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Abstract

We study attractive particle systems with stationary product measures. We utilize the property of attractiv-
ity and its link to coupling to build a growth process that samples from the stationary measure of the zero-range
process, on fixed and finite lattices, with computation times scaling linearly with the number of particles N .
The zero-range process with constant jump-rates and a single defect site is known to exhibit a condensation
transition, and we use L independent continuous time birth-processes to sample from the stationary measure
that exhibits condensation. The birth-rate of the defect site is a time inhomogeneous process, where the in-
tensity function (or time integrated birth-rate) exhibits the property of finite-time-blow-up. For this process,
finite-time-blow-up implies that infinitely many events can occur in a finite window of time.

1 Introduction

Driven diffusive systems are models of non-equilibrium statistical mechanics, where particles move on a lattice or
network, [1] [2]. We consider systems, where the rate these particles jump depends only on the number of particles
at the exit site and the entry site, and the site a particle jumps to is given by some probability distribution that
describes a random walker on the lattice. The jump-rates are a product of functions of the number of particles at
entry and exit sites. Such systems exhibit factorisable stationary distributions known as product measures, which
are independent of the dynamics of the random walker. The zero-range process is one particular example, where
the jump-rate depends only on the number of particles at the exit site, hence the name zero-range.

We study attractive driven diffusive systems, which are known to be attractive if the jump-rate is decreasing
(increasing) in the number of particles at the entry (exit) site, [3] [4]. We consider closed systems where the total
number of particles N is conserved and attractivity implies that stationary distributions πL,N on a fixed lattice of
size L are stochastically ordered in the number of particles, i.e. πL,N ≤ πL,N+1. Coupling techniques are used to
prove the property of attractivity and can often be interpreted as a method of simulating two, or more, systems
simultaneously by forcing them to depend on each other via some non-trivial rules, [5] [6]. These rules are restricted
such that when you observe one of the individual processes without observing the others, it behaves in the way it
was originally constructed.

In this project, we use the property of attractivity and the coupling technique to grow configurations, which
are used to sample from the stationary measure of the zero-range process. This growth rule allows us to sample
from the stationary measure such that computation times growing linearly with N . This is vast improvement on
the usual Markov Chain Monte Carlo (MCMC) techniques where the relaxation times, the time needed to generate
an independent sample, are typically of order N2 or N3, [7]. The mixing or equilibration times, defined as the
number of steps required to reach the stationary distribution [8], are typically larger than the relaxation times.

For the zero-range process with constant jump rates, i.e. where the jump-rates are independent of the number of
particles at a site, a tight upper bound on the relaxation time is of order (1/ρ+1)2N2, where the density ρ = N/L,
[9]. The zero-range process of this form is known to exhibit a transition to condensation, where a non-zero fraction
of particles accumulate on one site, if there exists a defect-site where the jump-rate is slower than the surrounding
sites [10] [11]. This transition occurs at a critical density (ρc), where below ρc there exists no condensate and the
system is in a fluid phase and above ρc the system separates into a condensate and a fluid phase. At this transition
point, equilibration times are typically much larger than for the spatial homogeneous system. We construct a time
in-homogeneous birth-processes which allows us to sample from the stationary measure such that the computation
time scales with N .

This report is organised as follows. In Section 2 we introduce the main mathematical properties of interacting
particle systems that are involved in this project, while keeping the discussion as general as possible. We discuss
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Figure 1. (Left) example dynamics of the zero-range process (4), with jump rates u(ηx). For example, a particle
at site 2 will jump at rate u(η2) and land on site 3 with probability p(2, 3). (Right) example growth dynamics,
where a particle is added to site x with probability pN (η, x) and N denotes the number of particles currently in
the system.

the concept of a generator, describing the time evolution of observables, and show the connection to the master
equation, which governs the time evolution of probability distributions for the stochastic process. We also define
what it means for a process to be attractive and connect this concept to the technique of coupling stochastic
processes. Section 3 is where we define driven diffusive systems, the zero-range process and birth-death processes.
We discuss some of the main properties of these processes such as their stationary measures, attractivity and
condensation. In Sections 4 and 5 we discuss the main results of this project, focusing on the zero-range process.
In the former, we use coupling techniques to define a growth rule to build stationary configurations related to
the canonical measure, while in the latter we discuss the connection between pure-birth processes and the grand
canonical measures. Finally, in Section 6 we discuss the results of this project and give a short summary of possible
future work.

2 Background

2.1 The master equations and generator

Throughout this project we restrict our discussion to continuous-time Markov processes defined on a finite state-
space given by S = XΛ, where Λ is a finite lattice of the form {1, . . . , L}. Configurations η ∈ XΛ are of the form
ηx ∈ X for all x ∈ Λ. Processes of this form may be characterised by the generator-matrix G ∈ R|S|×|S|, where the
matrix elements c(η, ζ) are the jump rates from state η ∈ S to ζ ∈ S and the diagonal elements −c(η, η) are the
total exit rate of state η ∈ S. Therefore, the time evolution of a probability distribution vector p(t) = (pη(t))η∈S
called the master equation, is given by

d

dt
p(t) = p(0)G ⇐⇒ d

dt
pη(t) =

∑
ζ 6=η

(
pζ(t)c(ζ, η)− pη(t)c(η, ζ)

)
.

Another characterisation of processes of this form is given by the generator L which governs the time-evolution
of expected values of observables f : S → R. More explicitly, for a process Xt, we have

d

dt
E(f(Xt)) = E (Lf(Xt)) .

For general continuous-time Markov process on countable state spaces, the functional form of the generator L, is
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given by

Lf(η) =
∑

{ζ∈S|ζ 6=η}

c(η, ζ)
(
f(ζ)− f(η)

)
,

and can be interpreted as the discrete derivative of f under a single transition in the process. We are now in a
position to see the connection between the master equation and the generator L by setting our observable f to be
the indicator function, f(.) = Iη(.), and using the notation

∫
S
Lf(η)dµ ≡ µ(Lf(η) ,∫

S

LIηdµ ≡ µ(LIη) =
∑
ζ∈S

µ(ζ)
∑
ζ′∈S

c(ζ, ζ ′)
(
Iη(ζ ′)− Iη(ζ)

)
=
∑
ζ∈S

µ(ζ)c(ζ, η)− µ(η)
∑
ζ′

c(η, ζ ′),

which is exactly the form of the master equation for µ(η) = pη(t). Since the two characterisations are equivalent,
we use the most convenient formulation at the time.

2.2 Stationary measures

Stationary measures are probability distributions that are conserved in time under the dynamics of the process.
The processes we are interested converge as time tends to infinity to the stationary distributions associated to the
process, which are unique under certain conditions. Such a property is called ergodicity. For a continuous-time
Markov process Xt, a probability distribution vector p?(t) is stationary if

p?(t)G = 0 which is equivalent to
d

dt
p?η(t) =

∑
ζ 6=η

(
p?ζ(t)c(ζ, η)− p?η(t)c(η, ζ)

)
= 0 for all η ∈ S.

Or equivalently, we may discuss stationary measures using the generator characterisation of a process. A probability
measure µ ∈ P(S) is stationary if∫

S

Lf(η)dµ ≡ µ(Lf) = 0 for all observables f . (1)

2.3 Coupling, stochastic monotonicity

Coupling is an extremely powerful technique in probability theory and is of particular use in interacting particle
systems. In particular, it is intimately connected with the concept of attractive processes. The definition of a
coupling is as follows: a coupling of two probability distributions µ and ν is a pair of random variables (X,Y )
defined on a single probability space such that the marginal distribution of X is µ and the marginal distribution
of Y is ν. That is, a coupling (X,Y ) satisfies P(X = x) = ν(x) and P(Y = y) = ν(y), [8]. In this project, we
consider a coupling of two stochastic processes which a method of forcing the processes to depend on each other
via some non-trivial rules. By the definition of coupling, if we observe one of the processes without observing the
others, the process behaves as it is originally constructed.

The coupling technique is linked to the concept of stochastic monotonicity. To discuss stochastic monotonicity,
we first consider the partial ordering of two configurations η and ζ defined on a state-space of the form S = XΛ

where Λ is a lattice or network and for interacting particle systems X ⊆ N. η ≤ ζ if we have ηx ≤ ζx for all
x ∈ Λ. If a continuous function, f : S → R, preserves this partial ordering, the function is said to be increasing,
i.e. f(η) ≤ f(ζ) for all η ≤ ζ. The concept of stochastic monotonicity states that; for probability measures µ1, µ2

on S: µ1 ≤ µ2 provided that µ1(f) ≤ µ2(f) for all increasing f , [5].
The link between stochastic monotonicity and coupling is given by the following theorem (Strassen); for prob-

ability measures µ1, µ2 on S then µ1 ≤ µ2 if and only if there exists a coupling µ, on the product space, S × S,

such that µ
(
{η = (η1, η2) : η1 ≤ η2}

)
= 1, i.e. the probability of observing partial order is one [6].
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A process (η(t) : t ≥ 0) on S is attractive if the property of stochastic monotonicity, or the partial ordering
of configurations, is preserved through time. Therefore, if the driven diffusive system is attractive then canonical
stationary measures are stochastically ordered in the number of particles on a fixed lattice of length L, that is
πL,N ≤ πL,N+1. This implies, there exists a coupling between a particle system with N particles and the one with
N + 1 particles where the stationary measure of the coupled process defines a growth process. This growth rule
allows us to sample from the stationary measure πL,N with computation time scaling linearly with the number of
particles.

3 Models

3.1 Driven diffusive systems

Driven diffusive systems, or lattice gas models, are continuous time Markov processes with state space X = NΛ,
where Λ is any countable set, e.g. {1, . . . , L}. Let p(x, y) be the irreducible, finite range transition probabilities of
a single random walker on Λ with p(x, x) = 0. For each x ∈ Λ, we define ux, vx : N→ [0,∞) to be two non-negative
functions of the number of particles, ηx, at site x, and the product ux(n)vy(m) is called the jump-rate, where

ux(n) = 0 ⇔ n = 0,

vx(n) > 0 for all n ≥ 0 (2)

for all x ∈ Λ. A particle at site x will jump to site y with a rate dependent only on the number of particles at the
exit and entry sites, given by ux(ηx)vy(ηy)p(x, y). The process (η(t) : t ≥ 0) on X is defined by the generator

Lf(η) =
∑
x,z∈Λ

ux(ηx)vz(ηz)p(x, z)(f(ηx→z)− f(η)), (3)

with ηx→z denoting the configuration after a particle has jumped from site x to site z.

3.2 Zero-range process

The zero-range process, [1], is a driven diffusive model of the from (3), where the jump rates depend only on the
number of particles at the exit site. Therefore, vx(n) ≡ 1 for all x ∈ Λ. The zero-range process (η(t) : t ≥ 0) on X
is then defined by the generator

Lf(η) =
∑
x,z∈Λ

ux(ηx)p(x, z)(f(ηx→z)− f(η)). (4)

The zero-range process is called homogeneous, if for all x ∈ Λ and all k ∈ N we have ux(k) ≡ u(k). See Figure 1,
for example dynamics of the zero-range process.

3.3 Stationary product measure

In this section, we discuss the explicit form of the stationary measures for driven diffusive systems. We consider
the driven diffusive process (η(t) : t ≥ 0) on the one-dimensional lattice Λ = Z/LZ = {1, . . . , L} with periodic
boundary conditions, with state space S = NΛ, functions ux(n) & vx(n) and jump probabilities p(x, y) with N
particles. The stationary measures are known to be product measures, which means the measure is factorisable and
therefore, the single-site distributions are independent. In the grand-canonical ensemble, the stationary measures
are parametrised by a number φ called the fugacity. The fugacity parameter controls the average number of particles
at a site whereas the actual number of particles in the system is a random variable. In the canonical ensemble, i.e.
the number of particles is fixed, the process is irreducible and hence, has a unique stationary measure.
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3.3.1 The grand-canonical stationary measure

Under certain conditions, the process defined by the generator (3) exhibits stationary product measures, [12] and
for the zero-range process [4], νΛ

φ [η] =
∏
x∈Λ ν

x
φ [ηx] for each φ ≥ 0. Where the single-sites are distributed according

to the measures νxφ , which are of the form

νxφ [ηx = n] =
wx(n)(λxφ)n

zx(φ)
and wx(n) =

n∏
k=1

vx(k − 1)

ux(k)
, (5)

provided that the partition function (normalisation)

zx(φ) =

∞∑
n=0

wx(n)(λxφ)n

zx(φ)
<∞ for all x ∈ Λ. (6)

The fugacity parameter, φ, controls the average number of particles per site and (λx : x ∈ Λ) is a harmonic function
solving

∑
x∈Λ (λxp(x, y)− λyp(y, x)) = 0 for all y ∈ Λ. We restrict our discussion to processes with λx ≡ 1 for

all x ∈ Λ. For the existence of a stationary product measure (5), we require that zx(φ) < ∞ for each x ∈ Λ. We
denote the domain of definition of the stationary product measure DΛ

φ , where

DΛ
φ = {φ ≥ 0 : zx(φ) <∞ for all x ∈ Λ}.

Since zx(φ) is a power series in φ, the domainDx is of the form [0, φxc ) or [0, φxc ], where φxc =
(
λx lim supn→∞ wx(n)1/n

)−1

is the radius of convergence of the power series zx(φ). Therefore, the domain of the product measure (5) is given
by

DΛ
φ = [0, φΛ

c ) or [0, φΛ
c ] where φΛ

c = inf
x∈Λ

φxc . (7)

The family of measures
{νLφ : φ ∈ [0, φc]}

is called the grand-canonical ensemble.

3.3.2 The canonical stationary measure

Models of the form (3) conserve the number of particles and are irreducible on the state space XL,N = {η ∈
ΛL|

∑
L (η) = N}. Thus, it has a unique stationary measure πL,N on XL,N which, can be written as a conditional

product measure

πL,N [η] = νΛ
φ

[
η
∣∣∣∑
L

(η) = N
]

=
IXL,N

(η)

ZL,N

∏
x∈ΛL

wx(ηx)ληxx , (8)

where ZL,N =
∑
η∈XL,N

∏
x∈NΛL wx(ηx)ληxx defines the canonical partition function and the family of measures

{πL,N : N ∈ N}

is called the canonical ensemble.

3.4 The attractive zero-range process and condensation

Driven diffusive systems are known to be attractive if the jump-rates are increasing at the exit site and decreasing
at the entry site, [3] and for the zero-range process see [4]. Therefore, canonical stationary measures πL,N are
stochastically ordered in the number of particles, πL,N ≤ πL,N+1. It is also known that the homogeneous attractive
zero-range process does not exhibit condensation [12]. Hence, we restrict our discussion on condensation to the
non-homogeneous zero-range process which is known to exhibit condensation [10]. To discuss condensation in
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particle systems given by the generator (3), we must first introduce the average density of particles, Rx(φ), for a
site x ∈ Λ, as follows

ρx(φ) ≡ Rx(φ) = νxφ(ηx) =

∞∑
k=1

kwx(k)(λxφ)k.

Let φc be the radius of convergence of the grand canonical partition function defined in equation (7). Since the
density function and partition function have the same radius of convergence, the critical density at site x ∈ Λ is
defined as

ρcx ≡ Rcx = lim
φ↗φc

Rx(φ) ∈ [0,∞].

Therefore, condensation can occur for non-homogeneous systems if there exists a single site d ∈ Λ such that the
critical density Rcd = ∞, and for the non-defect sites, x ∈ Λ \ {d}, the critical densities are finite. For finite
lattices, Λ, condensation of this form implies that in the limit of infinite particle number, N → ∞, we have
1
N limN→∞ ηd = 1, [10]. i.e. almost all particles condense on the defect site.

3.5 Numerical methods

To compare our methods of growing configurations to the stationary product measure of the zero-range process, we
have to numerically calculate the canonical partition function, ZL,N , which can be written as ZL,N = νΛ

1 (
∑
L (η) =

N). The single-site marginals under the grand canonical measure are of the form

πL,N (ηx = k) =
w(k)ZL−1,N−k

ZL,N
.

Therefore, utilising the product form of the stationary measures, two iterative formulas for calculating the partition
are given by

ZL,N =

N∑
k=0

w(k)ZL−1,N−k where w(k) =

k∏
i=0

u(i)−1 = Z1,k,

and

Z2L,N =

N∑
k=0

ZL,kZL,N−k,

therefore, one can compute the partition function easily for system sizes of the form L = l2+1, where l ∈ {0, 1, 2, . . .}.

3.6 Birth-death process

In this project, we consider birth-death processes to construct a continuous time growth process, which are used
to simulate the condensation phenomena, discussed above, in the zero-range process with a single defect site. A
birth-death process is a continuous-time Markov process with state space S = N and jump rates

i
αi−→ i+ 1 for all i ∈ S, i

βi−→ i− 1 for all i ≥ 1.

The rate αi is called the birth-rate and βi the death-rate. The generator-matrix for the birth-death process is
therefore given by

G =


−α0 α0 0 . . . . . .
β1 −α1 − β1 α1 0 . . .
0 β2 −α2 − β2 α2 0
... 0 β3 −α3 − β3 α3

 .

The master equation, describing the evolution of the distribution of the process Xt, is as follows

d

dt
P(Xt = n) = αn−1P(Xt = n− 1) + βn+1P(Xt = n+ 1)− (αn + βn)P(Xt = n). (9)
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4 Results: Growth for homogeneous zero-range processes with no con-
densation

In this section, we focus on the homogeneous zero-range process, where the jump rate is an increasing function of
particle number on a finite lattice with L sites, denoted ΛL. We construct a coupling of two zero-range process and
show sufficient conditions for a coupling measure to be stationary by using relations between the stationary product
measure, (8). We also connect this coupling measure to a discrete time growth rule, pN (η, x) in the following way:

Consider the zero-range process (4) with configuration η ∈ XL,N . Assuming the configuration η is generated
from the stationary measure πL,N , equation (8), we may generate a sample from the stationary measure πL,N+1

by adding a particle to site x ∈ ΛL with probability pN (η, x). Therefore, for all ξ ∈ XL,N+1 we need

πL,N+1(ξ) =
∑
x

πL,N (ξ − δx)pN (ξ − δx, x). (10)

See Figure 1 for example dynamics of the growth process pN (η, x).

4.1 Coupling the zero-range process

Let (η(t) : t ≥ 0) and (ξ(t) : t ≥ 0) be two zero-range processes defined via the same jump-rates such that
η ∈ XL,N and ξ ∈ XL,N+1. Since zero-range processes conserve total mass, we have that η(t) and ξ(t) contain N
and N+1 particles, respectively for all time. We focus on the homogeneous attractive zero-range process therefore,
we consider site-independent jump rates which are increasing in the number of particles, i.e.

if n ≥ m then u(n) ≥ u(m).

We may construct a coupling on the joint state space (XL,N , XL,N+1) between process η and ξ such that, ξ = η+δy
for some y ∈ ΛL. The extra particle in the ξ(t) process is called a second class particle. The coupling is constructed
such that

1. The marginals of the coupled process are two zero-range processes with N and N + 1 particles respectively,
defined by the generator (4). As a consequence the stationary coupled process is a coupling of measures πL,N
and πL,N+1, [4].

2. Particles move together as much as possible.

This coupling is often called a basic coupling. The coupled process behaves via the following rules; for the site with
the second class particle

ξy = n+ 1
ηy = n

}
u(ξy)−u(ηy)−−−−−−−−→

{ ξy = n
ηy = n

ξy = n+ 1
ηy = n

}
u(ηy)−−−−−−−−→

{ ξy = n
ηy = n− 1

(11)

For the remaining sites, both processes jump at rate u(ηx) = u(ξx). Since we construct the coupling by fixing the
ξ process to be of the form η + δy, we may map the state space of the coupled process to (XL,N ,ΛL). Therefore,
configurations in the coupling are of the form (η, y), where y ∈ ΛL is the site of the second class particle. The
generator for the coupled process is given as

Lf(η, y) =
∑

x,z∈ΛL

[u(ηx)p(x, z)(f(ηx→z, y)− f(η, y))]

+
∑
z∈ΛL

(u(ηy + 1)− u(ηy))p(y, z)(f(η, z)− f(η, y)). (12)
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Figure 2. Example configuration of the coupled dynamics. The η process is shown in blue and the second class
particle is shown in red. The jump-rates are defined according to equation (11). The coupling can only be
constructed for increasing jump-rates u as we need u(ξx)− u(ηx) ≥ 0 for all x ∈ ΛL for the dynamics to be well
defined.

See Figure 2 for exampled dynamics of the coupled process.
Consider a probability measure µ ∈ P(XL,N ,ΛL), acting on the state space of the coupled process, which is

the unique stationary measure of the coupled process. The stationary measure is unique since the process in an
irreducible Markov process on a finite state space. This implies the marginals of µ are given by πL,N and πL,N+1.
Therefore, µ is a coupling of two stationary zero-range processes. We use the stationary measure µ to define a
growth rule as follows:

Statement 1 Let µ(η, y) = µ(y|η)πL,N (η) be the stationary measure of the coupled process, (12), and µ(y|η) =
αη(y) be the location of the second class particle given the configuration η ∈ XL,N . Then

(a) αη(y) is a valid growth rule according to (10).

(b) For totally asymmetric dynamics αη(y) must satisfy the following condition

αη(y) [u(ηy + 1)− u(ηy)]− αη(y − 1) [u(ηy−1 + 1)− u(ηy−1)] =
∑
x

u(ηx)
[
αηx→x−1(y)− αη(y)

]
. (13)

Proof (a) For each x ∈ ΛL we have

µ(ξ − δx, x) = πL,N (ξ − δx)αξ−δx(x),

and we also know

πL,N+1(ξ) =
∑
η

µ(η, y)

=
∑

ξ : η=ξ−δy

µ(ξ − δy, y)

=
∑

y : η=ξ−δy

µ(ξ − δy, y)

=
∑

y : η=ξ−δy

πL,N (ξ − δy)αξ−δy (y).

Therefore, αη(y) is a valid growth rule according to equation (10).
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(b) A measure µ ∈ P(XL,N , XL,N+1) is stationary if the following equality holds (1)

µ(Lf) = 0 for all observables f . (14)

This implies

µ(Lf) =
∑

η∈XL,N

∑
y∈ΛL

µ(η, y)
∑

x,z∈ΛL

[u(ηx)p(x, z)(f(ηx→z, y)− f(η, y))]

+
∑

η∈XL,N

∑
y∈ΛL

µ(η, y)
∑
z∈ΛL

(u(ηy + 1)− u(ηy))p(y, z)(f(η, z)− f(η, y)) = 0. (15)

For simplicity of computation, only consider totally asymmetric dynamics in the zero-range process. That

is, dynamics of the form p(x, y) =
{ 1 if y = x+ 1

0 otherwise
. Therefore, equation (15) maybe simplified to the

following form ∑
η∈XL,N

∑
y∈ΛL

µ(η, y)
∑
x∈ΛL

u(ηx)(f(ηx→x+1, y)− f(η, y))

+
∑

η∈XL,N

∑
y∈ΛL

µ(η, y)(u(ηy + 1)− u(ηy))(f(η, y + 1)− f(η, y)) = 0. (16)

To show the stationarity condition (13) we make two changes of variables.

1. For all x, y ∈ ΛL, we change the variable in the sum over η. Such that, we highlight the jumps from
configurations η′ = ηx+1→x into η;∑

η∈XL,N

∑
y∈ΛL

µ(η, y)
∑
x∈ΛL

u(ηx)f(ηx→x+1, y) =
∑

η∈XL,N

∑
y∈ΛL

∑
x∈ΛL

µ(ηx+1→x, y)u(ηx+1→x
x )f(η, y)

=
∑

η∈XL,N

∑
y∈ΛL

∑
x∈ΛL

πL,N (ηx+1→x)αηx+1→x(y)u(ηx + 1)f(η, y). (17)

The following identity holds for the canonical stationary product measure πL,N on XL,N

πL,N (ηx+1→x) =
u(ηx+1)

u(ηx + 1)
πL,N (η) (18)

Hence, equation (17) can be transformed to the following form∑
η∈XL,N

∑
y∈ΛL

µ(η, y)
∑
x∈ΛL

u(ηx)f(ηx→x+1, y)

=
∑

η∈XL,N

∑
x,y∈ΛL

πL,N (η)αηx+1→x(y)u(ηx+1)f(η, y). (19)

2. Replace y with y − 1, to highlight the extra particle jumping into position y;∑
η∈XL,N

∑
y∈ΛL

µ(η, y)(u(ηy + 1)− u(ηy))f(η, y + 1)

=
∑

η∈XL,N

∑
y∈ΛL

µ(η, y − 1)(u(ηy−1 + 1)− u(ηy−1))f(η, y)

=
∑

η∈XL,N

∑
y∈ΛL

πL,N (η)αη(y − 1)(u(ηy−1 + 1)− u(ηy−1))f(η, y) (20)
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Thus, substituting equations (19) and (20) into equation (16) we find the stationarity condition (13).

Remark

(a) If we assume that αη(y) depends only on the configuration at site y and not the total configuration, we can
reduce (13) to the following form

αη(y) [u(ηy+1) + u(ηy + 1)]−αη(y−1) [u(ηy−1 + 1)− u(ηy−1)] = u(ηy+1)αηy+1→y (y)+u(ηy)αηy→y−1(y). (21)

(b) We may extend this result to more general dynamics, other than totally asymmetric and homogeneous, to
find the following condition on αη

∑
x,z∈ΛL

uz(ηz)p(x, z)αηz→x(y)+
∑
z∈ΛL

[uz(ηz + 1)− uz(ηz)] p(z, y)αη(z)

=
∑

x,z∈ΛL

ux(ηx)p(x, z)αη(y)+
∑
z∈ΛL

[uy(ηy + 1)− uy(ηy)] p(y, z)αη(y). (22)

Therefore, if we find an αη(y), which satisfies equations (13) or (22) we have a valid growth rule for the
zero-range process.

4.2 Constant jump rates

In this section, we consider the zero-range process (4) with jump rates of the form u(k) = 1 for all k ≥ 1. According
to the coupled process defined in Section 4.1, the second class particle placed at y ∈ ΛL must wait for the site
to become empty in the η process before being allowed to jump. i.e. u(ηy + 1) − u(ηy) = 1 if ηy = 0 and
u(ηy + 1)− u(ηy) = 0 if ηy ≥ 1. In this case, the growth probability

pN (η, x) =
(ηy + 1)

L+N
, (23)

satisfies equation (10). To compare the growth distribution with the theoretical canonical measure, we plot the
tail of the distributions given by the equation

Tailη(n) =
#{i ∈ ΛL|ηi ≥ n}

L
tx(n) = Iηx≥n (24)

〈Tailη(n)〉η is the average tail over realisations of η and therefore, both a spatial average and an average over
realisations. 〈tx(n)〉η = 〈Iηx≥n〉η is the average over realisations of η only considering the single-site x ∈ ΛL. Figure
3 shows simulation of the growth process compared with the numerical values of the single site stationary measure
πL,N [ηx ≥ n].

To show analytically, the growth rule pN (η, y) =
ηy+1
L+N is a valid growth process for a configuration η ∈ XL,N

and rates rates u(k) = 1 for k ≥ 1, we must first calculate the stationary measure, πL,N , which is given by

πL,N (η) =
1

ZL,N
,

since the stationary weights w(n) ≡ 1 for all n ∈ N. Each configuration η has equal weight which implies ZL,N is
equal to the number of configurations in XL,N . Therefore,

ZL,N =

(
N + L− 1

N

)
. (25)
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Figure 3. Comparing the growth process with the single-site marginal of the canonical stationary measure (red
line) of the zero-range process for system size L = 513, 3a - N = 64 to 3d - N = 512 . We compare both the tail of
the distribution (left) using a semi-log plot and the distribution (right). The growth process (blue crosses) is given
by 〈Tailη(n)〉η, and the single-site growth process (green circles) is given by 〈tx(n)〉η = 〈Iηx≥n〉η, i.e. the fraction
of realisations where a single-site x ∈ ΛL has more than n particles, both averaged over 10000 realisations. See
equation (24). Due to the constraint

∑
x∈ΛL

ηx = N the configurations are slightly correlated, which leads to
〈Tailη(n)〉η having a slightly higher tail than the canonical measure. However, the statistics for 〈Tailη(n)〉η are
obviously better than the single-site distribution, 〈Iηx≥n〉η, since there are L× 10000 averages compared to 10000.

For a configuration ξ ∈ XL,N+1, we have from equation (10)

πL,N+1(ξ) =
1

ZL,N+1
=

∑
x∈Λ : ξx>0

πL,N (ξ − δx)
ξx

L+N

=
1

ZL,N (L+N)

∑
x∈Λ : ξx>0

ξx

=
N + 1

ZL,N (L+N)

=
N !(L− 1)!

(N + L− 1)!

N + 1

L+N

=
(N + 1)!(L− 1)!

(N + L)!

=
1

ZL,N+1
.
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Thus, the growth rule pN (η, x) ∝ ηx + 1 holds. Figure 3 shows simulation results of the growth process against
numerical values of the canonical measure πL,N .

In Section (4.1), we showed that for a measure of the form µ(η, y) = αη(y)πL,N (η) to be stationary, α must
have the property given in equation (13), which was derived using totally asymmetric dynamics, that is

αη(y) [u(ηy+1) + u(ηy + 1)]− αη(y − 1) [u(ηy−1 + 1)− u(ηy−1)] = u(ηy+1)αηy+1→y (y) + u(ηy)αηy→y−1(y).

The growth rule, αη(y) =
ηy+1
L+N , shown above to be a correct growth rule, does not in fact satisfy equation (13).

Consider a configuration η, such that, ηy−1 = 0 for some y ∈ ΛL and ηz > 0 for all z 6= y − 1 ∈ ΛL. Therefore,
assume equation (13) holds for αη(y) ∝ ηy + 1 then

2αη(y)− αηy+1→y (y)− αηy→y−1(y) = αη(y − 1)

=⇒ 2
ηy + 1

L+N
− ηy + 2

L+N
− ηy
L+N

=
ηy−1 + 1

L+N

=⇒ 0 =
1

L+N
contradiction.

We see the contradiction with the totally asymmetric coupled dynamics and growth. Hence, we see that the growth
process is non-unique since a valid growth rule does not satisfy the stationary coupling condition (13).

Although the growth rule ηy + 1 does not necessarily satisfy equation (13), due to the totally asymmetric
dynamics, we can show it does satisfy equation (22), assuming mean-field dynamics. Mean-field dynamics implies
the network ΛL to be totally connected and the jump probabilities p(x, y) show no biases. i.e. p(x, y) = 1/(L− 1)
for all x 6= y ∈ ΛL.

4.3 Independent random walkers

The zero-range process with jump-rates of the form u(k) = k for all k ∈ N is equivalent to independent random
walkers each jumping with rate 1 on ΛL. The jump probabilities of the random walkers are translation invariant
and therefore, have uniform stationary distribution. From this, we expect the growth probability pN (η, x) and
stationary coupling measure αη(y) to be independent of the configuration η. In fact, αη(y) = 1

L for all y ∈ ΛL
solves equation (13). Since αη(y) = 1

L is independent of the configuration η, the following statement holds

αη̂(y) =
1

L
= αη(y) for all η, η̂ ∈ XL,N .

Therefore, substituting our ansatz into equation (21) with rates u(k) = k we get

αη(y) [u(ηy+1) + u(ηy + 1)] = u(ηy+1)αηy+1→y (y) + u(ηy)αηy→y−1(y) + αη(y − 1) [u(ηy−1 + 1)− u(ηy−1)]

1

L
[ηy+1 + (ηy + 1)] =

1

L
[ηy+1 + ηy + (ηy−1 + 1− ηy−1)]

=
1

L
[ηy+1 + ηy + 1] .

Figure 4 shows simulation results of the growth process against numerical values of the canonical measure πL,N .

5 Results: Growth via a pure-birth process

In this section, we consider growing configurations via a continuous time birth-death process defined in Section 3.6.
A pure-birth process is a birth-death process where βi = 0 for all i ∈ S. For given rates αi of the pure-birth process
Xt, we compare the distribution of Xt with the zero-range process and its associated grand canonical measure,
(4) and (5). We calculate the distribution of Xt using generating functions, [6], and the master equation for the
process, (9).



13

0 2 4 6
10

−8

10
−6

10
−4

10
−2

10
0

n

〈 T
ai

l η(n
)〉

 η 

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

n

〈 T
ai

l η(n
)〉

 η 

 

 

Canonical Measure: 
 π

L,N
(η ≥ n)

〈 Tailη(n) 〉η
〈 t

1
(n) 〉η

(a) N = 64

0 2 4 6 8
10

−8

10
−6

10
−4

10
−2

10
0

n

〈 T
ai

l η(n
)〉

 η 

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

n

〈 T
ai

l η(n
)〉

 η 

 

 

Canonical Measure: 
 π

L,N
(η ≥ n)

〈 Tailη(n) 〉η
〈 t

1
(n) 〉η

(b) N = 128

0 5 10
10

−8

10
−6

10
−4

10
−2

10
0

n

〈 T
ai

l η(n
)〉

 η 

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

n

〈 T
ai

l η(n
)〉

 η 

 

 

Canonical Measure: 
 π

L,N
(η ≥ n)

〈 Tailη(n) 〉η
〈 t

1
(n) 〉η

(c) N = 256

0 5 10
10

−8

10
−6

10
−4

10
−2

10
0

n

〈 T
ai

l η(n
)〉

 η 

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

n

〈 T
ai

l η(n
)〉

 η 

 

 

Canonical Measure: 
 π

L,N
(η ≥ n)

〈 Tailη(n) 〉η
〈 t

1
(n) 〉η

(d) N = 512

Figure 4. Comparing the growth process with the single-site marginal of the canonical stationary measure (red
line) of the zero-range process for system size L = 513, 4a - N = 64 to 4d - N = 512 . We compare both the tail of
the distribution (left) using a semi-log plot and the distribution (right). The growth process (blue crosses) is given
by 〈Tailη(n)〉η, and the single-site growth process (green circles) is given by 〈tx(n)〉η = 〈Iηx≥n〉η, i.e. the fraction
of realisations where a single-site x ∈ ΛL has more than n particles, both averaged over 10000 realisations. See
equation (24). Due to the constraint

∑
x∈ΛL

ηx = N the configurations are slightly correlated, which leads to
〈Tailη(n)〉η having a slightly higher tail than the canonical measure. However, the statistics for 〈Tailη(n)〉η are
obviously better than the single-site distribution, 〈Iηx≥n〉η, since there are L× 10000 averages compared to 10000.

5.1 Pure-birth and the constant rate zero-range process

We consider birth-rates of the form
αi = i+ 1 for all i ∈ S (26)

and compute the distribution of the pure-birth process at time t by using the generating function

F (s, t) =

∞∑
k=0

skpk(t), (27)

where pk(t) = P(Xt = k). The generating function in this form has the following properties; the boundary
conditions are given by

F (1, t) = 1 for all t ≥ 0

F (s, 0) = 1 for all s, (28)

and for each n ∈ S the distribution of Xt, pn(t), is given by

pn(t) =
1

n!

∂nF

∂sn

∣∣∣∣
s=0

. (29)
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Therefore, differentiating the generating function, see equation (27), and substituting the master equation (9) with
rates defined in equation (26) we find that

∂

∂t
F (s, t) =

∞∑
k=0

sk
d

dt
pk(t)

∂

∂t
F (s, t) =

∞∑
k=0

sk [kpk−1(t)− (k + 1)pk(t)]

∂

∂t
F (s, t) = s2 ∂

∂s
F (s, t) + sF (s, t)− s ∂

∂s
F (s, t)− F (s, t). (30)

The explicit solution to the partial differential equation (30) with the boundary conditions given in (28) is of the
form

F (s, t) =
1

et + s− set
. (31)

Hence, we may calculate the distribution of the pure-birth chain with birth rates αk = k+ 1 using equation (29).

P(Xt = n) = e−t(1− e−t)n. (32)

Following equation (5), the single-site marginals for the spatial-homogeneous zero-range process with rates u(k) = 1
for all k > 0 are given by

νφ(n) =
1

z(φ)
φn

where the partition function (normalisation) is given by

z(φ) =

∞∑
n=0

φn =
1

1− φ
for all φ ∈ [0, 1).

The domain of the marginal is [0, 1), since in this case the radius of convergence for the partition function is φc = 1.
Thus, the marginals of the stationary measure have the following form

νφ(n) = (1− φ)φn for all φ ∈ [0, 1). (33)

By setting the fugacity parameter, φ, in the grand-canonical measure of the zero-range process equal to 1 − e−t,
we see a direct comparison to the single-site marginal (33) with the distribution of the pure-birth chain at time t
(32). More explicitly

ν1−e−t(n) = e−t(1− e−t)n = P(Xt = n). (34)

We may also connect the distribution of the pure-birth process to the canonical stationary measure πL,N , which
are independent of the fugacity parameter, φ. To do this we consider growing L pure-birth process independently
and conditioning on there being N particles in total. Let ζx(t) be the number of particles in chain x at time t.
Since we grow chains independently, it is easy to see the joint distribution of chains will be a product measure.
Therefore, the joint distribution is given by

P(ζ1(t), . . . , ζL(t)|
L∑
k=0

ζk(t) = N) =
1

ZL,N

L∏
k=1

e−t(1− e−t)ζk(t)

=
1

ZL,N
e−Lt(1− e−t)N

The normalisation, ZL,N = e−Lt(1 − e−t)N
∑
ξ :

∑
ξ=N 1. We see the time dependence cancels out and the condi-

tional measure is exactly the form of the canonical measure for the zero-range process with constant rates.
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5.2 Pure-birth and independent random walkers

Similar to Section 5.1, we compare the pure-birth process with birth rates of the form

αi = α > 0 for all i ∈ S (35)

with the single site marginals for the grand-canonical measure of the zero-range process, with jump rates u(k) = k
for all k ∈ N. Using the same method for analysing the generating function in Section 5.1, we find it satisfies the
following condition

∂

∂t
F (s, t) = αF (s, t)(s− 1)

which, for the given boundary conditions (28), has solution

F (s, t) = e−αt(s−1).

The distribution of the pure-birth chain with birth rates given by (35) is of the form

P(Xt = n) =
(αt)n

n!
e−αt. (36)

To compare this distribution to the zero-range process we must first compute the single-site marginals (5).

νφ(n) =
1

z(φ)

φn

n!

where the partition function (normalisation) is given by

z(φ) =

∞∑
n=0

φn

n!
= eφ for all φ.

In this case the partition function converges for all φ and we see the domain of the marginal is [0,∞). The marginals
of the stationary measure have the form of a Poisson distribution

νφ(n) =
φn

n!
e−φ. (37)

Again, we may directly compare the single-site marginals (37) with the distribution of the pure-birth chain at time
t (36) by setting the fugacity parameter φ = αt. More explicitly

ναt(n) =
(αt)n

n!
e−αt = P(Xt = n). (38)

Similar to the previous section, we may find the canonical stationary measure of the zero-range process by condi-
tioning on L independent birth-chains having N particles in total.

5.3 Growth and condensation

Consider a non-homogeneous zero-range process (4) with a single-site defect, labelled d ∈ ΛL. It is known that for
such a process, the presence of a defect site is sufficient conditions for condensation [10]. In this case, the defect
site has a jump rate which is slower than the surrounding sites. For example, condensation occurs if the jump-rates
are of the following form

ux(k) = 1 for all x ∈ ΛL \ {d} and k ≥ 1,

ud(k) = r < 1 for all k ≥ 0. (39)
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Figure 5. Plots of the density functions for both fluid sites (red) and condensed defect site (blue). This shows
the density of the defect site diverges at the critical density, here φc = 0.8, while the fluid sites have finite density.

Setting the jump rate of the non-defect site to one sets the time-scale for the dynamics.
To see the condensation transition, we must first calculate φΛ

c as defined in equation (7). For each x ∈ ΛL \ {d}
we have

zx(φ) =

∞∑
n=0

φn =
1

1− φ
<∞ for φ ∈ [0, 1) so φxc = 1.

For the defect site d, the stationary weight is of the form wd(n) = 1/rn, which implies,

zd(φ) =

∞∑
n=0

(
φ

r

)n
=

1

1− φ/r
<∞ for φ ∈ [0, r) so φdc = r.

Therefore, the domain of the product measure (5) is given by DΛ
φ = [0, r). We see, for r ∈ (0, 1), the system

exhibits condensation. This is because the critical densities for sites x ∈ Λ \ {d} are of the form

Rcx = lim
φ↗r

Rx(φ) = Rx(r) =
r

1− r
<∞

and for the defect site the critical density becomes

Rcd = lim
φ↗r

Rd(φ) = lim
φ↗r

φ

r − φ
=∞.

Thus, we find for the zero-range process with rates defined in equation (39), and r ∈ (0, 1), the system will split
into two subsets; a set of sites with finite critical density, often called the fluid phase, and a set of sites with infinite
critical density, called the condensed phase.

5.3.1 The canonical partition function

For the zero-range process with one defect site, labelled d ∈ ΛL, the canonical measure becomes

πL,N (η) =

∏
x∈ΛL

wx(ηx)

ZL,N
=

1

rηd
1

ZL,N
.

To calculate the partition function ZL,N , we first consider a system with k particles on the defect site. Since the
stationary weights, w, of the non-defect sites are equal to one, the number of configurations η with ηd = k is given
by (

N − k + L− 2
N − k

)
.



17

This is the number of ways of placing N − k particles on L− 1 sites. Therefore, the partition function is given by

ZL,N =

N∑
i=0

r−i
(
N − i+ L− 2

N − i

)
.

5.3.2 Growth

We may generalise the growth rate αi to become time-dependent to sample from the stationary measure of the zero-
range process with one-defect site (39), which exhibits condensation. In Section 5.1, we show that the distribution
of a pure-birth process with rates αi = i+1 is equivalent to the single-site marginal of the grand-canonical measure
of the zero-range process, with rates u(k) = 1. We consider L independent pure-birth chains growing in time,
where the defect site d grows with rates as both a function of time and position, and the non-defect sites grow with
rate (26), more explicitly

αdi (t) = (i+ 1)h(t) for all i ∈ S,

αxi (t) = (i+ 1) for all x 6= d and for all i ∈ S (40)

where h(t) is some unknown function of time t. We make this generalisation because we want to constrain our
growth process to have the correct marginals for all time. Therefore, we must find an explicit form for h(t) such
that marginals of the growth process correspond to the marginal of the zero-range process. As in Section 5.1, we
may find the distribution for the defect site using a generating function and the master equation. The master
equation is given by

d

dt
pdk(t) = h(t)

[
kpdk−1(t)− (k + 1)pdk(t)

]
,

where pdk(t) = P(Xd
t = k) is the distribution of the defect site. The time derivative of the generating function (27)

is given by
∂

∂t
F (s, t) = h(t)

[
s2 ∂

∂s
F (s, t) + sF (s, t)− s ∂

∂s
F (s, t)− F (s, t)

]
,

and its explicit solution

F (s, t) =
1

eH(t) + s− seH(t)
where H(t) =

∫ t

0

h(s)ds.

The function H(t) is called the intensity function. Therefore,

P(Xd
t = n) = e−H(t)

(
1− e−H(t)

)n
Once again, we may compare the single-site marginal for the zero-range process with the distribution of the birth-

process. The marginal for a defect site, u(k) = r, is given by νdφ(n) =
(
φ
r

)n (
1− φ

r

)
. Thus, the single-site marginal

and the pure-birth distribution are equivalent for

P(Xd
t = n) = νdφ(n) =⇒ φ

r
= 1− e−H(t), (41)

while for the non-defect sites, νxφ(n) = φn (1− φ),

P(Xx
t = n) = νxφ(n) =⇒ φ = 1− e−t. (42)
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Since the fugacity parameter φ is a fixed quantity parametrising the stationary measure of the zero-range process,
we may solve explicitly for h(t) as follows

r
(

1− e−H(t)
)

= 1− e−t

=⇒ H(t) =

∫ t

0

h(s)ds = − log

(
1− 1− e−t

r

)
=⇒ h(t) =

1

1 + (r − 1)et
.

The inverse of the intensity function H(t) is given by

H−1(t) = − log
(
1− r(1− e−t)

)
. (43)

Notice for r ∈ (0, 1), the functions h(t), H(t) → ∞ as t → T ? = − log(1 − r) < ∞, associated with a finite time
blow-up. Finite time blow-up implies as t → T ? the birth-rate of the defect site, αdi (t) = h(t)(i + 1), will tend to
infinity and therefore, condensation will occur at the defect site. Using the limit t→ T ?, the critical fugacity may
be obtained using equation (42),

φc = lim
t→T?

(
1− e−t

)
= r.

We also regain the correct densities at both the fluid and condensed sites, in the limit of t→ T ∗.

5.3.3 Simulating the growth process

The process defined by birth-rates (40) is an example of a non-homogeneous Poisson process, where the growth-
rates depend on both space and time. To simulate such a process, we use the inverse of the intensity function and
points sampled from a homogeneous Poisson process. We generate a sequence of events {Ed1 , . . . , Edn}, where the
waiting time between events Edi and Edi−1 are exponentially distributed with rate αi, and the label d is there to
indicate the defect site. Then, the sequence of events {T d1 = H−1(Ed1 ), . . . , T dn = H−1(Edn)} are the event times of
the non-homogeneous process with jump-rates αih(t). Figure 6 shows the transform from a homogeneous Poisson
process to an non-homogeneous Poisson process using the intensity function H(t) and jump-rates αi = i+ 1. More
explicitly, for events Edi−1 and Edi , the waiting time is given by

Edi − Edi−1 ∼ exp(i+ 1), (44)

then, the waiting time between events in our non-homogeneous process are

T di − T di−1 ∼ H−1(exp(i+ 1)). (45)

We can simulate the L− 1 non-defect sites jointly using the following property of the exponential distribution, and
hence the waiting time between events,

if τi ∼ exp(ri) for any i, then min{τ1, . . . , τL−1} ∼ exp(
∑
i

ri).

Let {Ê1, . . . , Ên} be the sequence of events happening in the non-defect site then, by the property above, and since
the birth-rate of a single-site x is αxη = ηx + 1, the waiting time between events Êi−1 and Êi becomes

Êi − Êi−1 ∼ exp(Nt + L− 1)

where, Nt = −ηd +
∑L
i=0 ηi is the number of particles in the non-defect site at time t. The particle is then added

to site x 6= d, which contains k particles with probability

αxη
Nt + L− 1

.
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Figure 6. Illustration of the distribution of events generated by a non-homogeneous Poisson process (blue lines)
and a homogeneous Poisson process (red dashed). Considering only the non-homogeneous process, the unscaled
events, (E), are distributed along the x-axis, with exponentially distributed waiting times (44), and the scaled
events, T , along the y-axis with waiting times given by equation (45). The scaled events are the actual events used
by the process. The events for the defect site correspond to the non-homogeneous process (blue lines) and are
found using the inverse of the intensity function, (43), which diverges in finite time and therefore, the defect site
events will be constrained in the interval [0, T ∗]. Now considering the homogeneous process (red dashed), since
the birth-rates are not time-dependent no scaling is involved hence, unscaled events are exactly the scaled events.
The black dashed line is the function y = x, used since there is no time scaling for the homogeneous process.

We use a binary search algorithm to place the particle at the correct site.
Figure 6 shows visually how to simulate the non-homogeneous process, where the actual events the system uses

are along the y-axis. We include both a non-homogeneous (blue lines) and homogeneous process (red dashed) to
show the difference in waiting times and how the non-homogeneous process will eventually dominate, as t → T∗.
Figure 7a shows two example configurations comparing the simulated zero-range process with our growth process,
and the condensate is placed at site 10. Figure 7b shows the cpu-times of the growth process for three system
sizes. The cpu-time grows linearly with density above and below the critical density. However, the rate at which
the cpu-time grows is different. Since the growth process utilizes the binary search algorithm less often the rate
is slower above the critical density, which is confirmed with the system of two sites, L = 2, as the binary search
algorithm is never used.

5.3.4 Non-homogeneous growth and independent random walkers

In Section 5.2, we saw that the single-site marginals for the zero-range process with rates u(k) = k, where equivalent
to the distribution of a pure-birth process, with constant growth rate α > 0. In fact, the distribution is a Poisson
distribution with parameter φ = αt. We also find that the radius of convergence of the grand canonical partition
function, z(φ) = eφ, is [0,∞); the critical density, Rc = ∞ and therefore, the zero-range process does not exhibit
condensation. Similar to Section 5.3.2, we generalise the birth-rate of the birth-process to depend on time, to
correspond to a defect-site moving at a different rate to the background but with the same functional form, e.g.
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Figure 7. (Left) Example configurations for the zero-range process (red dashed) and growth process (green
lines) with the defect at site 10. (Right) CPU time, scaled by system size, for continuous time birth-process with
r = 0.8. L = 2 - blue, L = 256 - green and L = 512 - red. For large system sizes CPU time grows faster below the
critical density than above. This is due to the growth process utilizing the binary search algorithm less above the
critical density.

ud(k) = rk. The birth rates are defied by

αdi (t) = αg(t) for all i ∈ S,

αxi (t) = α for all x 6= d and i ∈ S.

It is easy to see, via the methods in Section 5.2 and 5.3.2 that the generating function and distribution of the defect
chain are of the form

F (s, t) = e−α(s−1)G(t) and P(Xd
t = n) =

(αG(t))
n
e−αG(t)

n!
where G(t) =

∫ t

0

g(s)ds.

To solve for G(t), we again solve the system of equations

φ = αt,

φ

r
= αG(t),

and therefore, G(t) = t/r. Unlike the previous Section, we see the intensity function G(t), does not diverge in finite
time. Thus, the defect site never gains such an advantage such that it exhibits condensation.

6 Discussion and future work

In this work, we have studied two methods for growing stationary configurations of the zero-range process. The
first growth rule was a discrete time process where the probability of adding a particle to a particular site depends
on current configuration. It is clear that such a growth process is not necessarily unique and that many processes
may give rise to the same measure. We showed that the stationary measure of two coupled zero-range processes
gives a valid growth rule and we give sufficient conditions for the conditional measure, µ(y|η) = αη(y), of the
coupled dynamics to be stationary. The growth rule αη(y) depended on the underlying dynamics of the zero-range
process, and we saw a valid growth rule for the constant jump-rate case did not satisfy equation (13), which was
found using totally asymmetric dynamics. To avoid spatial correlations in the growth rule, we should consider
the mean-field case, where ΛL is totally connected. Simulations of our growth process confirm the results shown



21

analytically and also show a great speed-up in computation times compared to MCMC techniques. Finding an
explicit solution to equation (22) for general jump-rates is still an interesting problem to solve.

The second method was via pure-birth processes, where the birth-rates were motivated by known growth
probabilities, pN (η, x). We first show the one-to-one correspondence between time in the birth-process and the
fugacity parameter that parametrises the grand-canonical measure of the zero-range process. Generalising the
jump-rates at a defect site, such that the birth-rate became a function both time and position, allowed us to
sample from the stationary measure of a zero-range process with a defect site. We found the intensity function,
the time-integrated rate, exhibits finite time blow up in the case where condensation is known to exist and does
not in the case where condensation is not observed. We present simulation results of the pure-birth process and
zero-range process to illustrate the condensate at the defect. Unfortunately, the generalisation did not shed light
on a possible solution for equation (22).

The homogeneous zero-range process is attractive for increasing jump-rates and is known to not exhibit con-
densation. However, in general it is not known if the property of attractiveness implies that a process does not
exhibit condensation in homogeneous systems. We may generalise our coupling of the zero-range process to couple
the general driven-diffusive models (3) if the exit-rate u is increasing and entry-rate v is decreasing in the number
of particles. Interestingly, unlike the zero-range process, the coupled dynamics allow for the extra particle to jump
against the model dynamics. Once again, we may find sufficient conditions on the conditional measure for the
dynamics to be stationary by using the functional form of the stationary product measure of the process.
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