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Abstract

We study a two dimensional opinion model on a predefined agent-agent network structure which defines the
possible interactions between agents. When two agents interact they either come to a compromise or ignore
each other according to some parameter dependent on distance in opinion space. If the two agents decide
to ignore each other then with a given probability they decide to break their connection in the network and
rewire this broken link to another agent uniformly across unconnected agents. We also introduce agents with
static opinion whom we interpret as media outlets and these media outlets have a defined range over which
they can influence agents and pull them towards their political outlook. Thus we have defined a tolerance for
both media outlet and individual agent. As we vary this tolerance for both media and agent we see various
different results such as the formation of clusters of agents with the same opinion or complete disagreement
within society. The resulting degree distributions also vary with the tolerance parameters, rewiring rule and
number of media sources. We often see a transition from the initially defined network structure, usually a
network with a Poisson distribution for the degree sequence to that with other distributions.

1 Introduction

1.1 Motivation

Opinions on various issues are not usually static and can be subject to change from various internal and
external sources. Such examples of internal sources can be an individuals lack of faith or confidence in their
own opinion which could imply that their opinion or political outlook is subject to a diffusion or random walk
bounded by the defined space. We consider examples of external sources to be an individuals interactions
with neighbours in their social network or interactions with media outlets and political parties. On a short
time scale, political parties and media outlets may be modelled as individuals with a static opinion, where
their goal is to maximise the number of regular individuals they are connected with at any given time-step.
However, over long time-scales media outlets or political parties may see a shift in their outlook as they
become more centralist, in an attempt to win votes of viewing figures, or extreme. Media sources and
political parties typically have the ability to polarise the opinions of a population with either individuals
agreeing or disagreeing with their agenda. Typically, individuals have some qualitative value of trust in their
opinion or the opinion of other sources which defines how and who they interact with. This trust parameter
could be seen as some interaction radius in which individuals will seek to compromise on an issue or ignore
each other depending on a distance function in opinion space and tolerance/trust.

The model that we construct in section 2 defines the opinion space to be the two dimensional unit
box. Often, the political spectrum is defined as [0, 1] the unit interval when being close to zero, left wing,
is interpreted as being a communist and close to one, right wing, a fascist. Our interpretation of a two
dimensional opinion space is to assign one axis to be the usual political outlook and the other axis to
represent an individuals economic outlook. For example, an individual may see themselves as a liberal on
political policy and at the same time hold conservative views about economic policy. An argument for
modelling a political outlook as two dimensional can be found in [1], called Grid-group theory.

The most simple models consider the system of agents to have equal tolerance which implies that all
areas of the opinion spectrum behave in the same way and we expect to find a number of opinion clusters
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dependent of the value of this tolerance. We see the results of this in section 3.3. Introducing opinion
dependent tolerance parameters could result in more interesting dynamics. A simple example of tolerance
in this form is to allow an area of opinion space to become more intolerant relative to the remaining opinion
space. By doing this we may expect to see a shift in the mean opinion of agents towards this intolerable region
and an area of opinion space devoid of any agents dependent on how we initialise tolerance parameters of this
form. We discuss the results of this process in section 3.4. Another implementation of opinion dependent
parameters can be such that the further away you are from the central opinion the more intolerant you
become. Again we discuss these results in section 3.5.

In our model we allow in the dynamics for a link in the network to be broken with some probability
dependent on the tolerance discussed previously and the distance of the two agents in opinion space. We
also restrict that the number of links in the network is conserved. By allowing for this restriction, we ensure
that our dynamics don’t allow the network to become either the complete network, where every individual
is connected to every other, or the empty network, where there exists no links between individuals. Once we
break a link in the network we must then define a rewiring rule which is possibly dependent on the opinion
space. If we consider the case when individuals i and j break their link, we rewire this link from i or j to an
unconnected individual, either preferentially according to distance in opinion space or randomly.

Our goal in this project is to understand how two dimensional opinions evolve in time. We are looking
to investigate the formation of clusters different opinion and will also study how the underlying opinion
dynamics change the degree distribution of the social network. Next, we attempt to understand the role of
the noise process in the dynamics of opinion formation and what if affects it has on the opinion distributions
and on the network structure. The role of external sources such as media outlets can have a huge impact on
the formation of opinions, so we aim to understand how the inclusion of media sources with fixed opinion
change the structure of the opinion distributions.

We begin this paper with a short introduction and discussion into various existing models, see section
1.2. Then move on to the definition of our opinion model in section 2 and outline the parameters in section
2.1. In section 3 we show the results of simulations, building in complexity throughout the section. Lastly
a discussion of the results and possible extensions to the project in section 4.

1.2 Current Literature

1.2.1 Linear Voter model

The linear voter model [2], [3] is a interacting particle system (IPS), which is a Markov chain where the state
space has a particular structure, defined on a lattice (or network) Λ = {0, . . . , L}. The state space is given
by the set of all configurations

η = {η(x)|x ∈ Λ} ∈ S = {0, 1}L

that is each agent in the network has a binary opinion at a given time.
The dynamics of the IPS is given by the local continuous-time transition rates:

η → ηx with rates c(η, ηx).

The (liner) voter model has rates

c(η, ηx) =
∑
y−x

qx,y(η(x)(1− η(y)) + (1− η(x))η(y)) for all x ∈ Λ.

1.2.2 Properties of the voter model

• Symmetric under relabelling opinions

• Has two absorbing states η = 0, 1
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• π(t)→ αδ0 + (1− α)δ1 where α ∈ [0, 1] depends on intial conditions

• For infinite Λ other stationary distributions may exist, where both opinions persist

1.2.3 The Deffuant model

The Deffuant model, Kozma and Barrat [5] and [6], is a model which N agents are given continuous opinion
φ ∈ [0, 1]. At each time-step, two neighbouring agents are chosen at random. If their opinions are within
some tolerance, |φ(i, t)−φ(j, t)| ≤ d then the two agents interact and compromise on their opinion, according
to the rule

φ(i, t+ 1) = φ(i, t) + µ(φ(j, t)− φ(i, t))

φ(j, t+ 1) = φ(j, t)− µ(φ(j, t)− φ(i, t))

where µ ∈ [0, 12 ] is a convergence parameter. For simplicity they take the convergence parameter µ = 1
2

There is an underlying network structure which defines the possible interactions each agent may have.
They make the network structure dynamic by introducing a probability of breaking a link in the network.
That is, at each time-step an agent and its neighbour is chosen at random and with probability w an attempt
to break the connection is made; if |φ(i, t)− φ(j, t)| ≥ d, the link (i, j) is removed and a new link is created.
With probability 1−w the opinions evolve according the previous interaction rule. The authors also introduce
a parameter p ∈ [0, 1], such that with probability p they rewire the link from agent i to another agent k and
with probability 1− p rewiring from agent j.

1.2.4 Properties of the Deffuant model

The dynamics of the Deffuant model are heavily dependent on the parameter p, the probability of breaking
a connection between two individuals. In the case when p = 0, the network is static, where they see a
fragmented phase for very small tolerance parameters. The fragmented phase is characterized by a lack of
extensive-size clusters. This fragmented phase is not seen in the case when p 6= 0 since rewiring allows small
groups of agents with similar tolerance and opinion to form. They also find non-trivial correlations between
the size of a group and average degree in the case where the network is dynamic. Depending on the value of
p this average degree is either a sub or super linear function of group size.

1.2.5 The Compromise Process

The model analysed by Ben-Naim, Krapivsky and Redner [7]. Each agent is initially assigned an opinion
x ∈ [−∆,∆] from some specified distribution. Randomly selected pairs undergo sequential interactions.
Such interactions are restricted to agents whose opinion lies below a threshold that is set to unity without
loss of generality. When two agents with opinion x1 and x2 interact, they both acquire the average opinion

(x1, x2)→ (
1

2
(x1 + x2),

1

2
(x1 + x2)) if |x2 − x1| < 1,

if |x2 − x1| > d no interaction occurs.
Let P (x, t) denote the proportion of agents that have opinions in the range [x, x + dx] at time t. This

distribution evolves according to the rate equation

∂

∂t
P (x, t) =

∫ ∫
|x1−x2|<1

dx1dx2P (x1, t)P (x2, t)[δ(x−
x1 + x2

2
)− δ(x− x1)]

The first two moments, M0 andM1, are conserved under dynamics of this form whereMk =
∫
dxxkP (x, t).

The authors restrict themselves to flat distributions on the interval [−∆,∆] and their goal was to deter-
mine the final state P∞(x) = P (x,∞).
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1.2.6 Properties of the compromise process

For ∆ < 1
2 all agents can interact and the second moment obeys the equation Ṁ2 + M0M2

2 = M2
1 . Using

M1 = 0 they find M2(t) = M2(0)e−
M0t
2 with M0 = 2∆. All agents approach the centre opinion and the

system reaches consensus with P∞(x) = M0δ(x). For larger values of ∆ the final distribution of opinions is
a sequence of non-interacting cluster, that is to say P∞ =

∑p
i=1miδ(x− xi) Integrating the rate equation

the authors found that the number of clusters grow while they increase ∆ as a series of bifurcations and
there exists three types of clusters: major clusters, minor clusters and a central cluster.

There exists a variety of other opinion models, both continuous and discrete. The models discussed thus
far usually lead to consensus and is usually dependent on network structure. To explain persistent opinion
fluctuations in society agents with static opinion are introduced. Acemoglu et al. [8] show that with the
introduction of stubborn agents, often referred to as zealots, the dynamics of the stochastic gossip process
never lead to consensus [9].

2 Our Model

We define the opinion space to be the [0, 1]2 box (unit box in two dimensions) and we consider a variation
of the compromise process and Deffuant model. The set of agents will be defined as A with |A| = N , where
N is the number of agents. All agents i ∈ A are initially uniformly assigned an opinion φi(0) ∈ [0, 1]2.

Also all agents i ∈ A are assigned a tolerance parameter Ri ∈ [0,
√

2] which defines the radius that an
agent will consider changing their opinion when interacting with another agent. There is also an underlying
network structure which defines the possible interactions between agents. Throughout this paper we consider
both static and dynamic networks.

When an agent i ∈ A interacts with j ∈ A, if d(φi(t), φj(t)) ≤ Ri then,

φi(t
′) = fi(φi(t), φj(t)) + ηi

where ηi ∼ N (0, εi), εi > 0 accounts for noise.
If d(φi(t), φj(t)) > Ri then with probability bi ∈ [0, 1], the link between agent i and j is broken. To

conserve the number of links in the network, we choose to rewire this broken link either from agent i or
agent j to another unconnected agent in the system. We rewire with equal probability across unconnected
agents.

We also define a set of media outlets to be M , with |M | being the number of media outlets in the
system. Similar to the agent-agent dynamics there exists a agent-media network which encodes the possible
interactions a media source will have with the population. Unlike the agent-agent dynamics agents i ∈ A
are not allowed to influence media outlet z ∈M. The update rule for agent-media dynamics is;

If d(φi(t), φz(t)) ≤ Rz then,
φi(t

′) = fi(φi(t), φz(t)) + ηi

where Rz ∈ [0,
√

2] is another tolerance parameter, which defines the reach the media has on an individual
in the population.

2.1 The Parameters

• For each i ∈ A we have Ri ∈ [0,
√

2] defining the tolerance for each agent.

• For each i ∈ A we have εi > 0 defining the variance in the normally distributed noise term.

• For each z ∈M we have Rz ∈ [0,
√

2] defining the reach a media outlet has on an agent.

• For each i, j ∈ A we have bi ∈ [0, 1] defining the probability of breaking a link between i and j in the
network conditional on agent j being out of tolerance range.
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2.2 The Algorithm

To simulate the model, we first build the network using a graph sampling algorithm [4], which takes a
decreasing degree sequence and the number of nodes as an input and outputs a random network. We then
uniformly consider each link in the network and test if each agent is within tolerance. If they are within
their respective tolerance range, then we update the opinions according to the rule defined in section 2.

We also must test that the degree sequence we generate is also graphical. A sequence is called graphical
if it can be the degree sequence of some graph. To test the graphicality of a sequence, we use the Erdös-
Gallai theorem, taking the formal statement from [4] and [10], which states a non-increasing sequence
D = {d0, d1, . . . , dN−1} is graphical if and only if their sum is even and, for all 0 ≤ k < N − 1:

k∑
i=0

di ≤ k(k + 1) +

N−1∑
i=k+1

min{k + 1, di}

We define one system sweep to be the number of iterations needed to have considered every link in the
network at most once.

3 Results

3.1 Conservation of the mean opinion

If we consider the dynamics as described in section 2, we can show that the mean opinion vector is a conserved
quantity, assuming there exists no media outlets. Let Φ(t) = (φ(1, t), . . . , φ(N, t)) be the N by 2 array of

opinions. Then E[Φ(t)] = 1
N [
∑N
i=1 φx(i, t),

∑N
i=1 φy(i, t)], where the subscript x and y denotes the dimension

of the opinion. We consider the change after one event. In a single event, we either break the link in the
network or update the opinions of the two chosen agents. If we break the link, then the agents opinion does
not change, keeping the mean opinion fixed. In the latter case we can consider change in each component of
the mean vector separately.

Consider only the x component and let i and j be the interacting agents then we have

φx(i, t′) = φx(i, t) +
1

4
(φx(j, t)− φx(i, t))

φx(j, t′) = φx(j, t)− 1

4
(φx(j, t)− φx(i, t)).

Calculating the mean opinion after this update gives us

Ex(Φ(t′)) =
1

N − 2

N∑
k|k 6=i,j

φx(i, t′) + φx(i, t) +
1

4
(φx(j, t)− φx(i, t)) + φx(j, t)− 1

4
(φx(j, t)− φx(i, t))

Ex(Φ(t′)) =
1

N − 2

N∑
k|k 6=i,j

φx(i, t) +
1

2
(φx(i, t) + φx(j, t))

=⇒ Ex(Φ(t′)) = Ex(Φ(t)).

This also holds for relabelling of x with y. Therefore the mean is conserved.
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3.2 Convergence Time

To calculate the time to convergence, tconvg, we consider one system sweep as defined in section 2.2. During
the sweep we calculate the number of times no update was possible due to the tolerance parameters and
whether the distance between two agents was smaller than some small value, c. We set c = 10−5 and we
interpret c as some convergence distance. If the sum of these two numbers is equal to the number of iterations
in one sweep then we say the system has become static and output tconvg as the number of sweeps before
the system becomes static. To state this formally, we say the system is static if;

1

2

N∑
i=0

deg(i) =
∑
sweep

Id(φi(t),φj(t))>Ri
(d(φi(t), φj(t))) +

∑
sweep

Id(φi(t),φj(t))≤c(d(φi(t), φj(t)))

where deg(i) is the degree of agent i in the agent-agent network and

IA(x) =

{
1 if x ∈ A
0 otherwise.

We show measurements of the convergence time on both static and dynamic networks in the case with
no noise and no media sources.
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Figure 1.

We see a qualitative difference in convergence times when comparing the results on a static network with
the dynamic network case. This change is due tot the formation of clusters in the case when b = 1 not seen
for b = 0. This is explicitly seen in figures 2b and 2c.

3.3 Agents with equal tolerance

3.3.1 Opinion distributions

Allowing for agents with equal tolerance enables us to simplify our model so that we have one control
parameter, R. Where for all agents i ∈ A, we have Ri = R. In this subsection we consider the dynamics
with no noise, εi = 0 for all i ∈ A, and no media sources are present. We consider how the properties of the
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opinion distribution1 change when we vary the tolerance parameter R. The results we show are the variance
of opinions, maximal cluster size2 and the number of opinion clusters3.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Tolerance, (R)

O
p
in

io
n
 V

a
ri
a
n
c
e

 

 

Static network, b=0
Static network, b=0

Dynamic network, b=1
Dynamic network, b=1

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

200

400

600

800

1000

1200

Tolerance (R)

M
a
x
im

u
m

 C
lu

s
te

r 
S

iz
e

 

 

Static network, b=0
Dynamic network, b=1

(b)

10
−1

10
0

10
1

10
2

10
3

Tolerance (R)

N
u
m

b
e
r 

o
f 
o
p
in

io
n
 c

lu
s
te

rs

 

 

Static Network
Dynamic Network

(c)

Figure 2. Properties of the opinion distribution for both static and dynamic networks, b = 0 and b = 1.
Figure 2a is the variance of the opinions, two lines are plotted for each parameter b one for each opinion
axis. Figure 2b is the size of the maximal cluster as a function of tolerance R. Figure 2c is the number of
opinion clusters on a log-log scale. The error bars presented are of length one standard deviation about the
mean.

We see from figure 2 that there exists a transition from uniformly distributed opinions to consensus4.
We also see that the initial uniform distribution of opinions persists for longer on a static network as shown
by the variance of the opinions, size of maximal cluster and number of opinion clusters. By allowing for the
network to become dynamic we see opinion clusters almost immediately after R becomes non-zero. Also,
when b = 1, the interacting agents reach consensus for smaller tolerance compared to the dynamics on a
static network.

3.3.2 Degree Distributions

In this section, we show the resulting degree distributions of the agent-agent networks for the various tolerance
parameters using a uniform rewiring rule.

1We compute the histogram of the opinions allowing for N grid spaces, where N is the number of agents. We make this
choice because we initialise the system uniformly. Therefore on average, each grid space should be filled by one agent. Also the
size of each grid space is much smaller that the tolerance values we consider, apart from R = 0, agents sharing the same grid
space can be seen as in the same opinion cluster.

2The maximal opinion cluster is the grid space with the most number of agents
3The number of opinion clusters is the number of non-zero grid spaces in the opinion histogram. Notice the maximal number

of opinion clusters is the number of agents, N .
4All agents with the same opinion
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Figure 3. Final degree distributions for 15 tolerance parameters on a network with 1000 interacting
agents when initialised with a Poisson distributed degree sequence with mean 10 we also take 100 averages
and error bars are of length of one standard deviation. We neglect to show the distributions for larger
values of tolerance since the network structure shows little change from that of the original. We see that
for tolerance values in the range of 0.06− 0.10 there exists an increasing number of agents with lower
degree consistent with that of fragmentation in the network structure. Otherwise the degree distribution
appears to be conserved. Error bars are of length one standard deviation about the mean.

3.4 The effect of non-uniform tolerance parameters: One in tolerant region

In the previous sections, we had only considered tolerance values which are equal across the population, that
is for all agents i ∈ A Ri = R. We now consider opinion dependent tolerance parameters. For simplicity, we
introduce a large tolerance parameter, Rlarge, and a small tolerance parameter, Rsmall. Agents with opinion
φi ∈ [0, 0.5]2 will be assigned tolerance Ri = Rsmall, otherwise they are assigned tolerance Ri = Rlarge.
We call the [0, 0.5]2 region of opinion space the intolerant region, since agents in this region are less likely
to change their opinion compared to the other agents in the opinion space. The tolerance of each agent
now becomes time dependent. This is because an agent who was initially outside the [0, 0.5]2 region can
eventually fall into the [0, 0.5]2 region and this agent will change their tolerance from Rlarge to Rsmall and
vice versa.

Setting up the model in this from allows us to consider the dynamics on the (Rsmall, Rlarge)− plane with
the restriction that Rlarge ≥ Rsmall.
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3.4.1 Properties of the opinion distributions

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Opinions for R
large

 = 0.2 R
small

 = 0.02

Opinion

O
p

in
io

n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Opinions for R
large

 = 0.4 R
small

 = 0.02

Opinion

O
p

in
io

n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Opinions for R
large

 = 0.5 R
small

 = 0.02

Opinion

O
p

in
io

n

Figure 4. Scatter graphs of 100 simulations of bias tolerance parameters on a dynamic network, b = 1.
Each figure has Rsmall = 0.02. From left to right Rlarge = 0.2, 0.4, 0.5 The colours of such images represent
different simulation results.

We see from figure 4 that the majority of agents get drawn to this intolerant region of opinion space. There
also exists a separation in the system around the intolerant region where no agents may remain in limit of
large simulation time.

Figure 5 shows various resulting properties of the opinion distribution. We again compare the results
for those on a static network, the right column, and on a dynamic network, the left column. Similar to
section 3.3.1, the dynamics go through a transition from uniform opinions to consensus. For combinations
of Rlarge to Rsmall, there appears to be three phases a high variance (small maximal cluster), mid variance
(mid maximal cluster) and small variance (high maximal cluster). Similar to the previous section, the shift
to consensus occurs for smaller combinations of parameters while the network is dynamic, b = 1 compared
a static network, b = 0.
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Figure 5. The figures in the left column are associated with the dynamics on a dynamic network, b = 1,
while the figures on the right are associated with the dynamics on the static network, b = 0. Since the

opinions are two dimensional, we show the
√
o2x + o2y where oi is the ith component of the observable

stated in the title of the respective figures. The diagonal line is exactly equivalent to section 3.3. Figure 5g
and 5h show the logarithm of the number of opinion clusters.
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3.4.2 Degree Distributions
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Figure 6. Final degree distributions for 8 combinations of small and large tolerance parameters with 2000
interacting agents when initialised with a Poisson distributed degree sequence with mean 10 where we
takes 100 averages and error bars are of length one standard deviation about the mean. In all cases there is
a promotion of agents with degree 1 and there also exists a small number agents with a large degree.
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Figure 7. Properties of the resulting degree distribution, b = 1 when initialised with a Poisson degree
sequence with mean 10 and 2000 interacting agents. Figure 7a shows the variance of the distribution.
Figure 7b shows the range in the degree distributions, where the range is defined as the maximal degree
minus the minimal degree. Figure 7c shows the degree with the maximum number of agents, where we see
a transition from values of around 1 and 2 to values near 10 the initial average degree.
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3.5 The effect of non-uniform tolerance parameters: More extreme the more
intolerant you become

Our second implementation for agents with non equal tolerance parameters is to consider dynamics where
an agents tolerance is a function of distance from the central opinion [0.5, 0.5]. For simplicity, we consider a
linear function of distance, and for a realistic implementation, we allow the agents furthest away from the
central opinion to be the most intolerant. Therefore we define the tolerance of agent i ∈ A at time t to be;

R(φ(i, t)) = M
(

1−
√

2d(φ(i, t), 0.5)
)

This definition of tolerance defines a new parameter M , which is the tolerance value at the centre of opinion
space. We visualise these tolerance parameters in figure 8.
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Figure 8. Heat map of tolerance values where the more extreme an agent is the less tolerant this agent
becomes.

In this set up of the model, agents with an initial opinion of [0, 0],[0, 1],[1, 0], and [1, 1] will always have
zero tolerance. Therefore, consensus can never be achieved if we start with atleast two agents with opinion
previously mentioned, and their opinion is non-equal. However, if we allow for large enough M and have no
agents with opinion at the edge of the box, consensus may eventually be reached.
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3.5.1 Properties of the opinion distributions
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Figure 9. 9a shows the variance of the opinions as a function of M . 9b is the size of the largest opinion
cluster. 9c is the number of opinion clusters on a log-log scale. Taking 50 averages with error bars of one
standard deviation.

Figure 9b shows how the largest opinion cluster grows for increasing M . In the case of the static network,
once we see a largest opinion cluster forming, the growth rate of this cluster with respect to M is greater
than that for the dynamic network. The increase in size of the largest cluster, on a dynamic network, appears
constant. Once again we see the formation of opinion clusters for smaller parameter values when the network
is dynamic, compared to the static network. Figure 9c shows the decrease in the number of opinion clusters
as we vary M , the number of clusters falls quicker for the dynamic network. However, compared to the
previous sections, more opinion clusters persist for higher parameter values. In this case, for large M there
still exists regions of opinion space which are intolerant, located around the perimeter of the opinion space,
causing there to be more opinion clusters. For resulting degree distributions see appendix, 5.

3.6 Sensitivity to Noise

The dynamics of the model are sensitive to the strength of the noise parameter εi. We show this in figure
10a. The transition from disconcensus to consensus increases in tolerance as we increase the strength of this
noise parameter. In this section, we revert back to the case when Ri = R for all agents.

What we see from figure 10a and figure 10b is an increase in noise will cause the agents to become
increasingly extreme in opinion. For small tolerance, this increase in extremism is not seen because the noise
term is implemented in the opinion update rule, which for small R on a static network, b = 0 this update
rule is rarely used.
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Figure 10. Figure 10a: Heat map of the variance for varying noise and tolerance parameters. Considering
we have two dimensional opinions to visualise the variance, we plot

√
(var(φx))2 + (var(φy))2, b = 0.

Figure 10b shows an example opinion distribution to show why there exists a larger variance region shown
in 10a. Here the parameters are εi = 0.009 and R = 0.22.

3.7 Media Dynamics

Media outlets are considered as agents with static opinion. One control parameter we have for the media
outlets are the tolerance parameters Rz. We can vary this parameter to model how the opinion distribution
changes for media sources with increase influence on the population. That is how the distribution changes
for increasing Rz.

We place two media sources at [0.25, 0.25] and [0.75, 0.75].
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Figure 11. Opinion distributions for increasing media influence taking 100 ensemble averages. Each agent
i ∈ A has tolerance Ri = 0.2. The media sources are places at [0.25, 0.25] and [0.75, 0.75]. Each media
source can connect with every regular agent. We observe a transition of the opinion clusters, for small Rz
we see the formation of two clusters centred at the media outlets. While increasing Rz three clusters
appear, one at the midpoint of the media sources and the other two again centred at the media outlets.
For larger Rz we see one opinion cluster.
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Figure 11 shows the transition between two clusters of opinions each centred on the media outlets towards
one cluster centred at the mid point of the media outlets. During this transition three opinion clusters coexist
with the two clusters centred on the media outlets reducing in size as we increase Rz.

4 Discussion

4.1 Results discussion

In section 3.1 we showed that the mean is conserved when we consider the system with equal tolerance
values, Ri across the population and there exits no media or noise term. This was because each interaction
either broke the link in the network or changed the opinion of two agents in such away that the sum of the
opinions before and after was the same. We see in section 3.4 that if we relax the assumption where tolerance
is equal across the population, then the mean opinion will no longer be conserved. This is explicitly shown
in 5b and 5a where the dynamics contained a region of opinion space which was intolerant compared with
the overall opinion space. The shift in the mean is due to the interactions now allowing one agent to change
opinion while the other remains static and the shift in mean is towards the intolerant region. In this case
there are only three possibilities of interaction between an agent outside the intolerant region and one inside:
both change opinion, no one changes opinion and the agent with the larger tolerance will change opinion,
and in this latter case moves towards the intolerant region.

In section 3.2, we show convergence times for systems of various sizes. In the case of a static network
tconvg, rescaled by system size, peaks around some critical value of the tolerance, Ri. If one compares these
convergence times with figure 1a with figure 2a, this peak in convergence times is where a transition occurs
from a large opinion variance to a small opinion variance. It also decreases in tolerance with increasing
system size. So, we may expect for an infinite system this transition to consensus to occur at R 6= 0.

Relaxing the assumption that the network is static, the convergence times showed a qualitative difference
to the static network dynamics shown in 1b. In fact, the convergence times decreased as we increased that
parameter Ri for a system size N = 1000 while for N = 100 the convergence times eventually decreased. The
increase in convergence time on a dynamic network results from the formation of opinion clusters at lower
tolerance, see figure 2b. We investigate how the degree distributions change for varying tolerance, shown in
figure 3, for the most part the initial Poisson structure is largely conserved. For extremely small values of
Ri, this process is effectively only a rewiring process on the network allowing only the opinion distribution
to vary slightly from its initial position. There exists a range of tolerance, Ri = 0.06 ∼ 0.14 where we see an
increase in the number of agents with small degree and fewer agents with a large degree. This shows that
there are a small number of agents gaining a large proportion of other agents while the majority of agents
have a small degree, they have few neighbours.

In section 3.4, we relax the assumption that tolerance, Ri is equal across the population. We considered
how the dynamics change when we have a region of opinion space more intolerant to the rest of opinion
space. Figure 4 shows examples of the resulting opinion distributions. For the tolerance parameters shown
in figure 4, we see a region of opinion space that is devoid of any agents, this is because no agent may cross
this region since they are always outside of tolerance. The size of this region without agents appears to be
of length Rlarge. Also the majority of the agents lie on the edge of this intolerant region. The images in 4
are all realisations on a dynamic network.

Figure 5 shows the mean and variance of the opinions for both a static network and dynamic network.
We see a shift in the mean towards the more intolerant region for all combinations of Rsmall and Rlarge

which are not equal as discussed previously. This transition from opinion distributions with higher variance
to states with lower variance is still present, see figures 5c and 5d, in the dynamics with bias tolerances,
this suggests that clusters of opinions are still forming. However, they are forming with a bias towards
this intolerant region. Figure 5e and 5f are the sizes of the largest cluster formed for each combination of
Rsmall and Rlarge, the peak of the opinion distribution. We see from these figures that consensus is achieved
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for smaller combinations of tolerance Rsmall and Rlarge when we allow for b = 1 compared to b = 0. This
result was also seen in section 3.3.1. Allowing for the network to become dynamic makes the transition
from uniform opinions to consensus appear for smaller combinations of parameters since we now allow for
interactions to occur that were usually excluded by non-existing links.

Again, we discuss how the degree distributions change for different combinations of Rsmall and Rlarge.
Figure 6 shows the resulting distributions for 8 combinations of Rsmall and Rlarge as shown by the legends of
the figures. Similar to the case for equal tolerance, the network sees an increase in the number of agents with
a degree equal to 1. Figure 7c shows the degree which has the maximum number of agents associated with
it, the peak of the degree distribution. We see a sharp transition from degree sequences with low maximal
degree to a maximal degree defined by the initial networks, degree of 10, 11 or 12. This suggests that if we
have a region of opinion space that is extremely intolerant compared to the other regions, then the social
network fragments and most agents trust a small number of other agents.

Our second implementation of non-equal tolerances was in section 3.5. We define the tolerance of an
agent to be a linear decreasing function of the distance from the centre of opinion space and restricting
that the tolerance at the corner of the opinion space was zero. By doing this we implicitly defined a new
parameter M , the tolerance of an agent at [0.5, 0.5]. In figure 9b we saw how the size of the largest cluster
of opinions changed as a function of M . We see that in the case of the dynamic network this cluster size
grows linearly.

In section 3.6 we introduce noise in to the dynamics as defined in section 2. We also revert back to the
case when Ri is equal across the population. Figure 10a tell us that there still exists a transition in the
opinion distribution. This transition from no clusters to one cluster grows as we increase the strength of the
noise parameter εi. We also see an area in which the variance of opinions is higher than that of a uniform
distribution. In figure 10b we see a realisation the opinion distribution in this region. This realisation shows
that opinions are forced to the boundary of the box. This can be explained by the implementation of the
noise process, if the noise term takes the opinion of an agent outside the defined opinion range we set the
opinion at the edge it goes over. In section 4.2 we discuss a different implementation of noise into the
dynamics.

In section 3.7 we introduce media sources into the dynamics. We place two media sources at z1 =
[0.25, 0.25] and z2 = [0.75, 0.75] and simulate the model for increasing media tolerance Rz. Figure 11 shows
the formation of opinion clusters centred about the media outlets for small Rz. As we increase the range
these media sources can influence the population we see the emergence of a cluster in the centre of the media
sources. This transition goes from 2-3-1 clusters of opinions. There is coexistence of three opinion clusters
through this transition. This suggests that media outlets have a large effect on how the distribution of
opinions behaves. Media outlets have the power to convince the entire population of agents to their agenda
if there tolerance is large enough. In the case of multiple media sources, depending of their respective
tolerances, they either share a proportion of the population or they force the the opinion distribution to be
between the two sources. In the latter case, no agent shares the media outlets political outlook.

To conclude, we often find a transition from uniformly distributed opinions to consensus in society. We see
this explicitly in models with equal tolerance, an area with bias tolerance and the addition of an underlying
noise process. We also find that this transition occurs for smaller parameter values, when we allow the
network to become dynamic. In all cases discussed, we find the formation of opinion clusters occurs earlier
for smaller tolerance values, while the network is dynamic. We develop an implementation of tolerances
where consensus may never be achieved. However, clusters still form on the edges of opinion space.

4.2 Future work

We need to run simulations for larger system size while taking a much larger number of ensemble averages.
Currently the noise parameter εi plays too strong a role in the dynamics of opinion formation, as shown

in figure 10a. More interesting dynamics could possible be seen if we allow the opinions of agents to
act as diffusing particles constrained in the defined opinion space. Such as starting the dynamics from an
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equilibrium state, i.e. all agents start with the same opinion, and then running the dynamics for an increasing
rate of diffusion relative to the rate of our compromise process. One possible result is seeing a sharp change
in the structure of the opinion distribution from all agents with the similar opinion too uniform across the
opinion space. Other possible results can be seeing the opinion distribution spread out slowly across the
opinion space until the compromise process is not seen in the underlying diffusion process.

One may consider how the dynamics change if we were to introduce memory into the system. Currently
the next step or iteration in the dynamics only depend on the current state of the system, Markovian
(Memoryless). If agents were allowed to remember what their previous opinions were and move with a bias
towards or against this previous opinion more interesting dynamics may occur.

We have already seen how media sources, currently defined as agents with static opinion often referred
to as zealots, can play a dominant role in the dynamics of opinion formation. Allowing for multiple media
sources and relaxing the condition that these sources are static agents, a game could be played where at
any given time the media will try to maximise its expected number of unique agents it is influencing while
keeping some other agenda or political outlook.

There also exist a plethora of ways to introduce non-equal tolerance parameters across the population.
Such as considering increasing or decreasing the tolerance of a agent dependent on how many times this
agent has changed opinion. Another example would be to consider increasing an agents tolerance under a
successful attempt to change its opinion, argued as the agent becoming more open-minded, and decreasing
the tolerance under a unsuccessful attempt, argued as the agent becoming increasingly stubborn and heading
towards becoming a zealot. This process on agent tolerance joint with a dynamic network process may lead
to more exotic network structures than that seen in this project.
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5 Appendix
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Figure 12. Final degree distributions for the dynamics defined in section 3.5 for a system of 1000
interacting agents when initialised what a Poission distributed degree sequence with mean 10. We also take
50 averages and error bars are of length one standard deviation about the mean. The yaxis is plotted on a
logarithmic scale


