Introduction to Complex Networks

Complexity

"The whole is more than the sum of its parts."

Graph theory

1735: EULER'S THEOREM:

(A) IF A GRAPH HAS MORE THAN TWO NODES OF ODD DEGREE, THERE IS NO PATH.
(B) IF A GRAPH IS CONNECTED AND HAS NO ODD DEGREE NODES, IT HAS AT LEAST ONE PATH.

Some real networks

Figure 2. Biparitie graph of the metabolic network of Ureapiasama ureatyicum. Dark gray and white nodes represent
enymes and light gray nodes represent metabolies (Lemke el al., 2004).

Nodes and links

Clos)

- components: nodes, vertices

N

- interactions: links, edges

L

- system: network, graph
(N,L)

Nodes and links

Undirected

Links: undirected (symmetrical)
Graph:

Undirected links :
coauthorship links
Actor network
protein interactions

Directed

Links: directed (arcs).
Digraph $=$ directed graph:

Directed links:
URLs on the www phone calls
metabolic reactions

An undirected link is the superposition of two opposite directed links.

Nodes and links

Nodes and links

NETWORK	NODES	LINKS	DIRECTED UNDIRECTED	N	L
Internet	Routers	Internet connections	Undirected	192,244	609,066
WWW	Webpages	Links	Directed	325.729	1,497,134
Power Grid	Power plants, transformers	Cables	Undirected	4.941	6,594
Mobile Phone Calls	Subscribers	Calls	Directed	36,595	91,826
Email	Email addresses	Emails	Directed	57.194	103.731
Science Collaboration	Scientists	Co-authorship	Undirected	23.133	93.439
Actor Network	Actors	Co-acting	Undirected	702,388	29,397.908
Citation Network	Paper	Citations	Directed	449.673	4,689,479
E. Coli Metabolism	Metabolites	Chemical reactions	Directed	1,039	5,802
Protein Interactions	Proteins	Binding interactions	Undirected	2,018	2,930

Adjacency matrix

$\mathbf{A}_{\mathrm{ij}}=\mathbf{1}$ if there is a link between node i and j
$\mathbf{A}_{\mathrm{ij}}=\mathbf{0}$ if nodes i and j are not connected to each other.
$A_{i j}=\left(\begin{array}{llll}0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right) \quad A_{i j}=\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0\end{array}\right)$
Note that for a directed graph (right) the matrix is not symmetric.
$A_{i j}=1$ if there is a link pointing from node j and i
$A_{i j}=0$ if there is no link pointing from j to i. Neetwork science: craph Theory, ment ant

Node degree

Node degree: the number of links connected to the node.

$$
k_{A}=1 \quad k_{B}=4
$$

In directed networks we can define an in-degree and out-degree.
The (total) degree is the sum of in- and out-degree.

$$
k_{C}^{\text {in }}=2 \quad k_{C}^{\text {out }}=1 \quad k_{C}=3
$$

Source: a node with $\mathrm{k}^{\text {in }}=0$; Sink: a node with $\mathrm{k}^{\text {out }}=0$.

Node degree

Node degree

NETWORK	NODES	LINKS	DIRECTED UNDIRECTED	N	L	$\langle k\rangle$
Internet	Routers	Internet connections	Undirected	192,244	609,066	6.33
WwW	Webpages	Links	Directed	325.729	1,497,134	4.60
Power Grid	Power plants, transformers	Cables	Undirected	4.941	6,594	2.67
Mobile Phone Calls	Subscribers	Calls	Directed	36,595	91,826	2.51
Email	Email addresses	Emails	Directed	57,194	103.731	1.81
Science Collaboration	Scientists	Co-authorship	Undirected	23.133	93.439	8.08
Actor Network	Actors	Co-acting	Undirected	702,388	29,397,908	83.71
Citation Network	Paper	Citations	Directed	449,673	4,689,479	10.43
E. Coli Metabolism	Metabolites	Chemical reactions	Directed	1,039	5,802	5.58
Protein Interactions	Proteins	Binding interactions	Undirected	2,018	2,930	2.90

Node degree

The maximum number of links a network of N nodes can have is: $L_{\text {max }}=\binom{N}{2}=\frac{N(N-1)}{2}$

A graph with degree $\mathrm{L}=\mathrm{L}_{\text {max }}$ is called a complete graph, and its average degree is $\langle\mathrm{k}>=\mathrm{N}-\mathbf{1}$

Node degree

Most networks observed in real systems are sparse:

$$
\begin{gathered}
L \ll L_{\max } \\
\quad \text { or } \\
<k>\lll N-1 .
\end{gathered}
$$

WWW (ND Sample):	$\mathrm{N}=325,729 ;$	$\mathrm{L}=1.410^{6}$	$\mathrm{~L}_{\text {max }}=10^{12}$	$<k>=4.51$
Protein (S. Cerevisiae):	$\mathrm{N}=1,870 ;$	$\mathrm{L}=4,470$	$\mathrm{~L}_{\max }=10^{7}$	$<k>=2.39$
Coauthorship (Math):	$\mathrm{N}=70,975 ;$	$\mathrm{L}=210^{5}$	$\mathrm{~L}_{\max }=310^{10}$	$<k>=3.9$
Movie Actors:	$\mathrm{N}=212,250 ;$	$\mathrm{L}=610^{6}$	$\mathrm{~L}_{\max }=1.810^{13}$	$<k>=28.78$

Degree distribution

Degree distribution

$\mathrm{P}(\mathrm{k})$: probability that a randomly chosen node has degree k
$\mathrm{N}_{\mathrm{k}}=$ \# nodes with degree k
$P(k)=N_{k} / N \rightarrow$ plot

Degree distribution

Paths

The distance (shortest path, geodesic path) between two nodes is defined as the number of edges along the shortest path connecting them.
*If the two nodes are disconnected, the distance is infinity.

In directed graphs each path needs to follow the direction of the arrows.

Thus in a digraph the distance from node A to B (on an AB path) is generally different from the distance from node B to A (on a BCA path).

Paths

\mathbf{N}_{ij}, number of paths between any two nodes \boldsymbol{i} and j :

Length $\boldsymbol{n = 1}$: If there is a link between i and j, then $\mathrm{A}_{\mathrm{ij}}=1$ and $\mathrm{A}_{\mathrm{ij}}=0$ otherwise.
Length $\boldsymbol{n}=\mathbf{2}$: If there is a path of length two between i and j, then $\mathrm{A}_{\mathrm{ik}} \mathrm{A}_{\mathrm{kj}}=1$, and $\mathrm{A}_{\mathrm{ik}} \mathrm{A}_{\mathrm{kj}}=0$ otherwise. The number of paths of length 2 :

$$
N_{\imath j}^{(2)}=\sum_{k=1}^{N} A_{i k} A_{k j}=\left[A^{2}\right]_{i j}
$$

Length n : In general, if there is a path of length n between i and j, then $\mathrm{A}_{\mathrm{ik}} \ldots \mathrm{A}_{\mathrm{ij}}=1$ and $\mathrm{A}_{\mathrm{ik}} \ldots \mathrm{A}_{\mathrm{ij}}=0$ otherwise.
The number of paths of length n between i and j is*

$$
N_{i j}^{(n)}=\left[A^{n}\right]_{i j}
$$

*holds for both directed and undirected networks.
Cycles or loops: closed paths

Paths

Connectivity:

Undirected \rightarrow Connected: there is a path between every pair of vertices.
Directed $\left\{\begin{array}{l}\text { Strongly connected: there is a directed path between every pair of } \\ \text { vertices. } \\ \text { Weakly connected: connected after replacing all directed edges } \\ \text { with undirected edges. }\end{array}\right.$
Diameter: $\boldsymbol{d}_{\max }$ the maximum distance between any pair of nodes in the graph.

Average path length/distance, $\langle d\rangle$, for a connected graph: where $d_{i j}$ is the distance from node i to node j

$$
\langle d\rangle \equiv \frac{1}{2 L_{\max }} \sum_{i, j \neq i} d_{i j}
$$

Clustering

* Clustering coefficient:

what fraction of your neighbors are connected?

* Node i with degree k_{i}
* C_{i} in $[0,1]$

$$
C_{i}=\frac{2 e_{i}}{k_{i}\left(k_{i}-1\right)}
$$

$C_{i}=1$

$C_{i}=1 / 2$

$C_{i}=0$

Key measures

Degree distribution:

Path length:
<d>
Clustering coefficient:

$$
C_{i}=\frac{2 e_{i}}{k_{i}\left(k_{i}-1\right)}
$$

Random graphs

Random graphs

Pál Erdös

(1913-1996)

Alfréd Rényi

Erdös-Rényi model (1960)
Connect with probability p

$$
\begin{gathered}
\mathrm{p}=1 / 6 \quad \mathrm{~N}=10 \\
<\mathrm{k}>\sim 1.5
\end{gathered}
$$

Random graphs

Two versions:
$G(n, M)$ model: a graph is chosen uniformly at random from the collection of all graphs which have n nodes and M edges.

Erdős \& Rényi (1959)

Microcanonical ensemble
$G(n, p)$ model: a graph is constructed by connecting nodes randomly. Each edge is included in the graph with probability p independent from every other edge.

Gilbert (1959)

Canonical ensemble

$$
P(k)=\binom{n-1}{k} p^{k}(1-p)^{n-1-k} \rightarrow \frac{(n p)^{k} \mathrm{e}^{-n p}}{k!}
$$

Random graphs

DISCONNECTED NODES $\boldsymbol{\rightarrow} \quad$ NETWORK.

Six degrees of separation?

Frigyes Karinthy, 1929
Stanley Milgram, 1967

Six degrees of separation?

sport football opinion culture business lifestyle fashion environment tech
 Facebook brings the world three-and-abit degrees of separation closer

The social media platform used its friend graph to calculate the degrees separating its 1.6 billion members and found it is as few as 3.57 people

- Bringing the world together: Facebook says every person in the world is connected to every other person by an average of three and a half other people. Photograph: Alamy

Six degrees of separation?

Random graphs tend to have a tree-like topology with almost constant node degrees.

- nr. of first neighbors:
- nr. of second neighbors:
-nr. of neighbours at distance d:
- estimate maximum distance:

$$
N=1+\langle k\rangle+\langle k\rangle^{2}+\ldots+\langle k\rangle^{d_{\max }}=\frac{\langle k\rangle^{d_{\max }+1}-1}{\langle k\rangle-1} \approx\langle k\rangle^{d_{\max }} \quad \Rightarrow \quad d_{\max }=\frac{\log N}{\log \langle k\rangle}
$$

Six degrees of separation?

Network Name	N	L	(k)	(d)	$d_{\text {max }}$	$\frac{\log N}{\log (k\rangle}$
Internet	192,244	609,066	6.34	6.98	26	6.59
WWW	325,729	1,497,134	4.60	11.27	93	8.32
Power Grid	4,941	6,594	2.67	18.99	46	8.66
Mobile Phone Calls	36,595	91,826	2.51	11.72	39	11.42
Email	57,194	103,731	1.81	5.88	18	18.4
Science Collaboration	23,133	186,936	8.08	5.35	15	4.81
Actor Network	212,250	3,054,278	28.78	-	-	-
Citation Network	449,673	4,707,958	10.47	11.21	42	5.55
E Coli Metabolism	1,039	5,802	5.84	2.98	8	4.04
Yeast Protein Interactions	2,018	2,930	2.90	5.61	14	7.14

Clustering

Prediction:

Data:

$\operatorname{can}=\frac{\langle\boldsymbol{d}\rangle}{\mathrm{N}}$
$C_{\text {rand }}$ underestimates with orders of magnitudes the clustering coéfficient of real networks.

Watts-Strogatz model

Epidemics

Adam Judah
-Pharaoh (time of Moses) Aaron ${ }^{\text {Nicodemus }}$
Rahab Erastus Tiberias Sarah Noah
Isaac Abraham Jesse Aristarchus

- Samue) loseph (father of Jesus) Jother of Jesus) Stephen Jude (father of Jesus) Joses (brother of Jesus) Jude Jacob James (brother of Jesus) Mark Enoch .Tychicus Moses David Barnabas Titus.Felix -Esau Isaiah John the Baptist Paul Dema

Thomas Alphaeus (father of James)
.Melchizedek

Scale-free networks

$$
P(k)=e^{-<k>} \frac{<k>^{k}}{k!}
$$

Internet

Science Collaboration

Protein Interactions

Scale-free networks

$$
p(k) \sim k^{-\gamma}
$$

Scale-free networks

Network	Size	$\langle k\rangle$	κ	$\gamma_{o w t}$	$\gamma_{i n}$
WWW	325729	4.51	900	2.45	2.1
WWW	4×10^{7}	7		2.38	2.1
WWW	2×10^{6}	7.5	4000	2.72	2.1
WWW, site	260000				1.94
Internet, domain*	$3015-4389$	$3.42-3.76$	$30-40$	$2.1-2.2$	$2.1-2.2$
Internet, router**	3888	2.57	30	2.48	2.48
Internet, router*	150000	2.66	60	2.4	2.4
Movie actors*	212250	28.78	900	2.3	2.3
Co-authors, SPIRES*	56627	173	1100	1.2	1.2
Co-authors, neuro**	209293	11.54	400	2.1	2.1
Co-authors, math.*	70975	3.9	120	2.5	2.5
Sexual contacts*	2810			3.4	3.4
Metabolic, E. coli	778	7.4	110	2.2	2.2
Protein, S. cerev,*	1870	2.39		2.4	2.4
Ythan estuary*	134	8.7	35	1.05	1.05
Silwood Park**	154	4.75	27	1.13	1.13
Citation	783339	8.57			3
Phone call	53×10^{6}	3.16		2.1	2.1
Words, co-occurrence**	460902	70.13		2.7	2.7
Words, synonyms*	22311	13.48		2.8	2.8

Barabási-Albert model

Emergence of Scaling in Random Networks

$$
p(k) \sim k^{-3}
$$

Albert-László Barabási* and Réka Albert

- m_{0} initial nodes
- Each new node appears with $m \leq m$ new links
- Probability of attachment to i is $p_{i}=\frac{k_{i}}{\sum_{j} k_{j}}$

Network robustness

Structure of networks

Dynamical processes on networks

Trophic coherence determines food-web stability
Samuel Johnson ${ }^{\text {a,1,2 }}$, Virginia Domínguez-Garcíab,1, Luca Donettic, and Miguel A. Muñoz ${ }^{\text {b }}$

Reviews

[R1] Statistical mechanics of complex networks, R. Albert, and A.-L. Barabási, Rev. Mod. Phys. 74, 47-97 (2002)
[R2] The structure and function of complex networks, M. E. J. Newman, SIAM Review 45, 167256, 2003
[R3] Critical phenomena in complex networks, S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Rev. Mod. Phys. 80, 1275 (2008)

Books

[B1] Evolution of Networks: From Biological Nets to the Internet and WWW, S. N. Dorogovtsev and J. F. F. Mendes, Oxford University Press (2003)
[B2] Networks: An Introduction, M. E. J. Newman, Oxford University Press (2010)
[B3] Dynamical Processes on Complex Networks, A. Barrat, M. Barthélémy, and A. Vespignani, Cambridge University Press (2012)

Popular science

[P1] A.-L. Barabási. Linked: How Everything Is Connected to Everything Else and What It Means
[P2] D. J. Wats. Small Worlds: The Dynamics of Networks between Order and Randomness
[P3] R. Solé. Redes Complejas. Del genoma a Internet

Thank you for your attention!
 ...and to A.-L. Barabási for making material available online

