
Lecture notes: Statistical Mechanics of Complex Systems Lecture 5-6

Reciprocity laws and covariances

We can easily derive relationships between partial derivatives of the constraintsFk and Lagrange multipliers
λk. By changing the order of partial differentiations we get
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By cursory observation one might say the second equation is just the inverse of the first one, so it is not
telling anything new. This is wrong, as the quantities that are kept fixed at differentiation are not the
same. However, the naive notion of inverse holds in a more intricate way: the matrices with elements
Ajk = ∂Fj/∂λk andBjk = ∂λj/∂Fk are inverses of each other:A = B−1.

When we set〈fk(X)〉 = Fk, we required thaton average fk(X) is what is prescribed, but still it varies
from observation to observation. Now we look at how large these fluctuations are.

Thecovariance of two random variables is defined as

Cov(X,Y )
def
= 〈[X − 〈X〉][Y − 〈Y 〉]〉 = 〈XY 〉 − 〈X〉〈Y 〉

which is a measure of “how muchY is above its average at the same time whenX is above its average”. A
covariance of a random variable with itself is calledvariance:

Var(X)
def
= Cov(X,X) = 〈(X − 〈X〉)2〉 = 〈X2〉 − 〈X〉2

with the convenient meaning that its square root (thestandard deviation σ) measures how much a random
variable differs from its average, suitably weighted. (Thevariance is always non-negative, as it is the average
of a non-negative quantity: a square.)

So we can calculate the covariance offk(X) andfj(X):

Cov(fj(X), fk(X)) = 〈fj(X)fk(X)〉 − 〈fj(X)〉〈fk(X)〉

The first term using (9) is
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As a side remark, the above calculation easily generalises to averages of arbitrary products offks:
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Coming back to the covariance
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where we have seen the last steps already in (13). Similarly for variance
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This confirms that the second derivative oflog Z is non-negative, ie.log Z is a convex function, which we
implicitly assumed when mentioned that− log Z andS are Legendre transforms of each other.

Suppose now that the constraint functionsfk depend on an external parameter:fk(X;α). Everything,
includingZ andS become dependent onα. To see its effect we calculate partial derivatives:
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Similarly, usingS = log Z +
∑

k λkFk
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So the partial derivatives oflog Z and S with respect toα are equal, though one should note that the
variables kept fixed are the natural variables in each case.

Applications of the maximum entropy framework

The microcanonical ensemble

The simplest system to consider is the isolated one, with no interaction with its environment. A physical
example can be a thermally and mechanically isolated box containing some gas, traditionally these are
calledmicrocanonical ensembles. With no way to communicate, we have no information about thecurrent
state of the system. To put it in the maximum entropy framework, we do not have any constraint to apply.

The maximum entropy solution for such a system is

Z =

n∑

i=1

1 , pi =
1

Z
, S = log Z

Using the conventions of statistical physics the number of states is denoted byΩ, and the unit of entropy
is kB : recall this sets the prefactor and/or the base of the logarithm in (2)-(3). Using this notation (the MC
subscript denotes microcanonical):

Z = Ω , pi =
1

Z
=

1

Ω
, SMC = kB ln Ω

In this most simple system all internal states have equal probability.

The canonical ensemble

In the next level of increasing complexity, we allow the exchange of one conserved quantity with the external
environment. The physical example is a system which is thermally coupled (allowing energy exchange)
with its environment; traditionally these are calledcanonical ensembles. Using this terminology we label
the internal states with their energy. By having the abilityto interact with the system, we can control eg. the
average energy of the system by changing the condition of theenvironment, corresponding to having one
constraint in the maximum entropy formalism.
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The maximum entropy solution for one constraint reads

Z(λ) =

n∑

i=1

e−λf(xi) , pi =
1

Z
e−λf(xi) , S(F ) = log Z(λ) + λF

The conventional units for entropy iskB for canonical ensembles as well, and as we mentioned the states
are labelled with energy:f(xi) = Ei with average energy (the value of the constraint)F = E. Finally, by
convention the Lagrange multiplierλ is calledβ = 1/(kBT ) in statistical physics, whereT is temperature
(measured in Kelvins), andkB is the Boltzmann constant. Thus we have
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1
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, SC(〈E〉) = kB lnZ +
〈E〉

T

In pi the exponential factore−βEi is called Boltzmann factor, whileZ provides the normalisation.
Having established this connection, we can easily translate the results of the maximum entropy formal-

ism. Eqs. (8) and (11) become
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Eq. (16) gives the energy fluctuation:
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whereCV is theheat capacity of the system. This is an interesting relation, connected microscopic fluctu-
ations with macroscopic thermodynamic quantities.

In practice it is useful to define the following quantity, called Helmholtz free energy:

A
def
= −kBT lnZ = 〈E〉 − TSC ,

If we consider it as a function of temperature,A(T ), its derivative is
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This leads to a relation with the energy. Our approach so far determined the entropySC as a function
of average energy〈E〉. Considering its inverse function〈E〉(SC), we see that its Legendre transform is
−A(T ).

It is interesting to note that
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so the sum of Boltzmann factors equals to a single Boltzmann factor with energy replaced with the Helmholtz
free energy. We will see its implications later in the grand canonical ensemble.

Next we consider a system made of two subsystems, which are sufficiently uncoupled. The joint parti-
tion function can be written as [labeling the left and right subsystem with (L) and (R)]:
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This means thatlnZ is additive:A = −kBT log Z = A(L) + A(R). Other quantities, like the entropy or
the energy have the similar additive property, and we call theseextensive quantities.
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Physical examples for canonical ensembles

We have seen that the way to calculate any statistical mechanics quantity for a given system is to calculate
first the partition function, and then any other quantity is easily expressed. Consider, for example, a particle
with positionx and momentump = mv, and energyE = p2/(2m) + U(x), whereU is the potential.
In systems made of discrete states the formula involves a sumover the states. For continuous systems,
however, the sum needs to be replaced by integration:

∑

i

(·) ↔
1

h
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−∞
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∫ ∞
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dp (·) (18)

This is asemiclassical formula: not quantum mechanical, asx andp are independent variables and not non-
commuting operators; but not purely classical either as thePlack constanth is involved. Instead of fully
understanding, we just rationalise this formula as (i) a constant needs to appear in front of the integrals to
make the full expression dimensionless, asZ should be, and (ii) in quantities involvinglog Z the prefactor
1/h becomes an additive constant, and in particular for the entropy it sets its zero level.
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