
Lecture notes: Statistical Mechanics of Complex Systems Lecture 3-4

The maximum entropy framework

The maximum entropy principle — an example

Suppose we have a random variableX with known states (values of the observations,x1, . . . , xn) but
unknown probabilitiesp1, . . . , pn; plus some extra constrains, eg.〈X〉 is known. We are given the task to
attempt to have a good guess for the probabilities.

Let’s start with one of the simplest examples:X can take 1, 2 or 3 with unknown probabilities,
and 〈X〉 = x is known. Fixing〈X〉 does not determine the probabilities, for example forx = 2 any
(p1, p2, p3) = (1−p2

2 , p2,
1−p2

2 ) satisfies the constraint, including eg.(0, 1, 0) or ( 1
2 , 0, 1

2 ) or ( 1
3 , 1

3 , 1
3 ).

Which one is the “best”? According to themaximum entropy principle, the best guess is the one which
maximises the information entropy under the given constraints.

To calculate this solution, we need to find the maximum ofH(p1, p2, p3) as a function ofp1, p2, p3,
under two constraints:〈X〉 = 1p1 + 2p2 + 3p3 = x andp1 + p2 + p3 = 1. We use the method of Lagrange
multipliers: first calculate the unconditional maximum of the original function plus the constraints added
with some multiplying factors (the Lagrange multipliers),which give the probabilities in a functional form
with the Lagrange multipliers as parameters.

0 = d

[

H(p1, p2, p3) − λ

(
3∑

i=1

ipi − x

)

− µ

(
3∑

i=1

pi − 1

)]

= d

[

−
3∑

i=1

pi log pi − λ

3∑

i=1

ipi − µ

3∑

i=1

pi

]

=

3∑

i=1

{
− log pi − 1 − λi − µ

}
dpi = 0

Since this has to hold for anydpi, the curly brackets need to be zero:

− log(pi) − 1 − λi − µ = 0 , i = 1, 2, 3

which with the notationλ0 = µ + 1 gives

pi = e−λ0−λi .

Now we set the Lagrange multipliers by requiring the constraints to be satisfied. The constraint on the sum
of probabilities give

1 =

3∑

i=1

pi = e−λ0

3∑

i=1

e−λi ⇒ e−λ0 =
1

e−λ + e−2λ + e−3λ

so

pi =
e−λi

e−λ + e−2λ + e−3λ
=

eλ(1−i)

1 + e−λ + e−2λ

The other constraint,〈X〉 = x gives

x =

3∑

i=1

ipi =
1 + 2e−λ + 3e−2λ

1 + e−λ + e−2λ
(4)

Multiplying the equation with the denominator gives a second degree equation fore−λ:

(x − 3)
(
e−λ

)2
+ (x − 2)e−λ + x − 1 = 0

which has the solution

e−λ =
−(x − 2) ±

√

(x − 2)2 − 4(x − 3)(x − 1)

2(x − 2)
=

2 − x ±
√

4 − 3(x − 2)2

2(x − 3)
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Now if we rewrite (4) as

x =
eλ + 2 + 3e−λ

eλ + 1 + e−λ
= 1 +

1 + 2e−λ

eλ + 1 + e−λ

thenp2 becomes

p2 =
1

e−λ + 1 + eλ
=

x − 1

1 + 2e−λ
=

x − 1

1 + 1
x−3

(

2 − x ±
√

4 − 3(x − 2)2
)

=
(x − 1)(x − 3)

−1 ±
√

4 − 3(x − 2)2
=

(x − 1)(x − 3)(−1 ∓
√

4 − 3(x − 2)2

1 − (4 − 3(x − 2)2)

=
−1 +

√

4 − 3(x − 2)2

3

In the last step we had to keep the+ sign as only this root gives non-negativep2. Finally the other proba-
bilities become

p1 =
3 − x − p2

2
, p3 =

x − 1 − p2

2

This solution has the right behaviour in the limiting cases:whenx = 1, the probabilities(p1, p2, p3) =
(1, 0, 0); and whenx = 3, they are(0, 0, 1). For x = 2, the solution is( 1

3 , 1
3 , 1

3 ). The maximum entropy
solution assigns zero probabilities only when no other possibilities are allowed. This is a very desirable
property: it would be a sure failure to propose that a certainstate has zero probability, and then find out that
a given observation happened to yield that state. The Maximum Entropy solution is guaranteed not to fail
there.

Maximum entropy principle — general form

After having this worked out example, we state the maximum entropy principle in a more general form.
Suppose we have a random variableX taking (known) valuesx1, . . . , xn with unknown probabilities
p1, . . . , pn. In addition, we havem constraint functionsfk(x) with 1 ≤ k ≤ m < n, where

〈fk(X)〉 = Fk ,

theFks are fixed. Then the maximum entropy principle assigns probabilities in such a way that maximises
the information entropy of X under the above constraints. This is the “best guess” in the absence of any
further knowledge about the random variable. Since any extra assumption would bring a reduction in uncer-
tainty (see mutual information), we explicitly deny those extra assumptions by maximising the uncertainty.

In the following we calculate various properties of the maximum entropy solution. This may sound dry,
but has the advantage that these abstract results can be veryeasily applied later for concrete examples.

To obtain a formal solution we proceed in a similar way as in the example, maximise the information
entropy using Lagrange multipliers:

0 = d




H(p1, . . . , pn) −

m∑

k=1

λk

(
n∑

i=1

fk(xi)pi − Fk

)

− µ
︸︷︷︸

λ0−1

(
n∑

i=1

pi − 1

)





=

n∑

i=1

{

− log(pi) − 1 −

m∑

k=1

λkfk(xi) − (λ0 − 1)

}

dpi

Since this is zero for anydpi, all n braces have to be zero, giving

pi = exp

(

−λ0 −

m∑

k=1

λkfk(xi)

)

(5)
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Then all the Lagrange multipliers (λ0, λ1, . . . λm) are fixed by writing back into the constraints. The sum
of probabilities give

1 =

n∑

i=1

pi = e−λ0

n∑

i=1

exp

(

−

m∑

k=1

λkfk(xi)

)

The sum aftere−λ0 appears frequently, so it is useful to consider it separately: we will call it partition
function

Z(λ1, . . . , λm)
def
=

n∑

i=1

exp

(

−
m∑

k=1

λkfk(xi)

)

(6)

With this notation

e−λ0 =
1

Z(λ1, . . . , λm)
, λ0 = log Z(λ1, . . . , λm) (7)

The other constraints are

Fk =
n∑

i=1

fk(xi)pi = e−λ0

n∑

i=1

fk(xi) exp

(

−
m∑

k=1

λkfk(xi)

)

= −
1

Z

∂Z(λ1, . . . , λm)

∂λk

= −
∂ log Z(λ1, . . . , λm)

∂λk

, (8)

which ism implicit equations, just enough to determine in principle them unknownsλk. Using (7) then
the probabilities (5) are then fully determined:

pi =
1

Z(λ1, . . . , λm)
exp

(

−

m∑

k=1

λkfk(xi)

)

(9)

Unlike the simple example we had with three states, in practice it is often not possible to calculate theλks
explicitly as a function ofFks, but as we see later this does not prevent us obtaining lots of useful results.

Consider now the value of the maximised information entropy. It is no longer function of the probabili-
ties, but instead of the constraint valuesFk, and to reflect this we change notation toS:

S(F1, . . . , Fm) = H(p1, . . . , pn
︸ ︷︷ ︸

from (9)

) = −

n∑

i=1

pi log(pi) = −

n∑

i=1

pi

(

−λ0 −

m∑

k=1

λkfk(xi)

)

= λ0 +

m∑

k=1

λk

n∑

i=1

fk(xi)pi = log Z(λ1, . . . , λm) +

m∑

k=1

λkFk (10)

Now calculate the partial derivatives ofS w.r.t. theFks, being careful about what is kept constant in the
partial derivatives1:

∂S

∂Fk

∣
∣
∣
∣
{F}

=

m∑

ℓ=1

∂ log Z

∂λℓ

∣
∣
∣
∣
{λ}

︸ ︷︷ ︸

Fℓ

∂λℓ

∂Fk

∣
∣
∣
∣
{F}

+

m∑

ℓ=1

∂λℓ

∂Fk

∣
∣
∣
∣
{F}

Fℓ + λk = λk (11)

Here eitherS(F1, . . . , Fm) or log Z(λ1, . . . , λm) give a full description of the system, as the other can be
calculated using (10), and there is a symmetric relation between their partial derivatives: (8) and (11). We
look at this kind of relation between two functions more closely below.

1In thermodynamics and statistical physics functions of many variables are used extensively, and the notation is not alwaysclear
on what the free variables are. When taking partial derivatives, it is essential to be clear on what is kept constant; therefore it is often
shown at the bottom of the vertical bar after the partial differential. Eg. the notation{λ} means allλjs are kept fixed except the one
we differentiate with.
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Legendre transform

Consider a convex functionf(x), and define the following function

f∗(p)
def
= max

x

(
px − f(x)

)
(12)

We call this2 theLegendre tranform of f(x). If f is differentiable as well, we can calculate the maximum
as

0 =
d

dx
(px − f(x)) = p −

df(x)

dx

Its solution forx depends onp, which we callx(p):

df(x)

dx

∣
∣
∣
∣
x=x(p)

= p

which plugged into (12) gives
f∗(p) = px(p) − f

(
x(p)

)

Now let’s calculate the Legendre transform off∗:

(f∗)∗(y) = max
p

(
yp − f∗(p)

)

Again, if f∗ is differentiable then
df∗(p)

dp

∣
∣
∣
∣
p=p(y)

= y

However,
df∗(p)

dp
=

px(p) − f(x(p))

dp
= x(p) + p

dx(p)

dp
−

df(x)

dx

∣
∣
∣
∣
x(p)

︸ ︷︷ ︸

p

dx(p)

dp
= x(p)

so

y =
df∗(p)

dp

∣
∣
∣
∣
p=p(y)

= x(p(y))

thus
f∗∗(y) = yp(y) − f∗(p(y)) = yp(y) − p(y)x(p(y)) + f(x(p(y))) = f(y)

Thus the functionf∗∗(·) andf(·) are equal, or in other way to say the Legendre transform is itsown inverse.
The Legendre transform can be easily generalised to concavefunctions: in the definitionmax needs to

be replaced bymin.
The other generalisation is functions of multiple variables: the Legendre transform off(x1, . . . , xm) is

f∗(p1, . . . , pk) =
m∑

k=1

xkpk − f(x1, . . . , xm) , where pk =
∂f

∂xk

In the previous section we have seen thatS(F1, . . . , Fm) and− log Z(λ1, . . . , λm) are Legendre trans-
forms of each other, either one of them provides a full description of the system. The only remaining bit is
to show that− log Z is indeed either convex or concave so that the Legendre transform is defined.

2The Legendre transform is often defined with a sign difference: f∗(p) = max(f(x)−px). The advantage of our notation is that
the inverse, as we soon see, is completely symmetric.
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