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Abstract—The separation of music signals into meaningful
constituents is investigated through the use of an autoencoder.
An autoencoder is an unsupervised artificial neural network
which has been used with success in the processing of images.
Here we apply the method to the time-frequency representation
of a music signal with the intention that the method will be
able to identify different source components of the signal. First
we see if the autoencoder is able to recreate the input, this
is the method by which an autoencoder is trained. The result
shows that the network has difficulty recreating the input time-
frequency representation, especially along the time axis. Secondly
we look at the code layer, where the network provides an abstract
representation of the inputs. Again the result shows that the time
frame overpowers the activation of hidden units and no clear
separation of the sources are observed. Significant explanation of
possible improvements and alterations to the method is discussed.

Index Terms—Autoencoder, Audio Source Separation, Time-
Frequency Representation

I. INTRODUCTION

SOURCE separation involves processing an input signal
to reconstruct or separate the signal into its constituents.

These constituents are required to be of interest to the end
representation. As example, the input signal could be audio
produced by a orchestra. A meaningful constituent would be
the signal produced by one of the instruments contributing to
the input signal, as opposed to just one note played by one
of the instruments. This research is focused on audio signals
produced by musical instruments.

The problem has gained some interest over the years and
while techniques for music separation exists [1], [2], the sep-
arated sources contain considerable artifacts. The algorithms
often also require to be trained for specific sources. Speech
processing and separation, a closely related field of research,
is more active, [2]–[8]. This is due to the importance of,
among others, natural language processing, denoising, and the
cocktail party problem. These challenges are all relevant in the
development of smart devices. The difference between music
and speech signals might be considered trivial, but this is
not the case. Speech signals processed by a low pass filter
is still recognizable and phase information in a speech signal
is not necessary for the processing thereof [9], contrary to the
processing of musical signals.

A formalization of the source separation problem can be
found in [6] and more concisely repeated in [9]. The signal
emitted by the j-source, (1 ≤ j ≤ n), and xi(t) the

signal recorded by the i-th microphone (1 ≤ i ≤ m)
is related through the filter aij(τ). We then have xi(t) =∑n
j=1

∑∞
τ=0 aij(τ)sj(t − τ) + ni(t) where ni(t) noise in

the process. In our case we assume there to be only one
microphone (signal) and thus i is assumed to be unity. To
be consistent with other representations of source separation
we reformulate. The input signal y(t) is a combination of
sources xi(t), (1 ≤ i ≤ n) with some constant ci capturing
the relation. Final representation is then y(t) = cixi(t),
where noise is modeled as being one of the sources xi(t)
and although the constant ci could vary over time, it is often
assumed the mixing process has constant gain for each source.

The human hearing system is unequaled in its ability to dis-
cern and separate complex sounds into its respective sources.
For example, listing to audio we could each recognize distinct
source contributions and reproduce or imitate the source with
varying levels of skill. This ability is also very apparent when
we find ourselves in noisy environments, where we are able
to identify and listen to a specific audio source.

For machines it is not as simple. Various algorithms have
been employed to solve this problem with varying levels
of success. What makes this problem difficult is that it is
mathematically ill-posed [1]. There is not enough information
in a signal to simply separate the sources, additional infor-
mation has to be incorporated. This, typically, requires that
the algorithm has prior information about the input signal.
Blind source separation (BSS) in general refers to a case with
no prior information about the input signal. The algorithm
then has to discern what type of signal it is receiving. A
further specialization is blind audio source separation (BASS).
Although our research does not assume any prior information
about the input or sources, we do train it on music signals. The
algorithm thus does not act completely blind. Once the algo-
rithm achieves satisfactory development it should generalize
to separating blind sources.

Artificial neural networks have long been considered an
imitation, of the processes in the brain, albeit a lacking imita-
tion [10]. Further, with the recent and continuous advances in
machine learning [11], [12], a simple Deep Neural Network
(DNN) could be capable of separating and reconstructing
individual sources, even if only to an elementary extent.

The idea in this research is then to determine if an artificial
neural network could function as a source separation algo-
rithm by learning the capabilities required to separate musical
sources. This problem differs from previous uses of artificial
neural networks in source separation. Firstly, the input signal
is not a speech signal [13]. Secondly, the network is not simply
used as a classification technique [14]. The network is required
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to learn a complex representation of a musical instrument and
be able to identify this instrument among many others in the
input signal. Specifically, a network type called an autoencoder
will be used. An autoencoder, first introduced by the PDP
group [15], has developed considerably through the “deep
architecture” approach popularized by [11]. We will discuss
the workings of this network in relevance to the research
problem.

Our approach is so-called naive, since an autoencoder is
employed without alterations to the standard functions and
training process of the network. It is assumed that the time-
frequency (TF) representation of the input signal can act as an
image input to the network. An autoencoder has been shown
to perform well on image classification and feature extraction
[16]. This naive approach has the advantage of being very
broad, although, as we will see some obvious pitfalls arise.

II. EXISTING APPROACHES

For the purposes of discussing and grouping the most
common techniques used in audio source separation, we ignore
the differences between algorithms adapted for either speech
or music processing. As is the case in most of these frequently
used algorithms, they can be readily adapted or fine-tuned to
work on either or both types of input.

In general the techniques are classified as Gaussian Mixture
Model (GMM) [1], [17], Hidden Markov Model (HMM)
[8], Deep Neural Network (DNN) [4], [7], [13], [14], [18],
Independent Component Analysis (ICA) [19], sparse decom-
position [20], Non-negative Matrix Factorization (NMF) [2],
[9], [21], or Computational Auditory Scene Analysis (CASA)
[3], [22]. It is common for these techniques to be used in
conjunction with each other. For example, NMF can be used
as initialization of the algorithm while DNN is used to fine-
tune the weights and classify the sources, as in [14].

Some of the techniques have become less popular. ICA
is now rarely used, but was one of the standard algorithms
for source separation tasks. CASA, which models the way
the human hearing system works, is more often used as a
support algorithm. Although more suited to speech processing,
it models the spatial origin of sounds. Sparse decomposition
forms a part of almost every technique and is rarely employed
as a standalone algorithm.

The most common algorithm is NMF. The algorithm is used
in almost all methods in some way or another and deserves
special mention. NMF factorizes any non-negative matrix V
into a basis matrix B, called a dictionary, and a gain matrix
G, such that

Vi ≈ BiGi, (1)

where i is the sources (1 ≤ i ≤ n). The dictionary matrix
is trained for a specific source and stays constant, while the
gain matrix is estimated when a input signal is fed to the
algorithm. The factorization is done in the time domain, and
further processing is often done in the TF representation.

The state-of-the-art method for music source separation is
GMM, where the sources are modeled as sum of Gaussian
random variables,

Y (t, f) =

J∑
j=1

Xj(t, f). (2)

Here Y and Xj are complex valued vectors of the TF-
representation, t is the time dimension and f the fre-
quency dimension. The distribution of the sources Xj(t, f) ∼
N(0, υj(t, f)Rj(t, f)) has zero mean and the variance de-
pends on the spatial covariance matrix Rj(t, f) and non-
negative spectral power scalar υj(t, f). The sources are further
decomposed and finally the Expectation Maximization (EM)
algorithm is used to find the most likely estimate of sources.
This description of a typical GMM algorithm is adapted to our
notation from [1] and is repeated here due to its success and
detailed formulation. This method can work blind and even
better with some information about the sources in the form of
a dictionary. A demonstration can be found at [23].

The use of DNN for speech processing has increased rapidly
in the last few years. With the advances in so-called “deep
architecture” a Recurrent Neural Network (RNN), subclass of
ANNs has managed to achieve one of the lowest classification
errors on the TIMIT database [24]. The TIMIT database is
a set of voice recordings from North American male and
female voices and a general benchmark database for speech
processing.

III. MODEL

There are two stages to the separation process. The first is to
obtain a TF representation of the input signal and the second
is to feed this representation to the separation algorithm.
The stages act independently, but are very sensitive to one
another. Care is taken to present the interface as informative
as possible.

A. Time-frequency representation

Here we discuss the process of transforming an input signal
into the TF domain. The Fourier transform is used for this
purpose. A requirement of the transform is, if the sources are
to be reconstructed after the separation process, the transform
should be invertible.

So to begin, a discrete-time short-time Fourier transform
(STFT) is produced on successive windows of the signal. To
understand the process and its components better, mathemati-
cally it is written as

STFT{y(t)}(m,ω) =

∞∑
n=−∞

y[n]w[n−m]e−jωn (3)

where w(t) is a window function, y(t) the input signal, m
the window size and n the time samples. In our case we us a
Hamming window, commonly used in audio processing. Each
STFT window produces a vector indicating the frequencies
present in that time window. Several windows are concatenated
to give a TF representation. The implementation of a STFT
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in practice is in the form of a fast Fourier transform (FFT). A
FFT algorithm is generally accepted to be the fastest way to
perform a Fourier Transform.

The advantage of a STFT comes from the process being
invertible. There are several algorithms available to perform
this inversion. In the case of audio processing, performing
the STFT and its inverse results in a signal with very little
discernible difference compared to the original input.

A further advantage of Fourier transforms are their linearity
property. That is, linear operations in the time domain is equal
to linear operations in the frequency domain. This is in fact a
very important feature when determining the source separation
problem.

y(t) = ax1(t) + bx2(t) (4)
Y (t, f) = aXi(t, f) + bX2(t, f) (5)

Here y(t) is the time signal and Y (t, f) is the STFT of the
signal, f represents the frequency, a and b are constants.

B. Network Input

In general the TF representation is considered a more
powerful input to source separation algorithms [1]. It typically
produces sparse representation which, as input to an autoen-
coder, is very good [2].

Performing a Fourier transform on an input signal results in
a complex values. The real part corresponds to the amplitude
of the frequency and the imaginary part is the phase angle of
the signal. This is problematic, since very few autoencoder
networks have fully investigated the problem of complex-
valued inputs [25]. Many algorithms overcome this problem by
simply only working with the magnitude or power spectra [2],
[9]. This is indeed the process we will follow, although it does
make reconstruction of the source time representation more
difficult, albeit not impossible. The phase for the separated
sources can simply be assumed to be the same as that of
the input signal [9] or more involved methods can be used
as in [26]–[28] or several others. Continuing with only the
magnitude, the equation in (5) then becomes

|Y (t, f)| = a |Xi(t, f)|+ b |X2(t, f)| . (6)

Plotting |Y (t, f)| results in what is called a spectrogram,
and is used as the input to the next stage. A spectrogram is
presented as a matrix with one axis indicating time and the
other frequency. Each element in the matrix can be seen as
similar to the pixel in a picture. The resolution of both axes are
important as the resolution, or matrix size of a STFT instance
is fixed. A trade-off then exist between the resolution of the
axes, this trade-off parameter is called the bandwidth.

C. Autoencoder

Artificial neural networks (ANNs) involve multiplying the
inputs x̄i by a vector of values called weights w̄i,j to produce
outputs ōj . Weights thus map input i to output j. Outputs are
sent through an activation function, which allows the network
to learn complex non-linear representations of the inputs. The

outputs are further compared to the optimal outputs and an
error is determined. The weights are then typically greedily ad-
justed to reduce the error of successive iterations. Development
of ANNs has led to multilayered networks, where the output of
the previous layer is used as the input to a following layer. This
has increased their popularity to separate, classify, and learn
complex problems. As mentioned previously, an autoencoder
is a subclass of ANNs with multiple layers.

The autoencoder used in our source separation algorithm
was developed by [11], [16]. An autoencoder involves two
steps: firstly, to encode the input to an abstract representation
and, secondly, to decode this abstract representation back to a
reconstruction of the input. Hence the advantage of using an
autoencoder is clearly illustrated, the autoencoder requires no
classified inputs, i.e. it is trained in an unsupervised way. The
quality of the reconstruction is its own measure of success.
In our case we expect the abstract representation to indicate
which sources are present.

Optimizing the weights in an autoencoder is difficult and
most methods find poor minima [16]. To overcome this
problem each layer is pre-trained using a restricted Boltzmann
machine (RBM). RBMs take the inputs and then try and
recreate the inputs through an intermediate hidden layer [29].
The inputs correspond to visible units, whereas the features
is the outputs (or hidden layer) and correspond to hidden
units. The process is depicted in fig. 1(a) and the same
process applies to individually training subsequent layers of
the autoencoder, fig. 1(b). Important here is that we vary the
number of layers between experiments and the figures are
simply for illustration of the workings of an autoencoder.

To create the complete autoencoder the individual RBMs
are unrolled by stacking them successively. The resulting
network is depicted in fig. 2(a). Here we can see the inputs are
first encoded to produce a code layer. As discussed the code
layer is the most abstract representation of the inputs. The
code layer elements should correspond to features of different
instruments. A set of features could together describe an
instrument. A group of activated units in the code layer should
indicate which instrument is contributing to the signal. Adding
more layers to the autoencoder could result in capturing further
higher-order correlations between the units in the layer below.

An important factor is the size of each layer, or rather the
reduction in size between successive layers. Considering the
case for reduction in size for each layer as the abstraction in-
creases, this is analogous to compressing the representation of
the input. Increasing the size of successive layers is not often
done, since this provides for an over-complete representation
and information becomes more sparse. In our case we keep
the layer sizes similar, since the spectrogram input is already
quite sparse and we do not want a compressed form of the
input, rather a separation of the input.

The final network is fine-tuned using a standard feed for-
ward network as in fig. 2(b). The inputs for the network is
quite non-Gaussian so a good error function to use here is the
cross-entropy error [−

∑
i pi log p̂i −

∑
i(1− pi) log(1− p̂i)],

where pi is the intensity of pixel i and p̂i is the intensity of
pixel i in the reconstruction [16].
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(a)

(b)
Fig. 1. The figure illustrates how an RBM functions. In (a) a detailed depiction
of how the inputs are converted to the first layer and then multiplied by the
transpose of the weights to create a reconstruction of the inputs. The error is
measured and used to optimize the weights. In (b), successive separate layers
are showed and they follow the same process as in (a).

D. Extraction of Sources

When we look at the code layer, we want to be able to
identify different groups of features, or activated units, as
belonging to an instrument. There is no way to predict which
features will be activated for an instrument. It could also be the
case that instruments share sub components and thus activate
the same features. Fig. 3 depicts a theoretical code layer for
just one instrument present in the music signal. If the signal
consisted of a different single instrument, we would expect a
completely different set of features to be activated.

To identify an instrument in the code layer, a sample of
the instrument could be presented to the autoencoder and
the results noted. For example, separation of multiple sources
can the be done by taking an identified region as belonging
to a single source (or instrument) and setting the rest of
the code layer to zero. Further identification of sources can

(a) (b)
Fig. 2. The unrolling of successive RBMs to form an autoencoder is depicted
in (a) with the middle layer being the code layer and the layer of interest.
The weights are fine-tuned (b) using traditional feed forward networks with
back-propagation for weight updates.

be done through classification techniques such as Support
Vector Machines or clustering in the code layer. Clustering
typically assigns an instance, or in our case a unit in the
code layer, to a cluster. A specialization of clustering is soft
clustering, where an instance is assigned to a cluster with a
probability. Intuitively soft clustering could provide for the
best identification and grouping of sources in the code layer.

The modified code layer, after clustering or extracting only
the region of interest is propagated back through the network
to reconstruct inputs belonging to the identified source. We
hence have a TF representation only belonging to a single
instrument and by applying inverse STFT we can reconstruct
a signal.

Standardized performance measurements for source separa-
tion is discussed in [30], and could be applied to evaluate the
quality of the source reconstruction. It effectively measures the
interference, noise and artifacts in the reconstruction, allowing
us to compare the results with other separation algorithms.

This completes the process of source separation through
the use of an autoencoder. The TF representation contains
powerful information but reducing the representation to only
real values we lose some value information for reconstruction.
Methods exist to reconstruct the signal regardless and we
continue, using the spectrogram as input to an autoencoder.
The autoencoder creates an abstract representation of the input
and identifies features of the instruments in a completely
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Fig. 3. A illustration of what the code layer could look like for a signal
with only one source. The pixels correspond to activated features or partially
activated features. For a different source instrument we expect different
regions to be activated.

unsupervised training effort. Finally reconstructing a source
involves identifying which features are activated in the code
layer for a specific instrument. This unfortunately happens
in a supervised way, but should be very flexible. Extracting
instrument specific features allow us to reconstruct the inputs
and subsequently reconstruct a time signal for a single source.

IV. RESULTS

In this section we discuss the setup of experiments and the
parameters used. Two tests were conducted to determine the
validity of network as a source separation algorithm. Firstly,
the reconstruction of the input produced by the network was
visually compared to the input spectrogram. Secondly, the
code layer separation was visually compared for different
instruments to see if different features are activated in the
code layer. No setup of the model has resulted in a clear
separation of instruments and some clear deficiencies were
identified. Only the single best set of results are discussed.
More focus will subsequently be on possible improvements to
the model in the next section.

A. Sample Creation

Audio samples are created using a set of five instruments.
For each instrument individual notes or tones are taken and
chronologically combined to form a sample of one instrument.
These individual instrument samples are then uniformly lin-
early added to form a music sample. A subset of between 1
and 3 instruments are used to form a music sample. The five
instruments are drums, flute, guitar, violin and piano samples
taken from the Philharmonia Orchestra website [31]. Sample
rate is the default 44100Hz, i.e. one second of music sample
contains a vector of 44100 values. All music is converted to
mono channel sound, so only one input vector is produced.

B. Parameter Selection

Here we will work through the parameter settings of the
subsections as described in section III. A combination of
parameters is difficult to determine as some parameters are
more sensitive than others.

A music sample of twenty seconds was used as input
to the STFT. Window length m is determined according to
the bandwidth parameter, m = 1.81(fs/b), where fs is the
sampling frequency 44100Hz and b is the bandwidth. For
visual evaluation of the spectrogram a value of b = 150
performs well, but a finer frequency resolution is achieved with
b = 75 and is used to produce the spectrogram for input to the
autoencoder. Further parameters settings for the STFT is less
sensitive and the standard setup is adopted from [32]. A typical
spectrogram can be seen in fig. 4. The 4 instruments sources
are violin, piano, drums and guitar. With little experience it
is easy to identify instruments in the spectrogram. The violin
tones have vertically stacked squiggly lines. Piano tones are
well defined for a frequency and start louder, fading away
towards the end. Drums have sharp vertical lines which fade
away quickly. Each pixel is one input unit to the autoencoder.

Fig. 4. A spectrogram of 4 instrument sources. b = 150

Once the input spectrogram is created, the next stage is to
use it as input to the autoencoder. Chronological samples of
15 time frames are taken from the spectrogram as input to
the autoencoder. The frequency resolution amounted to 533
samples. Gaussian binning was considered on the frequency
dimension, but results showed that this is less effective and
windowing is already performed in the STFT algorithm. An
autoencoder with four stacked layers is used. The reason being
the depiction of 4 levels, namely, factors, components, sources,
and a mixture as in [1]. The weight vector is a convolution
along the frequency access. To keep the layers sizes constant
each layer has 500 hidden units (533 units in input layer). The
activation function is the traditionally used sigmoid function.
Although a rectified linear unit activation function has show
better results in autoencoder training recently [18], the function
was found to be incompatible with our network.

C. Input Reconstruction

Now we can evaluate the reconstruction of the input spec-
trogram produced by the autoencoder. Samples are stitched to-
gether to form a spectrogram which can be visually evaluated.
Fig. 5 shows the result. The reconstruction (b) is not successful
to the extend that individual features are unrecognizable, as
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opposed to the clear input in (a). Time distortion is apparent
and the autoencoder fails to be sensitive to local time changes.

(a)

(b)
Fig. 5. (a) The input spectrogram and (b) the reconstructed spectrogram by
the autoencoder. As we can see the reconstruction is not very representative
of the input.

D. Feature Activation in the Code Layer

Next step is to evaluate if the code layer features are
activated differently for different instruments. This is done by
feeding 1000 samples of an instrument to the autoencoder,
propagating the input spectrogram through to the code layer
and averaging over the 1000 samples in the code layer. In
fig. 6 we can see that there is no clear separation of sources
in the code layer. This indicates a failure of the autoencoder
to distinguish between different instruments. The inability to
register and react to time fluctuations is also apparent, indi-
cating that a time component is required for the autoencoder
to function more effectively.

It is interesting to see in the result, the autoencoder does
indeed register a slight difference for string instruments and
air instruments, due to their radically different depictions in
the spectrogram. This indicates that there might indeed be a
room for improvement.

Reconstruction of separated sources proves to be trivial,
since no adequate separation of sources could be observed.
Effort was thus focused on finding the best possible combi-
nation of network structure for the current setup as shown in
the results. Further study was performed on possible improve-
ments to the autoencoder as a separation technique, or rather
why the autoencoder is not the best suited to this particular
problem. A discussion thereof follows in the next section.

Fig. 6. The activation of the code layer for each instrument. The coloring
of activated units corresponds to that of fig. 3. The instruments in order are
drums, flute, guitar, piano and violin. Overall there is not much difference
for activation, but slight changes are apparent. We can see piano and violin
are more similar, while flute and drums are more similar. This is due to how
they are represented in the spectrogram. A flute or drum is quite noisy, while
piano and violins have a more apparent harmonic structure.

V. FURTHER WORK AND IMPROVEMENTS

Here we investigate possible improvements and alterations
that can be implemented to improve the performance of
the autoencoder. The parameter space is discussed with a
brief mention how NMF can be used as initialization to
the autoencoder. A look at alternative TF representations
such as the wavelet transform. A further brief study of the
development of complex-valued autoencoders and possible
implementations. Alternative ANN structures are discussed,
other network structures have been used with success in speech
processing problems.

A. Investigating the parameter space

From simulations it is apparent the structure of the autoen-
coder has little effect on the results. This could be entirely due
to the autoencoder not being able to train on the spectrogram
input, or rather, the properties of the spectrogram pixels as
inputs. What is apparent from fig. 6 is the unnecessary infor-
mation. The feature activation is too similar for all instruments,
indicating that compression, i.e. reducing layer sizes, could
lead to better results. This was of course experimented with,
but without meaningful input parameter to the autoencoder,
reducing layer size had little effect.

The inability of the autoencoder to learn small time patters
indicates that the number of samples given to the autoencoder
needs to be experimented with. Quite possibly further reducing
the bandwidth b, resulting in a higher frequency resolution
and lower time resolution, could improve the capability of the
autoencoder. Smaller time scales should also be investigated,
even unto the point of individual time samples vectors taken
from the spectrogram. The reasoning here being that the STFT
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algorithm already performs windowing over the time axis, as
well as over the frequency axis.

Alternatively, the axis along which the autoencoder learns,
the convolution axis, could be exchanged. Currently the au-
toencoder performs along the frequency axis, keeping the time
resolution constant. Experimenting with transpositions of the
spectrogram could enable the network to overcome the initial
hindrance of time dependence.

Finally, an initialization layer could be added in the form
of NMF representation Vi, see (1). The array Vi is then an
estimated of source i and used as inputs to the autoencoder in
the form of a spectrogram. This is of course already done
in [14], but it will provide a good baseline for what our
autoencoder is capable of.

B. Alternative time-frequency representations

Wavelet transforms have been used with increasing success.
It has a key advantage over Fourier transforms in that it
captures both frequency and time information. A Fourier
transform requires windowing to represent time, as is observed
in the discussion of the STFT in section III-A. Wavelet
transforms also excel at compression of signal data, although
this not necessarily a desired property in our case. We want to
preserve as much information about the signal as possible.
A wavelet transform has an image representation called a
scaleogram or scalogram. The scaleogram is analogous to the
spectrogram for Fourier transforms.

A distinct advantage is that wavelet transforms, in most
cases, do not produce complex-valued outputs. This is perfect
for the inputs of a autoencoder. There is however a drawback,
algorithms for wavelet transforms that are invertible, still
produce complex-valued outputs and are only defined in the
continuous transform case. The Fourier transform is used as
an intermediate in the invertible wavelet transform algorithm,
and as such complex values are the result.

This does not exclude the use of wavelet transforms to
produce inputs to the autoencoder, rather, the advantage of
using a wavelet transform over a Fourier transform becomes
trivial. The inclusion of time information directly in the
transform could still prove to be valuable in the retention of
information during the separation process.

C. Complex-Valued Autoencoders

The studies on complex-valued inputs for autoencoders is
decidedly limited. An extensive discussion of the possible
implementation of complex values as input to autoencoders
is done by [33], although the algorithm development focuses
specifically on linear autoencoders. Linear autoencoders imply
the transformation between layers are linear, non-linear activa-
tion functions cannot be used. The autoencoder is less able to
learn complex relations between layers, a specific requirement
for source separation. Despite the linear transformations, the
algorithm only differs in the error function:

minE(wi, wj) = min
wi,wT

j

m∑
t=1

||xt − wiwj(xt)||2 (7)

=

m∑
t=1

¯(xt − wiwj(xt)) (xt − wiwj(xt))

where xt is the inputs to the autoencoder, wi and wj is the
corresponding weight vectors, similar to our case where we
have the weight vectors wi and wTi as in fig. 1(a). In (7) is
the more general form of an autoencoder where the weight
vectors for encoding and decoding layers are not taken as the
same. The complex conjugate is signified by ·̄. It is suggested
the reader observes [33] as a full discussion and proof of
derivation is given. It is also important to note that training
the autoencoder happens slightly different, since the function
landscape is considerably larger.

Another incorporation of complex values is done through
tied input weights. This is introduced in [25], [34]. The process
performs by combining cross products and inner products to
create an input matrix. It has been implemented with success
to identify similar pairs of images which has undergone slight
rotations. In our approach this of course raises the question
how will the original complex-valued inputs be reconstructed.
Although not impossible, this remains to be experimented
with.

D. Alternative ANNs to Autoencoders

The inability of an autoencoder to effectively translate
time variation to source separation is a result of how the
network inherently functions. The network should be able to
incorporate small shifts in time and frequency and be sensitive
to these shifts. It could alternatively incorporate a memory
feature which allows the network to learn time varying repre-
sentations. What is described here is firstly, a Convolutional
Neural Network (CNN) and, secondly a Recurrent Neural
Network (RNN). Both have recently gained popularity in
speech processing problems with the advances made in CNNs
by [13] and in RNNs by [4], [24].

CNNs process the inputs in small localized parts, looking
for relevant features. Successive blocks are processed by
making small shifts in time and/or frequency axis. The outputs
of CNNs can be used as the input to other networks, such as
autoencoder, again allowing for layers to be stacked and a
“deep architecture” to be achieved. This approach could help
the autoencoder learn time shifts.

RNNs operate by using outputs from the network in the
previous time-step as inputs to the next time-step. This can
be further expanded by delaying the number iterations before
the current output is used again, creating a memory effect. It
introduces the Long Short-Term Memory architecture. In [24]
such a RNN was shown to outperform all algorithms.

The success of both these networks as an application in
speech processing indicates that ANNs definitely have the
capability to separate sources, although the setup of the inputs
are very important and network structure should be able to
incorporate shifts in time.



M2 PROJECT REPORT EP ANDRAG: AUTOENCODER AS A NAIVE APPROACH TO AUDIO SOURCE SEPARATION, JUNE 2015 8

VI. CONCLUSIONS

Audio source separation is a very interesting problem with
many collaborative facets and a variety of algorithms, each
with advantages and disadvantages. Although speech pro-
cessing has received considerable more attention and devel-
opment, music source separation methods can borrow ideas
and algorithms from the advances in speech processing. The
complete workings of the process to separate audio sources
was discussed and simulations with audio samples provided
an overview of the ineffectiveness of the naive autoencoder
approach. The naive approach to audio source separation
did not prove to be successful and a more dedicated audio
separation process should be implemented. The autoencoder
was unable to effectively deal with the time variation in
input spectrograms. The reasons and possible improvements
are discussed, a convolutional approach to time incorporation
is definitely worth considering. Reconstruction of the sources
after separation was discussed, although not implemented,
since the initial results proved that the autoencoder could not
find any meaningful separation of sources. Reconstruction will
be much easier if complex values are used as input. Methods to
do this is discussed as part of possible improvements. Overall,
this research proved source separation to indeed be a very
difficult and multifaceted problem. A perfect separation into
constituents will always be elusive due to the lack of complete
information.
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