program Arguments Recursion Warwick High-Performance Computing Diffusion-Limited Aggregation Exercises

Exercises

Submit to the CoW

Copy your code for generating a DLA cluster onto the CoW. Then
write a Torque submission script with 20 MB of memory and one
minute of walltime, then submit your job to the queue.

qsub -q taskfarm mytorquescript.pbs

Note that we’re specifying which queue we want to submit to.

Once submitted, you can check on progress using qstat -u[your

login code].

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Program Arguments Recursion Warwick High-Performance Computing Diffusion-Limited Aggregation Exercises

Exercises

Submit to the CoW

Each job has a number, visible when you call qstat.

Once finished, you will have some new files in the directory. There
will be mytorquescript.pbs.e12345 and similarly, a .o12345 file.
The .o file is output that should have reached the terminal. Because
you aren’t running the code in a terminal, output is redirected to this
file. The .e file is an error file, and should hopefully be empty. If not,
it might contains clues as to why an error occurred.

Once your job has finished running, you should have a results file in
addition to the .o and .e files. Use your SCP client to copy it back to
your laptop, import it in Matlab and visualise your DLA cluster.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Program Arguments Recursion Warwick High-Performance Computing Diffusion-Limited Aggregation Exercises

Exercises

Batch Submission

One of the advantages of the CoW is access to a large number of
cores. If you had to run a simulation multiple times (say, to calculate
an average), you could submit a batch job to the CoW, and whenever
a processor was free, it was start one of your simulations.

To run a batch job, we add the line
#PBS -t 1-20

near the top of the Torque script (generally, underneath #PBS -V

though this isn’t necessary).

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Program Arguments Recursion Warwick High-Performance Computing Diffusion-Limited Aggregation Exercises

Exercises

Batch Submission

One of the advantages of the CoW is access to a large number of
cores. If you had to run a simulation multiple times (say, to calculate
an average), you could submit a batch job to the CoW, and whenever
a processor was free, it was start one of your simulations.

To run a batch job, we add the line
#PBS -t 1-20

near the top of the Torque script (generally, underneath #PBS -V

though this isn’t necessary).

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Program Arguments Recursion Warwick High-Performance Computing Diffusion-Limited Aggregation Exercises

Exercises

Batch Submission
Since we are using random numbers we need to make sure each node
seeds with a different value - since all the nodes will probably be
starting at the same time time(0) will mean all the nodes use the
same random numbers.

To get around this we use the machine random number generator -
we need to add this line to our PBS file:

seed=‘od /dev/urandom --read-bytes=4 -tu | awk ’{print
$2}’‘

Edit your Torque script to request a batch job, with twenty
simulations, feeding it the seed generated above in the forth
argument.
Submit your script, and wait for the results to roll in.

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Program Arguments Recursion Warwick High-Performance Computing Diffusion-Limited Aggregation Exercises

Exercises

DLA Density

As a further exercise, use Matlab to import all of your DLA cluster
results and visualise the average.

L = dir(’results*’);
This returns all of the files whose name begins with results.
Windows users, you can also use L = ls(’results*’).

Declare an array of the right size :
A = zeros(500);

Loop over the length of L, loading each file and viewing it :
B = load(L(i).name);

A = A + mod(B,2);

Then, see what the average cluster looks like.
imagesc(A);

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

Program Arguments Recursion Warwick High-Performance Computing Diffusion-Limited Aggregation Exercises

Final Words

Good luck!

Jonathan Mascie-Taylor (Slides originally by Quentin CAUDRON) Centre for Complexity Science, University of Warwick

CO911 : Introduction to Computing

	Program Arguments
	Arguments Syntax

	Recursion
	Recursion

	Warwick High-Performance Computing
	Overview
	The Linux Environment
	Torque

	Diffusion-Limited Aggregation
	Background
	Breakdown

	Exercises

