Lecture notes: Statistical Mechanics of Complex Systems Lecture 3-4

The maximum entropy framework

The maximum entropy principle — an example

Suppose we have a random variablewith known states (values of the observations, .. ., x,) but
unknown probabilitie®;, . .., p,; plus some extra constrains, egy) is known. We are given the task to
attempt to have a good guess for the probabilities.

Let's start with one of the simplest exampleX’ can take 1, 2 or 3 with unknown probabilities,
and (X) = 7 is known. Fixing(X) does not determine the probabilities, for exampledoe= 2 any
(p1,p2.p3) = (5522, po, 1522) satisfies the constraint, including eg0, 1,0) or (3,0, 1) or (3,3, 1).
Which one is the “best”? According to threaximum entropy principle, the best guess is the one which
maximises the information entropy under the given constsai

To calculate this solution, we need to find the maximunHdi, p2, p3) as a function oby, p2, ps,
under two constraintgX') = 1p; + 2p2 + 3p; = T andp; + p2 + p3 = 1. We use the method of Lagrange
multipliers: first calculate the unconditional maximum bétoriginal function plus the constraints added
with some multiplying factors (the Lagrange multiplienahich give the probabilities in a functional form

with the Lagrange multipliers as parameters.
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Since this has to hold for anjp;, the curly brackets need to be zero:
—log(p;) —1—Xi—pu=0, 1=1,2,3
which with the notatiom\g = ¢ + 1 gives
pi = e~ No—Ai

Now we set the Lagrange multipliers by requiring the comstsao be satisfied. The constraint on the sum
of probabilities give
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The other constrain{,X) = T gives
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Multiplying the equation with the denominator gives a setdagree equation far:
(T —3) (e”)2 + (@ -2 +T-1=0
which has the solution
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Now if we rewrite (4) as
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In the last step we had to keep thesign as only this root gives non-negatpg Finally the other proba-
bilities become
3-T—po T—1-po

p1=#, b3 = D)

This solution has the right behaviour in the limiting casgbenz = 1, the probabilitiesp;, p2, p3) =
(1,0,0); and whert = 3, they are(0,0,1). Forz = 2, the solution i1, 1, 1). The maximum entropy
solution assigns zero probabilities only when no other ipdigges are allowed. This is a very desirable
property: it would be a sure failure to propose that a cegtdte has zero probability, and then find out that
a given observation happened to yield that state. The MaxifBatropy solution is guaranteed not to fail

there.

Maximum entropy principle — general form

After having this worked out example, we state the maximumnogy principle in a more general form.

Suppose we have a random variabletaking (known) valuesey, ..., x, with unknown probabilities
p1,---,Pn- In addition, we haven constraint functiongy,(x) with 1 < k¥ < m < n, where
(fr(X)) =Py,

the F;s are fixed. Then the maximum entropy principle assigns fmitties in such a way that maximises
the information entropy of X under the above constraintsis Thithe “best guess” in the absence of any
further knowledge about the random variable. Since ang@dsumption would bring a reduction in uncer-
tainty (see mutual information), we explicitly deny thoséra assumptions by maximising the uncertainty.

In the following we calculate various properties of the nmain entropy solution. This may sound dry,
but has the advantage that these abstract results can beaglyapplied later for concrete examples.

To obtain a formal solution we proceed in a similar way as mdRample, maximise the information
entropy using Lagrange multipliers:

0=d|H(pr,....pn) — f’(xi)pi—F>— I ( pi—1>
Z{ log(ps) —1—Z>\kfk (1) (Ao—l)}dpi

Since this is zero for anyp;, all n braces have to be zero, giving

pi = exp (-Ao -y )\kfk(xi)> (5)

k=1
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Then all the Lagrange multipliers\{, A1, ... A,;,) are fixed by writing back into the constraints. The sum

of probabilities give
1= "pi=e) exp (- > Akfk(%‘))
i=1 i=1 k=1

The sum aftee—*° appears frequently, so it is useful to consider it separatek will call it partition

function
Z(A1,- s Am) dﬁfZeXp <—Z/\kfk($i)> (6)
=1 k=1

With this notation

1
7>\0 e :1 Z o 7
‘ Z(M, -y Am) ’ Ao 0g Z(A1, s Am) )

The other constraints are
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which ism implicit equations, just enough to determine in princigie t» unknowns);. Using (7) then
the probabilities (5) are then fully determined:

bi = Z(/\l%e){p ( Z)\kfk i ) )

Unlike the simple example we had with three states, in pragtiis often not possible to calculate thgs
explicitly as a function off; s, but as we see later this does not prevent us obtainingflatseful results.

Consider now the value of the maximised information entrdfig no longer function of the probabili-
ties, but instead of the constraint valugg and to reflect this we change notationdo

S(F1,... Fn) = H(p1,...,pn) = Zpllog (pi) = sz <—)\0—Z)\kfk($i)>
N—— 1

from (9)

=Xo+ > A D> fulmi)pi =1og Z(A1, . Am) + D MeFi (10)
k i=1 k=1

Now calculate the partial derivatives Sfw.r.t. the F,s, being careful about what is kept constant in the
partial derivativek
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Here eitherS(Fi, ..., Fy,) orlog Z (A, ..., \y) give a full description of the system, as the other can be

calculated using (10), and there is a symmetric relatiowéen their partial derivatives: (8) and (11). We
look at this kind of relation between two functions more elgelow.

1In thermodynamics and statistical physics functions of mamiakites are used extensively, and the notation is not alwkezs
on what the free variables are. When taking partial derieatiit is essential to be clear on what is kept constant; iverd is often
shown at the bottom of the vertical bar after the partiald#htial. Eg. the notatiofA} means all\;s are kept fixed except the one
we differentiate with.
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Legendre transform

Consider a convex functiofi(x), and define the following function

17 (p) = max (pr — f() (12)
We call thi€ the Legendre tranform of f(z). If f is differentiable as well, we can calculate the maximum
as
_d _ df(z)
0=—(pz—fl)=p-—
Its solution forz depends op, which we callz(p):
df () _
Az | oma(p)

which plugged into (12) gives
f*(p) = px(p) — f(z(p))

Now let’s calculate the Legendre transform/of
(£ (y) = max (yp = f*(p)

Again, if f* is differentiable then

df*(p) _
dp p=p(y) -
H )
owever df*(p) - px(p) . f(x(p)) 7 x( )+ dx(p) _ df(x) dx(p) _ 1( )
dp dp S dp Az |, dp -
o) df*(p)
_ p =X
V=" o (p(y))
thus

I (y) = yp(y) — () = yp(y) — p(y)z(p(y)) + f(x(p(v))) = f(y)

Thus the functiory**(-) andf(-) are equal, or in other way to say the Legendre transform asitsinverse.
The Legendre transform can be easily generalised to corfigagéons: in the definitionnax needs to
be replaced bynin.

The other generalisation is functions of multiple variabléne Legendre transform ¢z, ..., x,,) is
f*(leu,pk):iffkpk—f(ffl,uwxm)a wherepk:ﬁ
k=1 O,
In the previous section we have seen théf1, ..., F,,) and—log Z(\4, ..., A\,,) are Legendre trans-

forms of each other, either one of them provides a full desion of the system. The only remaining bit is
to show that- log Z is indeed either convex or concave so that the Legendreforamés defined.

2The Legendre transform is often defined with a sign diffeeerf¢ (p) = max(f(z) — px). The advantage of our notation is that
the inverse, as we soon see, is completely symmetric.
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