Lecture notes: Statistical Mechanics of Complex Systems Lecture 5-6

Reciprocity laws and covariances

We can easily derive relationships between partial devieabf the constraintg), and Lagrange multipliers
Ar. By changing the order of partial differentiations we get
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By cursory observation one might say the second equatiamststhie inverse of the first one, so it is not
telling anything new. This is wrong, as the quantities thrat lkept fixed at differentiation are not the
same. However, the naive notion of inverse holds in a momcaie way: the matrices with elements
Aji = OF; /0N, andBj, = O\;/OF), are inverses of each othed: = B~1.

When we set f,(X)) = F}, we required thabn average fi(X) is what is prescribed, but still it varies
from observation to observation. Now we look at how large#uctuations are.

The covariance of two random variables is defined as

Cov(X,Y) E (X — (X)][Y — (V)]) = (XY) — (X)(Y)

which is a measure of “how mudhi is above its average at the same time wheis above its average”. A
covariance of a random variable with itself is calledliance:

Var(X) € Cov(X, X) = (X — (X))?) = (X?) — (X)?

with the convenient meaning that its square root @hadard deviation o) measures how much a random
variable differs from its average, suitably weighted. (Vhdance is always non-negative, as it is the average
of a non-negative quantity: a square.)

So we can calculate the covariancefpfX) and f;(X):

Cov(f5(X), fs(X)) = (f;(X) f1(X)) = (f5(X)) {(fx(X))

The first term using (9) is

2

As a side remark, the above calculation easily generalisagdrages of arbitrary products fifs:
. 1 (0™ 0™
mi(X)FMmE(X) V= | ——— ... Z

Coming back to the covariance
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where we have seen the last steps already in (13). Similarlyafriance
2log Z F
0 < Var(fi(x)) = 2182 _ 0% (16)
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This confirms that the second derivativelog Z is non-negative, ielog Z is a convex function, which we

implicitly assumed when mentioned thatog Z and.S are Legendre transforms of each other.
Suppose now that the constraint functigihisdepend on an external parametgf(X; «). Everything,

including Z and S become dependent @n To see its effect we calculate partial derivatives:

m

:722 XP( Z)\kfk ZTi5 ));)\kafk(;z;a)
:ZM<3J2> 17

Similarly, usingS = log Z + >, A\i. Fi.
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So the partial derivatives dbg Z and S with respect toa are equal, though one should note that the
variables kept fixed are the natural variables in each case.

Applications of the maximum entropy framewor k

The microcanonical ensemble

The simplest system to consider is the isolated one, witmteraction with its environment. A physical

example can be a thermally and mechanically isolated boxagtng some gas, traditionally these are

calledmicrocanonical ensembles. With no way to communicate, we have no information abouttmeent

state of the system. To put it in the maximum entropy framé&wee do not have any constraint to apply.
The maximum entropy solution for such a system is

- 1
Z=31, pi=-, S=logZ

Using the conventions of statistical physics the numbetates is denoted b§2, and the unit of entropy
is kp: recall this sets the prefactor and/or the base of the Itsgarin (2)-(3). Using this notation (the MC
subscript denotes microcanonical):

1 1
) Pi= 5 ==, Syc = kpInQ

Z=0Q
z Q

In this most simple system all internal states have equdilghitity.

The canonical ensemble

In the next level of increasing complexity, we allow the exiebe of one conserved quantity with the external
environment. The physical example is a system which is thyngcoupled (allowing energy exchange)
with its environment; traditionally these are calleahonical ensembles. Using this terminology we label
the internal states with their energy. By having the abititynteract with the system, we can control eg. the
average energy of the system by changing the condition oétki@onment, corresponding to having one
constraint in the maximum entropy formalism.
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The maximum entropy solution for one constraint reads
= 1
Z(\) = ge**f (0, pi= e NED L S(F) =log Z(N) + AF

The conventional units for entropy iks; for canonical ensembles as well, and as we mentioned thesstat
are labelled with energyf (z;) = E; with average energy (the value of the constramt: E. Finally, by
convention the Lagrange multiplieris calledg = 1/(kgT) in statistical physics, wherE is temperature
(measured in Kelvins), anidg is the Boltzmann constant. Thus we have

ST 1 45 1 E; (E)
Z(B) = E e BB pi=—e PFi = — exp (_ ) , Sc({E)) =kplnZ +
= Z Z kT T

In p; the exponential factar—#F is called Boltzmann factor, whil& provides the normalisation.
Having established this connection, we can easily tramsha results of the maximum entropy formal-
ism. Egs. (8) and (11) become

_31nZ a l
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(E) =

Eqg. (16) gives the energy fluctuation:

oz  9E) O(E)
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whereC'y, is theheat capacity of the system. This is an interesting relation, connectextastopic fluctu-
ations with macroscopic thermodynamic quantities.
In practice it is useful to define the following quantity, lealHelmholtz free energy:

AY kpTIZ = (E)-TSc,

If we consider it as a function of temperaturgT"), its derivative is

0A olnZz 1
— =—kplnZ —kpT-——— = —
or = reInZ kel =55 = —Se
This leads to a relation with the energy. Our approach so égerchined the entropgc as a function
of average energyF). Considering its inverse functiof¥)(S¢), we see that its Legendre transform is
—A(T).
It is interesting to note that

Zex —Ei =/ =ex —i
PN\ TheT) T TP Tkt )

so the sum of Boltzmann factors equals to a single Boltzmactof with energy replaced with the Helmholtz
free energy. We will see its implications later in the graadanical ensemble.

Next we consider a system made of two subsystems, which Higexntly uncoupled. The joint parti-
tion function can be written as [labeling the left and righibsystem with (L) and (R)]:

Z = ZZexp -0 (EZ.(L) + Ej(.R)) = (Zexp —ﬁEZ.(L)> (Zexp —5E§R)> P ARNAL
i i j

This means thaln Z is additive: A = —kpTlog Z = A 4 AUD_ Other quantities, like the entropy or
the energy have the similar additive property, and we cabékxtensive quantities.
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Physical examplesfor canonical ensembles

We have seen that the way to calculate any statistical meshgnantity for a given system is to calculate
first the partition function, and then any other quantitydsilyy expressed. Consider, for example, a particle
with positionz and momentunp = mv, and energyE = p*/(2m) + U(x), whereU is the potential.

In systems made of discrete states the formula involves acugamthe states. For continuous systems,
however, the sum needs to be replaced by integration:

SOREE-Y IRy N1 (18)

This is asemiclassical formula: not quantum mechanical, agandp are independent variables and not non-
commuting operators; but not purely classical either asPlaek constankt is involved. Instead of fully
understanding, we just rationalise this formula as (i) astamt needs to appear in front of the integrals to
make the full expression dimensionless Zashould be, and (ii) in quantities involvirigg Z the prefactor
1/h becomes an additive constant, and in particular for theopmtit sets its zero level.
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