Lecture notes: Statistical Mechanics of Complex Systems Lecture 7-8

Physical examplesfor canonical ensembles (continued)

The simplest example is a one-dimensional box of lerigtfThe potential can be taken as zero within the
box and infinity outside, giving
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where we used the Gaussian integral= [~ exp(—2?/20?)/v2r02. The factors other thai are

collected into a quantity of dimension lenght:= h/v/2mmkgT, calledthermal de Broglie wavelength.
When it is small compared to characteristic length scalesyircase\ < L, the system can be considered
as classical; while i\ Z L, proper quantum mechanics needs to be used. Interestihgdytloes not
only involve size, but also mass and temperature. This isghson why typically electrons are always
guantum mechanical, but full atoms can be consedered asicalagas is done in molecular dynamics
simulations). The exception is very light atoms at very lemperature, when inherently quantum effects
like superfluidity of helium can be observed.

The ideal gas is a model of gases where gas atoms or molecelpsiat particles which do not interact.
Since in the energy the, y, andz components are decoupled, the coordinates oNaflarticles can be
consedered as independent, which using (16) and (17) leads t
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The 1/N! comes from the fact that the particles are indistinguistialstates where eg. particle 1 has
position and momentum,, p, and particle 2 has,, p; is identical to the state where particle 11gf p,
and patrticle 2 of,, p,; the factor corrects the double counting in the integrabvikp 7, it is easy to show
that the average enerd¥) = (3/2)NkpT, the Helmholtz free energf = NkgT (log(pA3) — 1), and
the entropyS = Nkg(5/2 — log(pA3)), wherep = N/V is the number density.

It is interesting to see that consideriigas a parameter of the system, we can apply (15) to obtain a
new relation. Plugging ic = V anddf/0a = OE/0V = —p (the latter can be considered as a definition

of pressure):
_OlogZ _ﬁ<8E>
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which using (18) gives
NkBT = <p>V

This is calledequation of state, as it provides a relation between state variables likespires volume and
temperature.

Next we consider another fundamental system,hdrenonic oscillator. One can think about it as a
point massm moving in one dimension, connected to a spring of stiffiesef which the other end is
kept fixed. If the position: is measured from the equilibrium position (unstretchedhgpy then the force
acting on the the point mass iskz, yielding Newton’s equatiomd?xz/dt?> = —kx. This has a solution
x = Asin(wt + ¢), where the amplitudel and phase are parameters set by the initial condition, and the
frequency isv = \/k/m. The energy stored in the spring can be writteka%/2 = mw?22 /2, so the total
energy is

b p? mw? 2
2m + 2

Using the standard recipe we first calcualte the partitiorction:
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where we introducedl = h/(27). Then

olnZz o . 1 I(E)
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This last result is a realisation of the principleepfipartition: each quadratic half-degree of freedom [like
x andp in (19)] contributes: 5 7'/2 to the average energy, and consequekhtly? to the heat capacity.
We will now apply these results to calculate the heat capafisolids. Far away from the the melting
temperature the many-body potential of the atoms in a drgatabe considered quadratic. Collecting all

(E) =— =kg

3N coordinates of théV atoms into a vectox = (z1, zo, ..., 23y ), the potential is
3N 3N
Z ou 0 1 02U 0 0
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where the series expansion is truncated at the quadratic Tére equation of motion involves tBév x 3N
dynamical matrix0?U/dz;0x;, which separates intd N independent one-dimensional harmonic oscil-
lators corresponding to the normal modes and eigenfreigend his leads t@C = 3Nkg, known as
Dulong-Petit law, which turns out to be correct at high terapares.

At low temperatures quantum mechanical effects have to kentanto account, which we do simply
by replacing the classical harmonic oscillators with quamharmonic oscillators. For our purposes the
quantum harmonic oscillator is a system with discrete gnlengels: in thei™" stateF; = (i + %)hw, where
1 =20,1,.... Being a discrete system the partition function involvest pusum, which here is a geometric

sum:
e~ 30hw 1
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The average energy and heat capacity are

olmZ  hw hw
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At high temperature (smaflf) the argument ofinh is small, which expands tdnh z ~ z. This leads
to C — kp, which is the classical result.
At low temperature (larged) however, the argument ainh is large, expanding teinhz ~ %em.

hw

2
This givesC' =~ kg (%) e *BT, resulting in exponential suppression at low temperatuidsively
applying this result to crystals leads to thi@stein model of solids, which at low temperatures simply gives

2
C = 3Nkp (57 )/ sinb? 5.
This is still incorrect, however, since all quantum harncooscillators are assumed to have the same
frequency. In th®ebye model of solids the proper spectrum of frequencies is used, whidbed reproduces
experimental measurements at low temperatures as well. REaeler is referred to standard solid state

physics textbooks for details.

The grand canonical ensemble

We now allow the exchange of two conserved quantities wighetkternal environment: to follow the phys-
ical example ofjrand canonical ensembles, these are the energy and the particle number. In the maximum
entropy formalism this corresponds to constraining theaye energy and the average particle number. As
before the units of entropy iz, and thei state has energig; and particle numbelN;. The Lagrange
multipliiler conjugate to energy i8 = 1/(kgT) as in the canonical ensemble. The other one, however, is

conventionally denoted by u3 = — 4.
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Accordingly the grand canonical partition function (destbby=) and the probabilities of the states are
S(B,0) = 3 e AN

1o (E;—uN,
i ',)
pi = e *BT ‘ ’ )

while the entropy, now function of the average energy andaaeparticle number, using (10) becomes

E N
Sac((B), (N)) = kpInZ + % _ % .
The simple relations (8) and (11) become more complicatedtalthe fact that the physical variables,

especiallyu, are not simply the Lagrange multipliers but functions @frth
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In the grand canonical ensemble not only the energy fluctubté also the particle number:

9?In=
2 _ —
oy = Var(N) = D uf)?

The reciprocity relations also become more complicatedexample
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An important quantity is the grand free energy (we will seersthe relevance of the free energies),
which is defined as

(T, ) := —kpTIn= = (E) — u(N) — T'Sgc

It is interesting to note that the partition function can bitten as
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In this expression microscopic states with the same pantismberNV are lumped together into a macro-
scopic state, and the sum of their Boltzmann factors is cepldy a single Boltzmann factor where the
role of the energy is played by an appropriate free energyis anipulation is calleghartial trace, a
terminology borrowed from the quantum formalism of statatmechanics.
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