Lecture notes: Statistical Mechanics of Complex Systems Lecture 1-2

I ntroduction

These notes give an introduction to statistical mechaaitd explore how the tools of statistical mechanics
can be used to describe complex systems.

To understand the words in the title of the lectureomplex systems typically means a collection of
many interconnected elements, which display collectivefeergent) phenomena not trivially extrapolated
from the behaviour of the individual constituents.

To have an illustration abostatistical mechanics, let’s consider a physical system made of a number of
interacting particles. When it is just a single particle imegi potential, it is an easy problem: one can write
down the solution (even if one could not calculate evenghimclosed form). Having 2 particles is equally
easy, as this so-called “two-body problem” can be reducestomodified one-body problems (one for
the centre of mass, other for the relative position). Howexelramatic change occurs at 3 particles. The
study of the three-body problem started with Newton, Lageah.aplace and many others, but the general
form of the solution is still not known. Even relatively rexthy, in 1993 a new type of periodic solution has
been found, where 3 equal mass particles interacting atayiially chase each other in a figure-8 shaped
orbit. This and other systems where the degrees of freeddowidelongs to the subject of dynamical
systems, and is discussed in detail in Chapter 2 of this veluvdhen the number of interacting particles
increases to very large numbers, lik@?3, which is typical for the number of atoms in a macroscopic
object, surprisingly it gets simpler again, as long as wergsrested only at aggregate quantities. This is
the subject of statistical mechanics.

Statistical mechanics is also the microscopic foundatidh@modynamics. It developed a number of
powerful tools, which can be used outside of the conventigkjts domain, like biology, finance, traffic,
and more. It can also be consideredfasscience of ignorance: how to handle a system where we do not
know (even prefer not to know) everything. A particular exdenis renormalisation theory, developed in
the second half of the 20th century, which gives a systenfraimework to dispense with successively the
non-interesting degrees of freedom.

Our approach is that of a physicist: (i) based on modelsfuiipamentally quantitative, (iii) but not
rigorous. Probably the most important concept in sciendbasit is possible to construct an abstraction
(“model”) of the world around us which is admittedly much gier than the real thing, but nevertheless
captures important characteristics which enable to magdigtions which are not “explicitly put in” into
the model. The models are fundamentally quantitatve, ands@enathematical language to describe them.
We stop here however, and leave rigorous treatment to matih@ans — this approach enables one to
progress much quicker, on the expense of losing that whabwe absolutely unshakable.

These notes start with elements of information theory, tviticturn are used to derive the foundations
of statistical mechanics based on the maximum entropy ipteacUnlike the typical treatment in Physics
textbooks, this approach has the advantage that the abfiramalism developed can be used in a more
straightforward way for systems outside the typical ranigéermal applications. We will follow by con-
sidering the effects of fluctuations to provide a link to thedynamics. One of the most characteristic
collective phenomena of complex systems is phase transitibich we approach from the direction of sta-
tistical physics. The second part of the notes deal with dyosin some form: we will consider granular
materials, transport and traffic models, and collectivédgjizal motion like flocking.

Introduction to infor mation theory

Random variables

While probability theory can (and should) be founded rigafguin these notes we take a relaxed approach
and attempt define everything without mentioning the prdlhglspace. We call aandom variable an ob-
ject which can take values when observed, say random varkalbln take any values fromy, xo, . . ., ;.
When observed many times; is takenn, times, x5 is takenn, times, etc. Theprobabilities of the out-
comes can be defined as relative frequencies in the limit afgeeInumber of observations, for example:
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It immediately follows that the probabilities add up to 1:

Zpi =1
=1
We then say the the probability of taking a given value; is p;:

A function of a random variable is another random variable: X takesz; with probability p;, then f(X)
takes the valug (z;) with probability p;.

The expectation or average of a random variable can be considered as observing it mamstand
taking the average of the observed values. In the stafistieahanics literature the standard notation is
angular brackets:

(X) = Z%pm or (f(X)) = Zf(xz)pz

The above concepts can be easily extended to random variahleh can take infinitely many discreet
values, and even to ones which take values from a continumnthel latter case eg. X can take real
values, the probability that takes any value ific, z + dz] is p(z)dz, wheredz is small, and(z) is called
the probability density function. The sums above are regglagith integrals, eg.[ p(z)dz = 1. While
this naive approach to continuous random variables is geritifor these notes, in general, especially when
dealing whith continuous random variables, one needs augdfoundation of probability theory.

The abovdrequentist approach to probabilities is not the only one. In a senteikee*Tomorrow we
will have a 10% chance for rain”, probabilities are intetpreas a degree of belief or confidence.

Theinformation entropy

Suppose we want to describe the outcome of a sequence ofossiest (heads or tails): HTHHTHTTTH...
This segence looks very different from that of a lottery plajLLL...LLLL...LLWLLLL... The second
sequence is much more boring, one can describe it as ed.nri®57,923 was a win, all others were lose”.
In the first sequence, however, we cannot get away much bletterquoting the whole sequence verbatim.

To quantify this difference, we introduce th@dormation entropy H of a random variable. Its intuitive
meaning is the amount of uncertainty in an observation ohdaom variable, or in other words the amount
of information we gain when observing a random variable. ©ae think about is as the “amount of
answers” needed on average to learn the outcome of an ohbiearaa a response to an optimally crafted
question-tree. Itis a function of the probabilities oni(p1, ps, - . . ).

We require certain regularity properties:

(i) continuity: H(p1,p2,...) Iis a continuous function of its arguments.

(i) “sense of direction”: of the random variables that takeoutcomes with equal probability, the ones
with more outcomes carry more information: the function

hn) < H <1,1,...,1> 1)

is monotonically increasing with.

(i) “consistency”: if H is calculated in two different ways, they should agree. Egcdlculate the
information entropy of a 3-state random variable, we camgrhe last two states and first obtain
the information entropy for the obtained 2-state randornratde, and then with probabilitys + ps
need to resolve the grouped states:

Hs(p1,p2,p3) = Ha(p1,q) + qH2 (1;2, ?)

whereq = ps + ps.
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It can be shown that this three requirements restrict thetfomal form of H(-), see [1]:

H(q1,q2, - qr) = =K Y _ i In(g;) 2
i=1
This is the information entropy of a random variable withlgabilitiesqy, ¢, . . ., ¢-. The constank sets

the units, which can be fused into the logarithm as settmgdise. In many of the following formulae we
will use the notation

H(q1,q2,- - qr) = — Y _ qilog(q;) 3)
=1

without explicitly specifying the base of the logarithm. érhK’ = 1/1n(2) in (2), or equivalently using
log, in (3) the information entropy is measuredhits. When setting<{ = 1 or usinglog, the units are
nats, and finally the decimal casef$ = 1/1n(10) or usinglog,,, when the units are calldshns.

Multiple random variables

When X andY are random variables, we can look at the probabilities36fY") pairs. These are called
joint probabilities:
pij = P(X =2;,Y =y;)

The probability of one of the random variables (tharginal probabilities) are obtained by summing
up the joint probabilities on all states of the other randa@mable:

PEX) :P(X:%‘):ZP(X:%‘,Y:%‘):Zpij
J J

and similarlyp§y) =), Dij-
Two random variables are calléddependent, if the joint probabilities factorise into marginals foll al
(i,7) pairs:

or equivalently
(x) (Y)

it pij =p; p; foralli,j
The conditional probabilities tell the probability of one random variable when we know tladue of
another: P(X v )
def =T, ¥ =1Yj Pij
’ : PV =y;) )

Thejoint information entropy is the uncertainty of théX,Y") pair:

H(X,Y) == pijlogpi
6\

The conditional information entropy gives the uncertainty ok whenY is known:
def
HX|Y) = (HX|Y =yj))y =..=HX,Y) - H(Y)
Finally themutual information is defined as

.. Dij
I(X;Y) = i, jpijlog x5y == HX) - H(X |Y)
p; P

S0 its meaning is the reduction in uncertainty0ue to the knowledge af, or in other words how much
Y tells aboutX.



