
Lecture notes: Statistical Mechanics of Complex Systems Lecture 1-2

Introduction

These notes give an introduction to statistical mechanics,and explore how the tools of statistical mechanics
can be used to describe complex systems.

To understand the words in the title of the lecture, acomplex systems typically means a collection of
many interconnected elements, which display collective (or emergent) phenomena not trivially extrapolated
from the behaviour of the individual constituents.

To have an illustration aboutstatistical mechanics, let’s consider a physical system made of a number of
interacting particles. When it is just a single particle in given potential, it is an easy problem: one can write
down the solution (even if one could not calculate everything in closed form). Having 2 particles is equally
easy, as this so-called “two-body problem” can be reduced totwo modified one-body problems (one for
the centre of mass, other for the relative position). However, a dramatic change occurs at 3 particles. The
study of the three-body problem started with Newton, Lagrange, Laplace and many others, but the general
form of the solution is still not known. Even relatively recently, in 1993 a new type of periodic solution has
been found, where 3 equal mass particles interacting gravitationally chase each other in a figure-8 shaped
orbit. This and other systems where the degrees of freedom islow belongs to the subject of dynamical
systems, and is discussed in detail in Chapter 2 of this volume. When the number of interacting particles
increases to very large numbers, like1023, which is typical for the number of atoms in a macroscopic
object, surprisingly it gets simpler again, as long as we areinterested only at aggregate quantities. This is
the subject of statistical mechanics.

Statistical mechanics is also the microscopic foundation of thermodynamics. It developed a number of
powerful tools, which can be used outside of the convential physics domain, like biology, finance, traffic,
and more. It can also be considered asthe science of ignorance: how to handle a system where we do not
know (even prefer not to know) everything. A particular example is renormalisation theory, developed in
the second half of the 20th century, which gives a systematicframework to dispense with successively the
non-interesting degrees of freedom.

Our approach is that of a physicist: (i) based on models, (ii)fundamentally quantitative, (iii) but not
rigorous. Probably the most important concept in science isthat it is possible to construct an abstraction
(“model”) of the world around us which is admittedly much simpler than the real thing, but nevertheless
captures important characteristics which enable to make predictions which are not “explicitly put in” into
the model. The models are fundamentally quantitatve, and weuse mathematical language to describe them.
We stop here however, and leave rigorous treatment to mathematicians — this approach enables one to
progress much quicker, on the expense of losing that what we do is absolutely unshakable.

These notes start with elements of information theory, which in turn are used to derive the foundations
of statistical mechanics based on the maximum entropy principle. Unlike the typical treatment in Physics
textbooks, this approach has the advantage that the abstract formalism developed can be used in a more
straightforward way for systems outside the typical range of thermal applications. We will follow by con-
sidering the effects of fluctuations to provide a link to thermodynamics. One of the most characteristic
collective phenomena of complex systems is phase transition, which we approach from the direction of sta-
tistical physics. The second part of the notes deal with dynamics in some form: we will consider granular
materials, transport and traffic models, and collective biological motion like flocking.

Introduction to information theory

Random variables

While probability theory can (and should) be founded rigorously, in these notes we take a relaxed approach
and attempt define everything without mentioning the probability space. We call arandom variable an ob-
ject which can take values when observed, say random variableX can take any values fromx1, x2, . . . , xn.
When observed many times,x1 is takenn1 times,x2 is takenn2 times, etc. Theprobabilities of the out-
comes can be defined as relative frequencies in the limit of a large number of observations, for example:

n1
∑

ni

→ p1
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It immediately follows that the probabilities add up to 1:

n
∑

i=1

pi = 1

We then say the the probability ofX taking a given valuexi is pi:

P (X = xi) = pi

A function of a random variable is another random variable: ifX takesxi with probabilitypi, thenf(X)
takes the valuef(xi) with probabilitypi.

The expectation or average of a random variable can be considered as observing it many times and
taking the average of the observed values. In the statistical mechanics literature the standard notation is
angular brackets:

〈X〉 =
∑

i

xipi , or 〈f(X)〉 =
∑

i

f(xi)pi

The above concepts can be easily extended to random variables which can take infinitely many discreet
values, and even to ones which take values from a continuum. In the latter case eg. ifX can take real
values, the probability thatX takes any value in[x, x+dx] is p(x)dx, wheredx is small, andp(x) is called
the probability density function. The sums above are replaced with integrals, eg.

∫

p(x)dx = 1. While
this naive approach to continuous random variables is sufficient for these notes, in general, especially when
dealing whith continuous random variables, one needs a rigorous foundation of probability theory.

The abovefrequentist approach to probabilities is not the only one. In a sentence like “Tomorrow we
will have a 10% chance for rain”, probabilities are interpreted as a degree of belief or confidence.

The information entropy

Suppose we want to describe the outcome of a sequence of coin tosses (heads or tails): HTHHTHTTTH...
This seqence looks very different from that of a lottery play: LLLLL...LLLL...LLWLLLL... The second
sequence is much more boring, one can describe it as eg. “trial no. 857,923 was a win, all others were lose”.
In the first sequence, however, we cannot get away much betterthan quoting the whole sequence verbatim.

To quantify this difference, we introduce theinformation entropy H of a random variable. Its intuitive
meaning is the amount of uncertainty in an observation of a random variable, or in other words the amount
of information we gain when observing a random variable. Onecan think about is as the “amount of
answers” needed on average to learn the outcome of an observation as a response to an optimally crafted
question-tree. It is a function of the probabilities only:H(p1, p2, . . . ).

We require certain regularity properties:
(i) continuity: H(p1, p2, . . . ) is a continuous function of its arguments.

(ii) “sense of direction”: of the random variables that takeall outcomes with equal probability, the ones
with more outcomes carry more information: the function

h(n)
def
= H

(

1

n
,
1

n
, . . . ,

1

n

)

(1)

is monotonically increasing withn.

(iii) “consistency”: if H is calculated in two different ways, they should agree. Eg. to calculate the
information entropy of a 3-state random variable, we can group the last two states and first obtain
the information entropy for the obtained 2-state random variable, and then with probabilityp2 + p3

need to resolve the grouped states:

H3(p1, p2, p3) = H2(p1, q) + qH2

(

p2

q
,
p3

q

)

whereq = p2 + p3.
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It can be shown that this three requirements restrict the functional form ofH(·), see [1]:

H(q1, q2, . . . , qr) = −K

r
∑

i=1

qi ln(qi) (2)

This is the information entropy of a random variable with probabilitiesq1, q2, . . . , qr. The constantK sets
the units, which can be fused into the logarithm as setting its base. In many of the following formulae we
will use the notation

H(q1, q2, . . . , qr) = −

r
∑

i=1

qi log(qi) (3)

without explicitly specifying the base of the logarithm. ThenK = 1/ ln(2) in (2), or equivalently using
log2 in (3) the information entropy is measured inbits. When settingK = 1 or usingloge the units are
nats, and finally the decimal case isK = 1/ ln(10) or usinglog10, when the units are calledbans.

Multiple random variables

WhenX andY are random variables, we can look at the probabilities of(X,Y ) pairs. These are called
joint probabilities:

pij = P (X = xi, Y = yj)

The probability of one of the random variables (themarginal probabilities) are obtained by summing
up the joint probabilities on all states of the other random variable:

p
(X)
i = P (X = xi) =

∑

j

P (X = xi, Y = yj) =
∑

j

pij

and similarlyp(Y )
j =

∑

i pij .
Two random variables are calledindependent, if the joint probabilities factorise into marginals for all

(i, j) pairs:
if P (X = xi, Y = yj) = P (X = xi)P (Y = xj) for all i, j

or equivalently
if pij = p

(X)
i p

(Y )
j for all i, j

The conditional probabilities tell the probability of one random variable when we know the value of
another:

pi|j
def
= P (X = xi | Y = yj) =

P (X = xi, Y = yj)

P (Y = yj)
=

pij

p
(Y )
j

Thejoint information entropy is the uncertainty of the(X,Y ) pair:

H(X,Y ) = −
∑

i,j

pij log pij

Theconditional information entropy gives the uncertainty ofX whenY is known:

H(X | Y )
def
= 〈H(X | Y = yj)〉Y = ... = H(X,Y ) − H(Y )

Finally themutual information is defined as

I(X;Y ) =
∑

i, jpij log
pij

p
(X)
i p

(Y )
j

= ... = H(X) − H(X | Y )

so its meaning is the reduction in uncertainty ofX due to the knowledge ofY , or in other words how much
Y tells aboutX.
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