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Abstract. We develop a notion of containment for independent sets in hypergraphs. For

every r-uniform hypergraph G, we find a relatively small collection C of vertex subsets,

such that every independent set of G is contained within a member of C, and no member of

C is large; the collection, which is in various respects optimal, reveals an underlying struc-

ture to the independent sets. The containers offer a straightforward and unified approach

to many combinatorial questions concerned (usually implicitly) with independence.

With regard to colouring, it follows that many (including all simple) r-uniform hyper-

graphs of average degree d have list chromatic number at least (1/(r − 1)2 + o(1)) logr d.

For r = 2 this improves Alon’s bound and is tight. For r ≥ 3, previous bounds were weak

but the present inequality is close to optimal.

In the context of extremal graph theory, it follows that, for each `-uniform hyper-

graph H of order k, there is a collection C of `-uniform hypergraphs of order n each with

o(nk) copies of H, such that every H-free `-uniform hypergraph of order n is a subgraph

of a hypergraph in C, and log |C| ≤ cn`−1/m(H) log n where m(H) is a standard param-

eter (there is a similar statement for induced subgraphs). This yields simple proofs of

many hitherto difficult results: these include the number of H-free hypergraphs, sparsity

theorems of Conlon-Gowers and Schacht, and the full K LR conjecture.

Likewise, for systems of linear equations the containers supply, for example, bounds on

the number of solution-free sets (including Sidon sets, for which we give both lower and

upper bounds) and the existence of solutions in sparse random subsets.

Balogh, Morris and Samotij have independently obtained related results.

1. Introduction

The notion of an independent set plays a fundamental role in the study of hypergraphs.
An r-uniform hypergraph, or r-graph, G is a pair (V (G), E(G)) comprising two sets, the
vertices V (G) and edges E(G) of G, where each edge e ∈ E(G) is a set of r elements
of V (G). Hence a 2-graph is an ordinary graph. A set I ⊂ V (G) is independent if there is
no edge e ∈ E(G) with e ⊂ I.

Whilst there are many theorems in the literature that can be phrased in terms of es-
timating the number of independent sets in certain hypergraphs (we shall mention some
of these shortly), the question per se of how many independent sets there can be in a
graph has attracted attention only relatively lately. The maximum number of independent
sets in a graph of given average degree can be determined easily via the Kruskal-Katona
theorem [33, 27], but for regular graphs the maximum is harder to find: following a good
estimate by Alon [1], the exact value for bipartite graphs was determined by Kahn [26] via
an elegant entropy argument, and his result was extended to all graphs by Zhao [53]. There
are at most (2d+1 − 1)n/2d = 2n/2+O(n/d) independent sets in a d-regular graph of order n
(that is, having n vertices), and this number is attained by n/2d disjoint copies of Kd,d.
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It would be convenient for many purposes if there were at most 2o(n) independent sets
in an r-graph G of order n and average degree d, but examples like those just cited show
this hope to be a forlorn one. Nevertheless, for the applications we have in mind, it is
enough to find a good collection C of containers for independent sets: this is a family of
subsets of V (G) such that, for each independent set I, there is a set C ∈ C with I ⊂ C,
and |C| = 2o(n). Of course, we could just take C = {V (G)}, but this collection would not
be helpful: for C to be of use, a further condition is needed that each container C ∈ C is
not large, in a sense made precise later.

Another immediate candidate for C is the collection of maximal independent sets, but
this too can be large; for example, if d is even, adding a 1-factor into the vertex classes
of each Kd,d of the graph (n/2d)Kd,d produces a (d + 1)-regular graph with at least 2n/4

maximal independent sets. (The maximum number of maximal independent sets in any
graph of order n was determined by Moon and Moser [36].)

The main purpose of this paper is to show that an r-graph G of average degree d and
order n does have a small collection C of containers. Typically, but not always, |C| =
2n/d1/(r−1+o(1))

. Results of this kind were known previously in special cases. Sapozhenko [43,
44, 46, 45] treated regular 2-graphs. Containers for r-graphs were introduced and used
in [47] in the case of simple regular r-graphs (a hypergraph is simple or linear if every pair
of vertices lies in at most one edge). However, the most interesting applications require
containers for non-regular r-graphs. Finding such containers presents significant difficulties
and the method here is unrelated to that of [47].

We describe our main results about containers in §2. The fundamental result is Theo-
rem 2.5 stated in §2.3. It is worth mentioning that the statement applies to all r-graphs G
but it gives useful information only if d is large (though independently of n). Following §2,
the containers are constructed in §3 and their properties analysed in §4, where Theorem 2.5
is proved. Some corollaries, more amenable to application, are developed in §5 and §6, and
in §7 we give an example to show that the main result is, in a sense, best possible. Finally,
in §8–12 we give details of some applications.

Before getting down to details, though, we outline those applications to be discussed.
Each of them involves, implicitly, dealing with the independent sets in some hypergraph G,
and in each case it suffices to find an appropriate set of containers. Once some simple
parameter of G has been calculated, the existence of the desired containers follows straight
away from the main theorem or one of its consequences in §5–§6, and the applications are
finished off by routine arguments (plus, in §10, a non-trivial removal lemma). The results
obtained are generally best possible.

Balogh, Morris and Samotij [6] have independently developed a container theorem akin
to Corollary 2.7 together with applications, including a proof of Theorem 12.2 for balanced
graphs.

1.1. A little notation. We use standard notation. In particular, for m,n ∈ N we let
[n] = {1, . . . , n} and [m,n] = {m, . . . , n}. For collections of subsets we write, for example,
[m,n](s) = {σ ⊂ [m,n] : |σ| = s}, [m,n](>s) = {σ ⊂ [m,n] : |σ| > s}, and so on. As
usual, P[n] denotes the collection of all subsets of [n]. If G is a hypergraph we write
e(G) = |E(G)| for the number of edges of G and v(G) = |V (G)| for the number of vertices
of G. If S ⊂ V (G) then G[S] denotes the subhypergraph of G induced by S, that is,
G[S] = (S, E(G) ∩ PS).
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1.2. List colourings. A 2-graph G is said to be k-choosable if, whenever for each vertex
v ∈ V (G) we assign a list Lv of k colours to v, then it is possible to choose a colour for v
from the list Lv, so that no two adjacent vertices receive the same colour. The list chromatic
number χl(G) (also called the choice number) is the smallest k such that G is k-choosable. If
all the lists are the same then a list colouring is just an ordinary k-colouring and so χl(G)
is at least χ(G), the ordinary chromatic number of G. This natural definition was first
studied by Vizing [52] and by Erdős, Rubin and Taylor [19]. One of the main discoveries
of [19] is that χl(G) can be much larger than χ(G), because χl(Kd,d) = (1 + o(1)) log2 d,
whereas χ(Kd,d) = 2.

In fact, unlike χ(G), χl(G) must grow with the minimum degree of the graph G. Alon [2,
3] showed that χl(G) ≥ (1/2 + o(1)) log2 d holds for any graph G of minimum degree d.

There is a straightforward reason, as pointed out by Alon and Kostochka [4], why the
same is not true for r-graphs if r ≥ 3. Let F be some graph on n vertices, say F = (n/2)K2,
and let G be some r-graph each of whose edges contains an edge of F . Then χl(G) = χl(F ),
so in this example χl(G) = 2, whereas the average degree of G can be large. However, if we
restrict to simple r-graphs the situation is different. Following work of Haxell and Pei [22]
on Steiner systems, Haxell and Verstraëte [23] proved that χl(G) ≥ (log d/5 log log d)1/2

for simple d-regular 3-graphs G. Alon and Kostochka [4] showed χl(G) ≥ (log d)1/(r−1) for
simple d-regular r-graphs G, and in [47] this was improved to χl(G) = Ω(log d).

We extend this to all simple r-graphs, at the same time giving a better constant.

Theorem 1.1. Let r ∈ N be fixed. Let G be a simple r-graph with average degree d. Then,
as d →∞,

χl(G) ≥ (1 + o(1))
1

(r − 1)2
logr d

holds. Moreover, if G is regular then

χl(G) ≥ (1 + o(1))
1

r − 1
logr d .

Note that, for r = 2, this improves Alon’s bound [3] by a factor of 2 and is best possible.
We think that the bound given for regular r-graphs might hold for general r-graphs and
moreover that it too might be best possible (see §8).

Theorem 1.1 is a weaker version of Corollary 8.2, which gives a bound for some non-
simple r-graphs also. We do not give a general bound for all r-graphs because it would
be rather complicated to state: however, in any particular instance, a bound can readily
be derived from the results in §8. This would cover, for example the theorem of Alon and
Kostochka [5] that if at least half the (r − 1)-tuples of vertices of G lie in at least m edges
then χl(G) ≥ cr log m.

1.3. H-free graphs. An `-graph on vertex set [N ] is said to be H-free if it contains no
subgraph isomorphic to the `-graph H.

As far as H-free graphs are concerned, our main result is this: for any given `-graph H,
though there are many H-free `-graphs, each of these is contained in one of a very few `-
graphs that are almost H-free. More exactly, there is a small collection C of `-graphs, each
H-free `-graph being a subgraph of an `-graph in C, and no `-graph in C having more than
o(Nv(H)) copies of H. The main content of the theorem is that the number of containers
is very small. For graphs at least, Szemerédi’s regularity lemma gives a set of containers
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with log |C| = o(N2), but the size of C in the theorem is much smaller. It is expressed in
terms of a parameter m(H) that appears often in the literature.

Definition 1.2. For an `-graph H with e(H) ≥ 2, let

m(H) = max
H′⊂H, e(H′)>1

e(H ′)− 1
v(H ′)− `

.

Sometimes, H is called (strictly) balanced if the maximum is attained (uniquely) when
H ′ = H. However, this restriction is not needed in any of our arguments and it is ignored.

We then obtain the following, where π(H) = limN→∞ ex(N,H)
(
N
`

)−1
.

Theorem 1.3. Let H be an `-graph with e(H) ≥ 2 and let ε > 0. For some c > 0 and for
N sufficiently large, there exists a collection C of `-graphs on vertex set [N ] such that

(a) for every H-free `-graph I on vertex set [N ] there exists C ∈ C with I ⊂ C,
(b) moreover, for every pair I, C in (a), there exists T = (T1, . . . , Ts) where Ti ⊂ I,

s ≤ c and
∑

i |Ti| ≤ cN `−1/m(H), such that C = C(T ),
(c) for every `-graph C ∈ C, the number of copies of H in C is at most εNv(H), and

e(C) ≤ (π(H) + ε)
(
N
`

)
,

(d) log |C| ≤ cN `−1/m(H) log N .

The condition (b) just says that C is determined by T , which is comprised of small
subsets of V (G) (actually subsets of I — this sometimes matters, because it means (b) is
stronger than (d)).

The existence of C follows straightforwardly from the results in §2, as shown in §9, by
considering the e(H)-graph G = G(N,H), whose n =

(
N
`

)
vertices are the `-sets in [N ],

and whose edges are subsets of V (G) spanning a copy of H in [N ]. The subsets of V (G) are
then `-graphs with vertex set [N ], independent sets in G corresponding to H-free `-graphs.

One corollary of Theorem 1.3 is the next one. In the case ` = 2, it was proved for
complete H by Erdős, Kleitman and Rothschild [17] and for general H by Erdős, Frankl and
Rödl [16]. Nagle, Rödl and Schacht [37] proved it for general ` using hypergraph regularity
methods. The proof here follows quite easily from Theorem 1.3 using the supersaturation
theorem of Erdős and Simonovits [47]; details are in §9.

Corollary 1.4. Let H be an `-graph. The number of H-free `-graphs on vertex set [N ] is
2(π(H)+o(1))(N

` ).

For `-graphs H which satisfy ex(N,H) = o(N `) (when ` = 2 this means H is bipartite),
we have π(H) = 0, and Corollary 1.4 is unhelpful. Nevertheless our results can still be
useful, provided appropriate information about G(N,H) is available. The simplest case
is ` = 2 and H = K2,2 = C4, where it is well known that ex(N,C4) = (1/2 + o(1))N3/2

(Erdős, Rényi and Sós [18]), implying the trivial upper bound 2O(N3/2 log N) for the number
of C4-free graphs. A direct application of our results readily gives the bound 2O(N3/2), but
we don’t give details because Kleitman and Winston [28] obtained a finer bound, namely
2(1.082+o(1))N3/2

. More generally, the number of Ks,t-free graphs has been well estimated
by Balogh and Samotij [7].

Alongside the many results about H-free graphs, there is a corresponding corpus about
induced H-free graphs, that is, graphs with no induced subgraph isomorphic to H. The
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number of induced H-free graphs was closely estimated by Prömel and Steger [38], and
there have been many subsequent refinements.

If I is an induced H-free `-graph, we need to ask what kind of object C must be in order
that the inclusion I ⊂ C is helpful; if C itself is just an `-graph and I ⊂ C means I is a
subgraph of C, as in Theorem 1.3, then the induced subgraphs of I differ from those of C,
which is no use. We borrow the notion of 2-coloured multigraph from [34, 51]. A 2-coloured
`-multigraph C on vertex set [N ] is a pair of edge sets CR, CB ⊂ [N ](`), which we call the
red and the blue edge sets. Let I be an `-graph on [N ]. Then we write I ⊂ C if E(I) ⊂ CR

and [N ](`) \ E(I) ⊂ CB. Thus edges in CR ∩ CB do not affect whether I ⊂ C.

Theorem 1.5. Let H be an `-graph and let ε > 0. For some c > 0 and for N sufficiently
large, there exists a collection C of 2-coloured `-multigraphs on vertex set [N ] such that

(a) for every `-graph I on vertex set [N ] with no induced copy of H there exists C ∈ C
with I ⊂ C,

(b) for every C ∈ C, the number of copies of H in C is at most εNv(H),

(c) log |C| ≤ cN
`−(v(H)−`)/

“
(v(H)

` )−1
”

log N .

This theorem can be used to recover basic results, akin to Corollary 1.4, about the number
of induced H-free `-graphs. In fact we can state a probabilistic version just as readily.
Let G(`)(N, p) be a random `-graph obtained by choosing edges independently from the
complete `-graph K

(`)
N with probability p. The next statement involves a function hp(H),

whose definition is natural enough but which is deferred until §9.

Theorem 1.6. Let 0 < p < 1 and let H be an `-graph. Then

P(G(`)(N, p) is induced-H-free) = 2−(hp(H)+o(1))(N
` ).

For graphs, that is, ` = 2, this theorem was proved for p = 1/2 by Prömel and Steger [38,
Theorem 1.3] and for general p by Bollobás and Thomason [8, Theorem 1.1] (as illuminated
by Marchant and Thomason [35]). For general ` it was proved for p = 1/2 by Dotson and
Nagle [13], using hypergraph regularity techniques.

It will be clear that similar arguments to those described in this section can be used to
obtain container results about other structures, such as tournaments.

1.4. Linear equations. Let F be either a finite field or the set of integers [N ]. We consider
linear systems of equations Ax = b, where A is a k × r matrix with entries in F , x ∈ F r

and b ∈ F k. We call such a triple (F,A, b) a k × r linear system.

Definition 1.7. For a k× r linear system (F,A, b), a subset I ⊂ F is solution-free if there
is no x ∈ Ir with Ax = b, and ex(F,A, b) is the maximum size of a solution-free subset.

The notion of a solution-free subset is analogous to that of an H-free hypergraph in
the previous section. Once again, our contribution to this topic is a container theorem for
solution-free sets. The statement (which extends to equations over abelian groups) is given
in Theorem 10.2; it requires a few technical definitions so we omit it from the introduction.

Nevertheless we mention a consequence for counting solution-free subsets. For an equa-
tion Ax = b, how many solution-free subsets of F are there? A well-known instance of this
question is to find the number of subsets S ⊂ [N ] containing no solution to x + y = z; the
asymptotic answer, conjectured by Cameron and Erdős [11], was given by Green [24] and
by Sapozhenko [46].
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For a general system, every subset of a solution-free set is itself solution-free, so there are
at least 2ex(F,A,b) solution-free sets. For a single equation (the case k = 1), it was shown
by Green [25] that there are at most 2ex(F,A,b)+o(|F|) solution-free subsets. The same bound
does not always hold for k ≥ 2. If some variables are closely tied to other variables —
say the equations imply that x = y — then there can be significantly more than 2ex(F,A,b)

solution-free sets. However, a natural condition on A rules out closely tied variables, and
in this case Green’s bound holds good.

Definition 1.8. We say that A has full rank if given any b ∈ F k there exists x ∈ F r with
Ax = b. We then say that A is abundant if it has full rank and every k× (r− 2) submatrix
obtained by removing a pair of columns from A still has full rank.

Theorem 1.9. Let (F,A, b) be a k × r linear system with A abundant. Then the number
of solution-free subsets of F is 2ex(F,A,b)+o(|F|). Here o(1) → 0 as |F | → ∞, with A fixed in
the case F = [N ].

For example, take A = (1, 1,−1) and b = (0). Theorem 1.9 says that the number of
sum-free subsets of [N ] is 2N/2+o(N), giving a new proof of the weak form of the Cameron
and Erdős conjecture, proved independently by Alon [1], by Calkin [10] and by Erdős and
Granville (unpublished).

Similar results hold when F is an abelian group. For the proof of Theorem 1.9 we need
a result for equations analogous to the supersaturation theorem for graphs: this is the
removal lemma of Král’, Serra and Vena [31, 32]. More information is given in §10.

1.5. Sidon sets. For linear systems where ex(F,A, b) = o(|F |), Theorem 1.9 is uninfor-
mative. One of the most prominent examples is that of Sidon sets. A set A ⊂ [n] is Sidon
if every sum of two elements is distinct, i.e., there are no solutions to w + x = y + z with
{w, x} 6= {y, z}. It is easy to see that a Sidon set has size at most d

√
2ne, since each of the

|S|(|S| − 1)/2 values x− y, where x, y ∈ S and y < x, are distinct and lie in {1, . . . , n− 1}.
Erdős and Turán [21] improved this upper bound to |S| ≤ (1 + o(1))

√
n, and there are

examples achieving this bound.
It is natural to ask, as Cameron and Erdős did [11], how many Sidon sets there are,

and the answer clearly lies between 2(1+o(1))
√

n and 2O(
√

n log n). Neither of these bounds, it
turns out, is tight.

Theorem 1.10. There are between 2(1.16+o(1))
√

n and 2(55+o(1))
√

n Sidon subsets of [n].

The lower bound gives a negative answer to the open question of whether there are
only 2(1+o(1))

√
n Sidon sets. The upper bound, also proved by Kohayakawa, Lee, Rödl and

Samotij [29] (in fact with a better constant), follows directly by plugging in the appropriate
numbers into a container-counting theorem. For details see §11.

1.6. Sparsity. In recent times, there has been interest in the extent to which theorems
holding for dense structures hold also for sparse random substructures. Our results can
be applied in this context, and we give some illustrative examples involving the notions of
H-free graphs and solution-free subsets already discussed.

The application of our results always fits a simple paradigm. Typically we want some
statement to hold for a random substructure, with high probability; by considering an
appropriate collection of containers, the fact that there is a small number of containers
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means that the work is reduced, via the union bound, to establishing a (generally much
simpler) statement for a single container.

For example, consider a random `-graph G(`)(N, p), as defined in §1.3. Evidently there
are H-free subgraphs of G(`)(N, p) with p ex(N,H) edges, but are there significantly larger
H-free subgraphs? Kohayakawa,  Luczak and Rödl [30] conjectured that if p > cN−1/m(H)

then H-free subgraphs of G(`)(N, p) almost surely have at most (1 +o(1))p ex(N,H) edges.
This conjecture was recently proved by Conlon and Gowers [12] (for strictly balanced H)
and by Schacht [48], using different methods. Our methods give an alternative proof. For
each container C ∈ C given by Theorem 1.3, it is easily seen that with high probability
G(`)(N, p) contains not much more than pe(C) ≤ (π(H) + o(1))p

(
N
`

)
edges of C, and by

the union bound this holds for all C ∈ C, and hence also for all H-free `-graphs.

Theorem 1.11. Let H be an `-graph and let 0 < γ < 1. For some c > 0, for N sufficiently
large and for p ≥ cN−1/m(H), the following event holds with probability greater than 1 −
exp{−γ3p

(
N
`

)
/512}:

every H-free subgraph of G(`)(N, p) has at most (π(H) + γ)p
(
N
`

)
edges.

Other related conjectures, including what has become known as the K LR conjecture,
were made in [30], not all of which have previously been proved in full, but they all follow
from Theorem 1.3 in a similar way. Details are in §12.

The same arguments can be applied to solution sets of linear equations. Here is a typical
consequence.

Theorem 1.12 (Conlon and Gowers [12], Schacht [48]). Let ` ≥ 3 and ε > 0. There exists
a constant c > 0 such that for p ≥ cN−1/(`−1), if X ⊂ [N ] is a random subset chosen with
probability p, then with probability tending to 1 as N → ∞, any subset of X of size ε|X|
contains an arithmetic progression of length `.

Further examples and details can be found in §12.

2. Containers

A couple of simple notions are needed for the statement of the main theorem, and we
define these now. They are the co-degree function and degree measure.

2.1. The co-degree function δ(G, τ). The present results about containers were origi-
nally motivated by the study of the list chromatic number of simple hypergraphs, described
in §8. The main difficulties in the construction of containers are already present in the sim-
ple case. However the method can be adapted efficiently to any hypergraph. The size and
number of the containers depends on the way the edges overlap, but the dependence can
be encapsulated by a single parameter, which is usually quite straightforward to compute.
This parameter appears in most of the theorems.

First, we define the degree of a subset of vertices, in the natural way.

Definition 2.1. The degree of set of vertices σ ⊂ V (G) is the number of edges containing
σ; that is,

d(σ) = |{ e ∈ E(G) : σ ⊂ e }| .
If |σ| = 1, that is σ = {v} where v ∈ V (G), we generally write d(v) instead of d({v}).
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We can now define the co-degree function δ(G, τ). This is a function of the parameter
τ , a parameter used in the construction of containers.

Definition 2.2. Let G be an r-graph of order n and average degree d. Let τ > 0. Given
v ∈ V (G) and 2 ≤ j ≤ r, let

d(j)(v) = max { d(σ) : v ∈ σ ⊂ V (G), |σ| = j } .

If d > 0 we define δj by the equation

δj τ j−1nd =
∑

v

d(j)(v) .

Then the co-degree function δ(G, τ) is defined by

δ(G, τ) = 2(r
2)−1

r∑
j=2

2−(j−1
2 )δj .

If d = 0 we define δ(G, τ) = 0.

There is nothing significant about the powers of 2 in the definition; they are just constants
needed for Lemma 4.2.

Remark 2.3. The parameter τ appears in the main theorem, Theorem 2.5, and the smaller
that τ can be made the stronger the result becomes. The constraint on τ comes from a
lower bound on δ(G, τ). It can be seen that if τ decreases then the values of the δj increase,
and hence so does δ(G, τ); indeed δ(G, τ) → 0 as τ → ∞. A typical application will have
τ as small as possible subject to δ(G, τ) being less than some constant, say 1/r!.

Here are some observations intended to indicate the optimal size of τ . Observe first that,
unless G has isolated vertices, d(j)(v) ≥ 1 holds for all v, and so δj ≥ τ1−j/d. The largest
of these bounds is δr ≥ τ1−r/d (τ is invariably less than one) and so, for fixed r and large d,
it will always be that for δ(G, τ) to be small we must choose τ at least as large as d−1/(r−1).

In a simple hypergraph, d(σ) ≤ 1 holds whenever |σ| ≥ 2, and so δj ≤ τ1−j/d. In this
case the largest of the δj ’s is δr, and we can make δ(G, τ) small by choosing τ just a little
larger than d−1/(r−1). In fact, for any hypergraph whose edges are uniformly distributed,
δr is once again the δj which dominates, as a simple calculation (which we omit) shows, so
here again δ(G, τ) is small if τ is larger than d−1/(r−1).

Sometimes, though, the dominant δj is not δr. One example of this is in the case of Sidon
sets: when |S| < n2/3 it is the value of δ2 which is the most important. Another example
is the hypergraph describing H-free `-graphs: here the most important δj is determined by
which subgraph H ′ ⊂ H achieves the maximum of (e(H ′)− 1)/(v(H ′)− `), and this is how
m(H) enters in. But in each of our examples the values are easily checked.

In summary, we must always choose τ ≥ d−1/(r−1), and for simple or uniformly dis-
tributed hypergraphs the value need not be much larger. But there are applications which
are far from uniformly distributed, where τ needs to be larger and where the behaviour of
δ(G, τ) will prove crucial.

2.2. Degree measure. We mentioned in the introduction that the containers must not
be too large. For a substantial number of applications it suffices that |C| ≤ (1 − c)|G| for
some constant c. This is achievable for regular hypergraphs but it clearly is unattainable
in general; for example, if G = Kd,n−d (which, for large n, has average degree close to 2d)
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then some container must have size at least n − d. Other applications require that the
number of edges inside a container, that is, e(G[C]), is small. This is attainable in general
but there are applications where what matters is |C| rather than e(G[C]).

In fact we measure the size of containers by what we call degree measure. It turns out
that if the degree measure is bounded then it is possible to recover all the properties of
containers that are needed.

Definition 2.4. Let G be an r-graph of order n and average degree d. Let S ⊂ V (G).
The degree measure µ(S) of S is defined by

µ(S) =
1
nd

∑
u∈S

d(u) .

Thus µ is a probability measure on V (G). Note that if G is regular then µ(S) = |S|/n,
which is the uniform measure of S.

2.3. The main theorem. The essential idea for demonstrating that a collection of con-
tainers is small is this: each container is specified by just a small set of vertices, meaning
that, given some small set T ⊂ V (G), there is a construction which produces another larger
set C = C(T ), and the construction is such that for any independent set I there is some
T ⊂ I which produces a C with I ⊂ C. If T is small, the number of choices for T is not
large, and so the number of containers is not large. Actually, we shall generate C from not
just one small set but an r-tuple T = (Tr−1, . . . , T0) ∈ PrI of small sets; the principle is
the same.

We already introduced the parameter τ . Essentially, τ will be the value of µ(T ), which
is why we want τ to be as small as possible. In fact, the theorem guarantees µ(Ti) ≤ 2τ/ζ
where ζ is some small constant at our disposal. Often we shall take ζ = 1/12r! but
sometimes it is useful to choose a smaller value.

We use one more piece of shorthand. Let T = (Tr−1, . . . , T1, T0) ∈ Pr[n] and let w ∈ [n].
Then we define T ∩ [w] = (Tr−1 ∩ [w], . . . , T1 ∩ [w], T0 ∩ [w]).

Theorem 2.5. Let G be an r-graph with vertex set [n], where d(v) decreases with v. Let
τ, ζ > 0 satisfy δ(G, τ) ≤ ζ. Then there is a function C : Pr[n] → P[n], such that, for
every independent set I ⊂ [n] there exists T = (Tr−1, . . . , T0) ∈ PrI with

(a) I ⊂ C(T ),
(b) µ(T0), . . . , µ(Tr−1) ≤ 2τ/ζ,
(c) |T0|, . . . , |Tr−1| ≤ 2τn/ζ2, and
(d) µ(C(T )) ≤ 1− 1/r! + 4ζ + 2rτ/ζ.

Moreover C has the online property, meaning that C(T ) ∩ [w] = C(T ∩ [w]) ∩ [w] for all
T ∈ Pr[n] and w ∈ [n].

In fact, the above is true for all sets I ⊂ [n] for which either G[I] is bτ r−1ζe(G)/nc-
degenerate or e(G[I]) ≤ 2rτ re(G)/ζ.

Remark 2.6. It is worth making a few observations at this point.

• Roughly speaking, the theorem says that for each I there exists T ⊂ I with µ(T ) ≤
τ , I ⊂ C(T ) and µ(C) ≤ 1−1/r!, provided τ is large enough to make δ(G, τ) small.

• The online property is needed only for certain applications, principally Theorem 2.8.
More is said about this in §4.4.
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• Ordering the vertices by degrees is generally unnecessary: it is used only to ob-
tain (c) and the online property simultaneously, and to accommodate b-degenerate
graphs.

• The container construction method makes essentially no use of the independence
of the sets I, so we include an extension to two kinds of sparse subset, where either
G[I] is b-degenerate or e(G[I]) ≤ bn, and b is small. As usual, we say G[I] is b-
degenerate if for every subset J ⊂ I there is a vertex in G[J ] of degree at most b.
This is equivalent to saying that every subgraph G[J ] is sparse; indeed if G[I] is
b-degenerate then G[J ] has at most b|J | edges for all J ⊂ I, and conversely if G[J ]
has at most b|J | edges for all J ⊂ I then G[I] is rb-degenerate.

• The theorem is best possible in two senses. First, the examples in §7 show that
our method cannot give µ(C) < 1 − 1/r!. Secondly, the bound on the measure
of the generating sets Ti, implicit in the constraint δ(G, τ) ≤ ζ which determines
how small τ can be, can not be improved significantly. One way to see this is that
an improvement here would give an improvement in some of the applications, say
Theorem 1.11, but these are known to be best possible.

As mentioned in the introduction, Theorem 2.5 has a variety of consequences and weaker
forms which are easier to apply directly. These are discussed in §5–§6, but we state a couple
of them here for illustration.

2.4. Tight containers. In §5 we give a number of consequences of Theorem 2.5 concerning
the number of edges e(G[C]) inside the container. The following is the weakest of these;
it provides, in a handy format, a collection of containers each with few internal edges, the
size of the collection being bounded by a simple function of τ .

Corollary 2.7. Let G be an r-graph on vertex set [n]. Let 0 < ε < 1/2. Suppose that τ
satisfies δ(G, τ) ≤ ε/12r! and τ ≤ 1/144r!2r. Then there exists a constant c = c(r) and a
collection C ⊂ P[n] such that

(a) for every independent set I there exists T = (T1, . . . , Ts) ∈ PsI with I ⊂ C(T ) ∈ C,
|Ti| ≤ cτn and s ≤ c log(1/ε),

(b) e(G[C]) ≤ εe(G) for all C ∈ C,
(c) log |C| ≤ c log(1/ε)nτ log(1/τ).

Moreover, (a) holds for all sets I ⊂ [n] for which either G[I] is bετ r−1e(G)/12r!nc-
degenerate or e(G[I]) ≤ 24εr!rτ re(G).

2.5. Uniformly bounded containers. Next we give a consequence for applications when
the size |C| of the container is of interest. As mentioned earlier, examples such as Kd,n−d

show that it is not possible always to guarantee that |C| is bounded. However, it is possible
to bound |C ∩ [v]| for some initial segment [v] of the vertex set [n], and this can be done
so that the number of different sets |C ∩ [v]| is small (a function of v rather than of n).
More exactly, each container C “nominates” v = g(C), so that |C ∩ [v]| is small and not
many containers nominate any given v. This consequence of the main result is suitable
for dealing with list colourings, for example. The statement is actually in terms of tuples
(C1, . . . , Ct) of containers rather than individual containers, since this is ultimately more
efficient. The theorem is explained more in §6.
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Theorem 2.8. Let G be an r-graph on vertex set [n], for which the degree sequence is
decreasing. Let 0 < ζ ≤ 1/12r!. Suppose that δ(G, τ) ≤ ζ, that τ ≤ ζ2/r, and that k ∈ [n]
satisfies µ([k]) ≤ ζ/2r!. Let t ∈ N.

Then there exists a collection C ⊂ P[n] and a map g : Ct → [k, n], with the following
properties:

(a) for all independent sets I there is some C ∈ C with I ⊂ C,
(b) for all v ∈ [n]

log |{ (C1 ∩ [v], . . . , Ct ∩ [v]) : g(C1, . . . , Ct) = v }| ≤ ζ−2vtrτ log(1/τ),

(c) and for all (C1, . . . , Ct) ∈ Ct

1
t

t∑
i=1

|Ci ∩ [v]| ≤ (1− 1
r!

+ 8ζ)v ,

where v = g(C1, . . . , Ct).

Moreover, (a) holds for all sets I ⊂ [n] for which either G[I] is bτ r−1ζe(G)/nc-degenerate
or e(G[I]) ≤ 2rτ re(G)/ζ.

3. The Algorithm

In this section we describe the method of building containers and establish the basic
facts about them.

Sapozhenko [43, 44, 45] gives a way to build containers in the case of ordinary (2-uniform)
graphs that are close to being regular. However even for graphs of this kind there is more
than one approach which works. It is not obvious how to extend these graph methods to
hypergraphs, each method offering a few plausible possibilities, most of which fail but some
of which succeed. Indeed we eventually found more than one way to construct containers
for regular 3-graphs, and one of these, which extended to regular r-graphs, was described
in [47]: it is a random-based method. But we have found it difficult to find a method which
fulfils the goals of working for general (not just regular) r-graphs and which also has the
necessary online property. The method of [47] would be enough for some applications, such
as list colouring, if it were true that each r-graph of average degree d contained a subgraph
with degrees in the range c1d

α to c2d
α, for some constants c1, c2 and α. But it is possible

to construct examples of r-graphs where this is far from the truth (these examples bear
some similarity to the 2-graphs of Pyber, Rödl and Szemerédi [39]).

The method given below fulfils all our requirements. The reason for the remarks just
made is that, whilst we do attempt to motivate the construction, we cannot do so fully
because it is hard to explain why one construction should work when another similar
one does not. The devil is sometimes in the detail, and a prolonged discussion would be
unjustified.

There are two aspects to the construction: the production of a suitable small set T
from a set I, which we call pruning, and the production of C from T , which we call
building. (In fact, as mentioned already, we produce not just one small set but an r-tuple
T = (Tr−1, . . . , T0) ∈ PrI of small sets.) These two aspects are very closely intertwined,
and it is convenient to describe both in terms of a single algorithm which has two slightly
differing modes, a build mode and a prune mode.



12 DAVID SAXTON AND ANDREW THOMASON

3.1. Constructing containers. Given an r-graph G with vertex set [n], and a sequence
of subsets Tr−1, Tr−2, . . . , T1 of [n], we produce a sequence of s-multigraphs Ps for s =
r − 1, . . . , 1. This means that Ps is s-uniform but multiple edges are allowed; in other
words E(Ps) is a multiset.

Each edge {us−1, us−2, . . . , u0} ∈ E(Ps) with us−1 < us−2 < · · · < u0 will come from
an edge {vr−1, vr−2, · · · , vs, us−1, us−2, . . . , u0} ∈ E(G), where vr−1 < · · · < vs < us−1 and
vj ∈ Tj , r − 1 ≥ j ≥ s. Equivalently, each edge of Ps is an edge of Ps+1 whose first vertex,
which is in Ts, has been removed. The reason Ps is defined as a multigraph, even if G itself
does not have multiple edges, is so that distinct edges of G give rise to distinct edges of Ps.

The multigraph P1 is 1-uniform: its edges are single vertices. If I is an independent set
and the sets Tj are chosen within I, as they will be, then evidently the members of E(P1)
cannot be vertices in I, and so the container C can be chosen from vertices not in E(P1).
Our first aim, then, is to ensure that E(P1) is as large as possible, and to this end we
attempt to make E(Ps) large for each s. However this aim has to be balanced against
keeping the sets Ts small.

Hence we shall choose a parameter τ , so that, roughly speaking, Ts will comprise a
proportion τ of the vertices (in degree measure), and we might hope the size of E(Ps) to
be roughly τ times the size of E(Ps+1). This means the average degree of Ps will typically
be around τ r−sd. The parameter τ is the same as that discussed in §2.1 and the constraint
τ ≥ d−1/(r−1) described there is precisely what is needed to ensure that E(P1) contains
something worthwhile.

However not every edge of G with its first r− s vertices in Tr−1, . . . , Ts will be admitted
as an edge of Ps, but only a selection of these. We do not allow edges into Ps if they
increase the degree of some vertex, or the degree of some subset σ ⊂ [n], beyond some
agreed threshold. We define the degree of σ in the multigraph Ps to be

ds(σ) = |{e ∈ E(Ps) : σ ⊂ e}| ,

where we note that here we are counting edges with multiplicity in the multiset E(Ps).
(Naturally we may write ds(v) instead of ds({v}) if v ∈ [n].) There are several reasons for
wanting to bound the degrees in Ps. One reason is the hope of keeping the vertex degrees
near to τ r−s times the degrees in G, so that degree measure in Ps relates to measure in G;
in particular, small sets of vertices cannot account for most of the edges of Ps unless those
sets have large measure in G. A second reason for controlling degrees of subsets is that
only by doing so can we restrain the degrees of vertices at later stages: this comes out in
the proof of Lemma 4.2.

So we proceed in the following way. We begin with Pr = G, and then apply the straight-
forward algorithm below to construct Ps from Ps+1 using Ts, with s taking the values
r− 1, r− 2, . . . , 1 in turn. During the application of the algorithm, the degrees ds(σ) in Ps

will grow, as edges are added. We denote by Γs the collection of vertices and subsets whose
degrees have reached their bound, and we do not permit the addition to Ps of any edge
which contains a current member of Γs. The set Γs will grow too during the construction.

As mentioned before, the algorithm can be run in two modes: prune mode and build
mode. The aim of successive runs of prune mode is to produce sets Tr−1, . . . , T1, and the
aim of build mode is to produce sets Cr−1, . . . , C1 which will form the basis of a container.
Thus in a single run of prune mode, an independent set I is input and some set Ts is
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output, whereas in build mode a set Ts is input and a set Cs is output. Both forms of the
algorithm include the construction of Ps from Ps+1.

The essential difference between the modes is this. The algorithm inspects the vertices
in [n] one by one. In prune mode, where I is part of the input, if the vertex is in I a
decision is made, according to some rule, whether to place the vertex into Ts. In build
mode, where Ts is input but I is not, the vertex is inspected to see whether it passes the
rule; if it passes, but the vertex is not in Ts, we know it could not have been in I, so it is
removed from Cs (with the aim of making a container via Cs). In both modes, if the vertex
is in Ts, appropriate edges are added to Ps.

Two real numbers are included in the input to the algorithm. The parameter τ is the
more important and has already been discussed. The parameter ζ is a small constant,
often in practice chosen to be 1/12r! but sometimes chosen smaller. It is used in the rule
to decide membership of Ts.

The independence of the set I is not actually used by the algorithm, and it is useful to
define the algorithm for general subsets I ⊂ [n].

Algorithm
input an r-graph G on vertex set [n]

an (s + 1)-multigraph Ps+1 on vertex set [n]
parameters τ, ζ > 0
in prune mode a subset I ⊂ [n]
in build mode a subset Ts ⊂ [n]

output an s-multigraph Ps on vertex set [n]
in prune mode a subset Ts ⊂ [n]
in build mode a subset Cs ⊂ [n]

put E(Ps) = ∅ and Γs = ∅
in prune mode put Ts = ∅
in build mode put Cs = [n]

for v = 1, 2, . . . , n do:
let F = {f ∈ [v + 1, n](s) : {v} ∪ f ∈ E(Ps+1), and ∀σ ∈ Γs σ 6⊂ f }

[here F is a multiset with multiplicities inherited from E(Ps+1)]
in prune mode if |F | ≥ ζτ r−s−1d(v) and v ∈ I, add v to Ts

in build mode if |F | ≥ ζτ r−s−1d(v), remove v from Cs

if v ∈ Ts then
add F to E(Ps)
for each u ∈ [v + 1, n], if ds(u) > τ r−sd(u), add {u} to Γs

for each σ ∈ [v + 1, n](>1), if ds(σ) > 2sτds+1(σ), add σ to Γs

The algorithm adds to Ps all s-edges which, with v ∈ Ts as first vertex, form an edge of
Ps+1 and which do not contain (at that moment) any subset in Γs. The degree threshold
for a vertex entering Γs is in terms of its degree d(u) in the original graph G, whereas for
a larger subset σ it is in terms of its degree in Ps+1; this difference is for technical reasons
arising in the proof of Theorem 2.5.
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Clearly, if in prune mode we construct Ts from I, then, when in build mode with the
same set Ts as input, the condition |F | ≥ ζτ r−s−1d(v) can happen only if either v /∈ I
or v ∈ Ts. Evidently, therefore, I ⊂ Cs ∪ Ts, so Cs ∪ Ts is one option for a container
for I. Another option for a container, as mentioned earlier, is [n] minus the vertices
in E(P1). In particular, if I is independent then I ⊂ [n] − Γ1. (Strictly speaking, the
set Γ1 is a set of singletons of vertices rather than a set of vertices, but we identify Γ1

with {u ∈ [n] : {u} ∈ Γ1}. Furthermore Γ1 is not output by the algorithm, but it is
easily recoverable from P1. Indeed, E(P1) is just a multiset of vertices, and d1(u) is the
multiplicity of u in E(P1). By construction, Γ1 = {u ∈ [n] : d1(u) > τ r−1d(u)}.) So each
of Cs ∪ Ts, 1 ≤ s ≤ r − 1, and [n] − Γ1 is a container for I; our aim is to ensure that at
least one of these is a good container, meaning that is not close to [n].

Here then is a way of viewing the operation of the algorithm. If Γ1 is large then [n]−Γ1

is a good container for I. If Γ1 is not large then, since the degrees in P1 are bounded, the
average degree of P1 must be small. But Pr = G, whose average degree is not small, so
there must be some s for which Ps+1 has large average degree (of order τ r−s−1d) but Ps

has small average degree (much smaller than τ r−sd). Since the degrees are bounded, there
must have been plenty of vertices of Ps+1 which could have contributed edges to E(Ps)
but did not do so. Why did they not do so? Only because they are not in I and so not
available for Ts. These are exactly the vertices which are removed from Cs: hence for this
value of s, Cs ∪ Ts will be a good container for I.

3.2. Properties of the construction. We are thus lead to two important definitions.

Definition 3.1. Let G be an r-graph on vertex set [n] and let I ⊂ [n]. Let τ, ζ > 0. Let
Tr−1, . . . , T1 be the sets constructed by repeated applications of the algorithm in prune
mode. Let T0 = I ∩ Γ1. Then we define

T (G, I, τ, ζ) = (Tr−1, . . . , T1, T0) ∈ PrI .

The r-tuple T is the fruit of running the algorithm in prune mode, from which the
container for I will be built. As noted earlier, if I is an independent set then T0 = I ∩Γ1 =
∅. Hence the introduction of T0 is unnecessary if we wish to find containers only for
independent sets, but by introducing T0 we can produce containers for non-independent
sets too. It will turn out that T0 is small, as desired, provided I is sparse; see §4.2.

Now comes the main definition — that of containers.

Definition 3.2. Let G be an r-graph on vertex set [n] and let T = (Tr−1, . . . , T1, T0) ∈
Pr[n]. Let τ, ζ > 0. Let Cr−1, . . . , C1 be constructed by repeated applications of the
algorithm in build mode, using Tr−1, . . . , T1. Let C0 = [n]−Γ1. The container C(G, T, τ, ζ)
is then

C(G, T, τ, ζ) = (Cr−1 ∩ Cr−2 ∩ · · · ∩ C1 ∩ C0) ∪ Tr−1 ∪ Tr−2 · · · ∪ T1 ∪ T0 .

Lemma 3.3. If T = T (G, I, τ, ζ) then I ⊂ C(G, T, τ, ζ).

Proof. We noted earlier that I ⊂ Cs ∪ Ts for s > 0. Moreover, I ⊂ C0 ∪ T0 by definition,
since C0 = [n]− Γ1 and T0 = I ∩ Γ1. Hence I ⊂ C(G, T, τ, ζ). �

Before computing the size of the containers C(G, T, τ, ζ) and the number of them, we
make note of their online property, namely that C(G, T, τ, ζ) ∩ [w] is determined just by
T ∩ [w].



HYPERGRAPH CONTAINERS 15

Lemma 3.4. Let G be an r-graph on vertex set [n] and let T ∈ Pr[n]. Then, for each
w ∈ [n], C(G, T, τ, ζ) ∩ [w] = C(G, T ∩ [w], τ, ζ) ∩ [w] holds.

Proof. A little reflection on the algorithm makes the lemma clear. Suppose that Ts ∩ [w]
is given, together with the multiset of edges e ∈ E(Ps+1) such that e ∩ [w] 6= ∅. Then the
algorithm, run with v = 1, . . . , w rather than v = 1, . . . , n, will correctly produce the edges
e ∈ E(Ps) such that e∩ [w] 6= ∅ and will find all σ ∈ Γs such that σ∩ [w] 6= ∅ (together with
some other members of E(Ps) and Γs that we shall not need). Moreover, when running
in build mode, this restricted version of the algorithm will correctly determine Cs ∩ [w].
Therefore, by running the restricted algorithm for s = r− 1, r− 2, . . . , 1, we can determine
Cr−1 ∩ [w], . . . , C1 ∩ [w]. Finally, since we have determined Γ1 ∩ [w] we can find C0 ∩ [w],
and because we are given T0 ∩ [w] this means we know C ∩ [w]. �

4. Container calculations

In this section we estimate the measure of the tuples T (G, I, τ, ζ) and of the containers
C(G, T, τ, ζ), thereby proving Theorem 2.5.

4.1. Degrees and co-degrees. Before making these estimates we need information on
how large the degrees can be in Ps. The intention behind the set Γs is to prevent degrees
being much larger than the target degrees, namely τ r−sd(u) for the vertex u; after the
degree of u attains this level, no further edges containing u are added to Ps. However,
when a vertex u enters Γs, it does so because some multiset F has been added to E(Ps).
Since F can include many edges that contain u, the degree ds(u) can increase significantly
in one step, from an initial value at most the target value τ r−sd(u) to something much
larger. The extent of this problem depends ultimately on the way the edges of G overlap
each other.

The reason Γs is defined the way it is in the algorithm, is to keep control of the degree
problem without increasing τ more than is necessary. This can be expressed succinctly in
terms of the co-degree function δ(G, τ) introduced in §2.1.

First we need a small calculation.

Lemma 4.1. For 2 ≤ s ≤ r and 2 ≤ j ≤ s, let a
(j)
s be given by the equations a

(j)
r = δj

and a
(j)
s = 2sa

(j)
s+1 + a

(j+1)
s+1 for s < r, where δj was defined in Definition 2.2. Then a

(2)
s ≤

42−sδ(G, τ) holds for s ≥ 2.

Proof. Since a
(2)
s ≥ 2sa

(2)
s+1 ≥ 4a

(2)
s+1, it is enough to prove that a

(2)
2 ≤ δ(G, τ). Now by dint

of the definition it is clear that a
(j)
s is a linear combination of the numbers δj+`, ` ≥ 0. We

claim that the coefficient of δj+` in a
(j)
s is at most 2(r

2)−(s+`
2 )+`. This is certainly true if

s = r, since the only positive coefficient is that of δj (i.e. ` = 0). For s < r we may prove
the claim on the assumption that it is true for s + 1. If ` = 0 then the coefficient of δj+`

in a
(j+1)
s+1 is zero, and the claim follows because 2(r

2)−(s+`
2 )+` = 2s2(r

2)−(s+1+`
2 )+`. If ` ≥ 1 we

have

2s 2(r
2)−(s+1+`

2 )+` + 2(r
2)−(s+`

2 )+`−1 = 2(r
2)−(s+`

2 )+`
[
2−` + 2−1

]
≤ 2(r

2)−(s+`
2 )+`
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and the claim follows in this case too. Hence the claim always holds, and so

a
(2)
2 ≤ 2(r

2)
r−2∑
`=0

2−(`+2
2 )+`δ2+` = 2(r

2)−1
r∑

j=2

2−(j−1
2 )δj = δ(G, τ) ,

by definition of δ(G, τ). �

Here is the main lemma about degrees in Ps, explaining the role of the co-degree function
δ(G, τ).

Lemma 4.2. Let G be an r-graph on vertex set [n] with average degree d. Let Pr = G and
let Ps−1, . . . , P1 be the multigraphs constructed by successive applications of the algorithm.
Then ∑

u∈U

ds(u) ≤ τ r−s nd ( µ(U) + 41−sδ(G, τ) )

holds for all subsets U ⊂ [n] and for 1 ≤ s ≤ r.

Proof. By analogy with Definition 2.2 we define

d(j)
s (u) = max { ds(σ) : u ∈ σ ∈ [n](j) } ,

for j ≥ 2, where here it is the final values of these quantities that are used — that is, we
measure these quantities in the output multigraph Ps.

When s = r the lemma is true by definition of µ(U), so from now on we assume s ≤ r−1.
Suppose that σ ∈ [n](j). If σ /∈ Γs then ds(σ) ≤ 2sτds+1(σ). If σ ∈ Γs then σ was added
to Γs after some vertex v ∈ Ts was inspected and F was added to E(Ps). Before this took
place, ds(σ) ≤ 2sτds+1(σ) held; since the number of edges of F containing σ was at most
ds+1(σ ∪ {v}), the final value of ds(σ) satisfies ds(σ) ≤ 2sτds+1(σ) + ds+1(σ ∪ {v}). This
inequality holds for all σ ∈ [n](j).

Let u ∈ [n]; then d
(j)
s (u) = ds(σ) for some σ ∈ [n](j), so

(1) d(j)
s (u) ≤ 2sτds+1(σ) + ds+1(σ ∪ {v}) ≤ 2sτd

(j)
s+1(u) + d

(j+1)
s+1 (u) .

We claim that ∑
u∈[n]

d(j)
s (u) ≤ a(j)

s τ r−s+j−1nd ,

where a
(j)
s was defined in Lemma 4.1. Indeed, for s = r the claim (with equality) is just

the definition of δj , and for s ≤ r − 1 it follows immediately by induction (on r − s) from
inequality (1) and the definition of a

(j)
s . Hence, for s ≥ 1, we have by Lemma 4.1

(2)
∑
u∈[n]

d
(2)
s+1(u) ≤ 41−sτ r−snd δ(G, τ) .

Now let u ∈ U . If u /∈ Γs then ds(u) ≤ τ r−sd(u). If u ∈ Γs then u was added to Γs

after some vertex v ∈ Ts was inspected and F was added to E(Ps). Since F has at most
ds+1({u, v}) edges containing u, the degree of u is at most τ r−sd(u) + ds+1({u, v}). Now
ds+1({u, v}) ≤ d

(2)
s+1(u) so, using (2), we have∑

u∈U

ds(u) ≤
∑
u∈U

τ r−sd(u) + d
(2)
s+1(u) ≤ τ r−sndµ(U) + 41−sτ r−snd δ(G, τ) ,

which establishes the lemma. �
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4.2. The measure of the sets Ts. We now estimate the measures of the sets Ts.

Lemma 4.3. Let I ⊂ [n] and T = T (G, I, τ, ζ) = (Tr−1, . . . , T1, T0). Then µ(Ts) ≤
(τ/ζ)(1 + δ(G, τ)) for 1 ≤ s ≤ r − 1.

Proof. The set Ts is output when the algorithm is run in prune mode. During the run of
the algorithm, each vertex v which enters Ts contributes a set F of at least ζτ r−s−1d(v)
edges to E(Ps). Therefore, writing d for the average degree of G, Lemma 4.2 yields

ζτ r−s−1ndµ(Ts) =
∑
v∈Ts

ζτ r−s−1d(v) ≤ e(Ps) ≤
∑
u∈[n]

ds(u)

≤ τ r−snd(1 + 41−sδ(G, τ))

and this proves the lemma. �

The set T0 needs a different argument. As noted before, T0 = ∅ if I is independent.
It turns out that we can allow I to be b-degenerate, for fixed b, at essentially no cost

compared with I being independent, though to handle this case we shall need to make sure
the degree sequence of G is decreasing. On the other hand, requiring only that e(G[I]) ≤ bn

will incur a small cost, which is that τ must increase typically from around d−1/(r−1) to
around d−1/r in order to keep T0 small (d being the average degree of G).

Lemma 4.4. Let G be an r-graph on vertex set [n] with average degree d. Let I ⊂ [n] and
T = T (G, I, τ, ζ) = (Tr−1, . . . , T1, T0). If e(G[I]) ≤ bn then µ(T0) ≤ τ1−rd−1b. If G[I] is
b-degenerate and d(v) ≥ τ1−rrb for v ∈ [m], then µ(T0 ∩ [m]) ≤ (τ/ζ)(1 + δ(G, τ)).

Proof. Recall that T0 = I ∩ Γ1, so d1(v) > τ r−1d(v) for each v ∈ T0. Let J = Tr−1 ∪
· · · ∪ T1 ∪ T0 ⊂ I. Recall that distinct 1-edges {v} ∈ Γ1 correspond to distinct r-edges
{vr−1, . . . , v1, v} ⊂ I with vr−1 < · · · < v1 < v and vs ∈ Ts, so these edges lie in G[J ]. It
follows that τ r−1ndµ(T0) ≤

∑
v∈T0

d1(v) ≤ e(G[J ]).
If e(G[I]) ≤ bn then we simply have τ r−1ndµ(T0) ≤ e(G[J ]) ≤ e(G[I]) ≤ bn, so µ(T0) ≤

τ1−rd−1b.
If G[I] is b-degenerate then we consider J∗ instead, where S∗ denotes S ∩ [m] for any

S ⊂ [n]. If v ∈ T ∗
0 then each of the above-mentioned edges {vr−1, . . . , v1, v} lies within J∗,

since vr−1 < · · · < v1 < v. Therefore τ r−1ndµ(T ∗
0 ) ≤ e(G[J∗]) ≤ b|J∗|, by b-degeneracy.

Then, by definition of [m],

τ r−1ndµ(T ∗
0 ) ≤ b|J∗| ≤ b

τ1−rrb

∑
u∈J∗

d(u) =
τ r−1

r
ndµ(J∗) .

Therefore rµ(T ∗
0 ) ≤ µ(J∗) ≤ µ(T ∗

r−1) + · · ·+ µ(T ∗
0 ), and so (r− 1)µ(T ∗

0 ) ≤ µ(T ∗
r−1) + · · ·+

µ(T ∗
1 ) ≤ µ(Tr−1) + · · ·+ µ(T1), from which the result follows via Lemma 4.3. �

4.3. The measure of the container C(G, T, τ, ζ). We now prove the crucial fact that
the measure of the container C(G, T, τ, ζ) is bounded above by some constant less than one.
This can be established with a fairly simple argument, but just a little more care yields a
bound close to 1− 1/r!, and this is best possible, as shown in §7.

Lemma 4.5. Let T = (Tr−1, . . . , T0) ∈ Pr[n]. Then

µ(C(G, T, τ, ζ)) ≤ 1− 1
r!

+
11
4

ζ +
1
4
δ(G, τ) +

r−1∑
s=0

µ(Ts) .
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Proof. Recall from Definition 3.2 that C0 = [n]−Γ1 and that Cr−1, . . . , C1 are constructed
by the algorithm in build mode. Let C = Cr−1 ∩ · · · ∩ C0. We define

D1 = [n] \ C

D2 = {v ∈ [n] : {v} ∈ Γ2, v /∈ D1}
D3 = {v ∈ [n] : {v} ∈ Γ3, v /∈ (D1 ∪D2)}

...

Dr−1 = {v ∈ [n] : {v} ∈ Γr−1, v /∈ (D1 ∪ · · · ∪Dr−2)}
Dr = [n] \ (D1 ∪ · · · ∪Dr−1) .

Evidently, D1, . . . , Dr form a partition of [n]. Since C(G, T, τ, ζ) = C ∪ Tr−1 · · · ∪ T0, it is
enough to prove that µ(D1) ≥ 1/r!− 11ζ/4− δ(G, τ)/4.

It is convenient to define D<s = D1 ∪ · · · ∪Ds−1, D≤s = Ds ∪D<s and D>s = [n] \D≤s.
For s ≥ 2 we also need certain subsets of the edges of Ps:

Xs = { f ∈ E(Ps) : |f ∩D<s| ≥ 1, |f ∩D>s| ≥ 2 }
Ys = { f ∈ E(Ps) : f ⊂ D≥s }
Zs = { f ∈ Ys : σ ⊂ f for some σ ∈ Γs−1, |σ| ≥ 2 } .

We further define the numbers xs, ys, zs by |Xs| = xsτ
r−snd, |Ys| = ysτ

r−snd and |Zs| =
zsτ

r−snd, where d is the average degree of G. Observe that X2 = Z2 = ∅, that is, x2 =
z2 = 0.

Note that Xs ∩ Ys = ∅ and each member of E(Ps) \ Ys meets D<s. So∑
v∈Ds

ds(v) =
∑

f∈E(Ps)

|f ∩Ds|

=
∑

f∈E(Ps)\(Xs∪Ys)

|f ∩Ds| +
∑

f∈Xs

|f ∩Ds| +
∑
f∈Ys

|f ∩Ds|

≤ (s− 1)|E(Ps) \ (Xs ∪ Ys)|+ (s− 3)|Xs|+ s|Ys|
= (s− 1)|E(Ps) \ Ys| − 2|Xs|+ s|Ys|

≤ (s− 1)
∑

v∈D<s

ds(v)− 2|Xs|+ s|Ys|

≤ (s− 1)τ r−s nd ( µ(D<s) + 41−sδ(G, τ))− 2|Xs|+ s|Ys| ,

where the last line employs Lemma 4.2.
Now ds(v) ≥ τ r−sd(v) for all v ∈ Ds: for s < r this is because {v} ∈ Γs, and for s = r it

holds trivially. Hence τ r−sndµ(Ds) ≤
∑

v∈Ds
ds(v), so we obtain µ(Ds) ≤ (s−1)(µ(D<s)+

41−sδ(G, τ))− 2xs + sys. Adding µ(D<s) = µ(D≤s−1) to each side gives

µ(D≤s) ≤ sµ(D≤s−1)− 2xs + sys + (s− 1)41−sδ(G, τ)

for each s ≥ 2. Multiplying this inequality by 1/s! and summing over s = 2, . . . , r, noting
that µ(D≤r) = 1, D≤1 = D1 and x2 = 0, we obtain

(3)
1
r!

≤ µ(D1)− 2
∑
s≥3

xs

s!
+
∑
s≥2

ys

(s− 1)!
+

1
4
δ(G, τ) ,

where we used
∑

s≥2 41−s(s− 1)/s! < 1/4.
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Suppose s ≥ 2 and f ∈ Ys \ Zs. If σ ∈ Γs−1 and σ ⊂ f then |σ| = 1, say σ = {u}.
But {u} ∈ Γs−1 implies u ∈ D<s by definition of Ds−1, which contradicts f ∈ Ys. Thus f
contains no member of Γs−1. Let v be the first vertex of f . Then v /∈ D1 since s ≥ 2, so
v ∈ C ⊂ Cs−1. By the construction of Cs−1, v is the first vertex of fewer than ζτ r−sd(v)
edges of Ps that contain no member of Γs−1, so it is the first vertex of fewer than ζτ r−sd(v)
edges in Ys \ Zs. Therefore |Ys| − |Zs| ≤

∑
v∈D≥s

ζτ r−sd(v) = ζτ r−sndµ(D≥s). Hence
ys − zs ≤ ζµ(D≥s) ≤ ζ. In particular y2 ≤ ζ, because z2 = 0.

Now let s ≥ 3 and put S = {σ ∈ Γs−1 : |σ| ≥ 2, σ ⊂ D≥s}. By definition of Zs, each
member of Zs contains a member of S. Therefore

zsτ
r−snd = |Zs| ≤

∑
σ∈S

ds(σ)

≤
∑
σ∈S

1
τ2s−1

ds−1(σ) by definition of Γs−1

≤ 1
τ
|{f ∈ E(Ps−1) : σ ⊂ f for some σ ∈ S}|

≤ 1
τ
|Xs−1 ∪ Ys−1| = (xs−1 + ys−1)τ r−snd .

Hence zs ≤ xs−1 + ys−1 for s ≥ 3. Since ys ≤ zs + ζ this means ys ≤ xs−1 + ys−1 + ζ; by
repeating and applying both x2 = 0 and y2 ≤ ζ, this yields ys ≤ xs−1 + xs−2 + · · · + x3 +
(s − 1)ζ for s ≥ 3. The inequality holds for s = 2 also. Substituting this inequality into
inequality (3) we obtain

1
r!

≤ µ(D1) +
∑
s≥3

xs

− 2
s!

+
r−1∑
j=s

1
j!

+ ζ
∑
s≥2

1
(s− 2)!

+
1
4
δ(G, τ) .

The coeffient of xs is negative, and so 1/r! ≤ µ(D1) + 11ζ/4 + δ(G, τ)/4, which is what we
needed to prove. �

4.4. Proof of Theorem 2.5. The simple and obvious choices for T and C in Theorem 2.5
are T = T (G, I, τ, ζ) and C(T ) = C(G, T, τ, ζ). Indeed this choice works perfectly well for
parts (a), (b) and (d) in the (most important) case when I is independent, and also when
e(G[I]) is bounded. However for the case when G[I] is b-degenerate a different choice is
required. We need containers determined by small sets of vertices none of which has low
degree.

The online property offers, as a by-product, a convenient way to achieve this aim, which
furthermore has the side benefit of yielding (c). We label the vertex set so that the degrees
are decreasing, and hence the vertices of small degree are specified by some terminal segment
of [n]. We then run the algorithm just on the initial segment [m] of vertices of high
degree, and add the trailing segment [m+1, n] to the container. These modified containers,
determined by subsets of [m], still have the online property.

Lemma 4.6. Let G be an r-graph on vertex set [n] and let m ∈ [n]. Let I ⊂ [n], let
S = T (G, I, τ, ζ) and let T = S ∩ [m]. Put

C = C(G, T, τ, ζ) ∪ [m + 1, n] .

Then C is a container, determined by T , with the online property: that is, I ⊂ C, and
C ∩ [w] is determined by T ∩ [w] for all w ∈ [n].
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Proof. The lemma is a simple consequence of Lemma 3.4. �

Proof of Theorem 2.5. Notice that the theorem is trivial if ζ ≥ 1/4r!, since in that case
the function C(T ) = [n] works, with T = (∅, . . . , ∅) representing all I. Recall too from §2.1
that δ(G, τ) → 0 as τ → ∞. Hence the condition δ(G, τ) ≤ ζ is satisfiable by making τ
large enough, although if τ ≥ ζ/2r the theorem is again trivial.

Let d be the average degree of G. We define m ∈ [n] by [m] = {v ∈ [n] : d(v) ≥ ζd}.
Let S = T (G, I, τ, ζ) ∈ Pr[n] and write S = (Sr−1, . . . , S0). We then put T = S ∩ [m],
so T = (Tr−1, . . . , T0) where Ts = Ss ∩ [m], 0 ≤ s ≤ r − 1. Finally, we define C(T ) =
C(G, T, τ, ζ) ∪ [m + 1, n]. We shall show that the theorem holds with this choice of T
and C.

First, note that (a) and the online property both hold by virtue of Lemma 4.6. To show
that (b) holds, we apply Lemmas 4.3 and 4.4; notice that the sets denoted by Ts in those
lemmas are here denoted by Ss. For s ≥ 1 we obtain µ(Ts) ≤ µ(Ss) ≤ 2τ/ζ by Lemma 4.3
because, as remarked, may assume δ(G, τ) ≤ ζ < 1/4r!. As for T0, if I is independent then
T0 = ∅. If G[I] is b-degenerate then Lemma 4.4 shows µ(T0) = µ(S0∩ [m]) ≤ 2τ/ζ, because
d(v) ≥ ζd ≥ τ1−rrb for v ∈ [m]. If e(G[I]) ≤ bn then Lemma 4.4 shows µ(T0) ≤ µ(S0) ≤
τ1−rd−1b ≤ 2τ/ζ. Hence (b) holds in every case.

Since Ts ⊂ [m] for each s, we have |Ts|ζd ≤
∑

v∈Ts
d(v) = ndµ(Ts), so (c) is a consequence

of (b).
Now µ(C) ≤ µ(C(G, T, τ, ζ)) + µ([m + 1, n]). Lemma 4.5 applied to C(G, T, τ, ζ) shows

µ(C(G, T, τ, ζ)) ≤ 1−1/r!+3ζ+2rτ/ζ, because (b) holds. Finally, note that µ([m+1, n]) <
ζ by definition of [m], so (d) holds and we are done. �

5. Tight containers

The method of Theorem 2.5 will not, in general, give containers of measure less than
1− 1/r! (we shall give examples to show this in §7). On a more positive note, it is possible
via iteration to obtain smaller, almost optimal, containers, at the cost of sacrificing the
online property. Some applications, most notably list colouring, depend crucially on the
online property, but for many applications it is unnecessary, and in such cases it is generally
well worthwhile using smaller, iterated, containers.

Let G be an r-graph of order n and average degree d, and let I be an independent set
in G. Suppose we have a container C for I with µ(C) ≤ 1 − c, such as that supplied by
Theorem 2.5 where c is close to 1/r!. It follows that the induced subgraph G[C] cannot be
dense; to be precise,

(4) e(G[C]) ≤ (1/r)
∑
v∈C

d(v) = (1/r)ndµ(C) = µ(C)e(G) ≤ (1− c)e(G) .

Theorem 2.5 can now be re-applied, this time to the hypergraph G[C], to get a container
C ′ ⊂ C, with e(G[C ′]) ≤ (1 − c)e(G[C]) ≤ (1 − c)2e(G). Repeating this operation often
enough will give a container with o(e(G)) edges.

The reason that the online property of Theorem 2.5 is lost following iteration is that,
in order to compute, say, C ′ ∩ [v], it is necessary to know the whole of G[C], for which it
is necessary to know the whole of C, not just C ∩ [v]; hence C ′ ∩ [v] cannot be computed
online.

Another drawback of iteration is the increase in the number of sets Ti needed to specify
the eventual container, leading to a greater number of possible containers. Usually in
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practice this turns out to be unimportant. Here is a simple lemma to help count the
number of containers being generated.

Lemma 5.1. There are at most exp{sθn(1+log(1/θ))} s-tuples of subsets T1, . . . , Ts ⊂ [n]
with |T1|+ . . . + |Ts| ≤ sθn, where θ ≤ 1.

Proof. Let there be Nj such s-tuples with |T1| + . . . + |Ts| = j. We wish to bound N =
N0 + N1 + . . . + Nbsθnc. Plainly, the ordinary generating function N0 + N1x + N2x

2 + . . .

for the sequence (Nj) is equal to ((1 + x)n)s. Therefore, since θ ≤ 1, we have θsθnN ≤
(1 + θ)ns ≤ esθn. �

The next theorem is a version of Theorem 2.5 more suited to iteration.

Theorem 5.2. Let G be an r-graph on vertex set [n]. Suppose that δ(G, τ) ≤ 1/12r! and
that τ ≤ 1/144r!2r. Then there exists a collection C ⊂ P[n] such that

(a) for every independent set I there exists T = (Tr−1, . . . , T0) ∈ Pr(I) with I ⊂ C(T ) ∈
C and |Ti| ≤ 288r!2τn,

(b) log |C| ≤ 288rr!2nτ log(1/τ), and
(c) e(G[C]) ≤ (1− 1/2r!)e(G) for all C ∈ C.

Moreover, (a) holds for all sets I ⊂ [n] for which either G[I] is bτ r−1e(G)/12r!nc-
degenerate or e(G[I]) ≤ 24r!rτ re(G).

Proof. We apply Theorem 2.5 to G with ζ = 1/12r! (we may assume the degree order
of G is decreasing). For each set I we have T = (Tr−1, . . . , T0) and a container C(T )
satisfying properties (a)–(d) of that theorem. Take C to be the collection of all such C.
Since τ ≤ ζ2/r, we have 2rτ/ζ ≤ 2ζ, so µ(C) ≤ 1 − 1/r! + 6ζ = 1 − 1/2r!. It follows from
inequality (4) that e(G[C]) ≤ (1− 1/2r!)e(G).

Hence (a) and (c) of the present theorem are satisfied and it remains to check (b).
Theorem 2.5 tells us that each container C is specified by sets T0, . . . , Tr−1 each of size at
most θn, where θ = 2τ/ζ2 = 288r!2τ ≤ 2/r ≤ 1. By Lemma 5.1 we have

log |C| ≤ rθn(1 + log(1/θ)) ≤ rθn log(1/τ) = 288rr!2nτ log(1/τ) ,

establishing (b) and completing the proof. �

Theorem 5.2 is easy to apply iteratively. Though a similar theorem can be derived using
the proof method of Theorem 3.1 of [47] in place of Theorem 2.5, which actually gives a
better bound in (c), with a polynomial in r in place of r!, the bound in (b) is worse, with
τ1/2 in place of τ . We remark, though, that it is not possible to iterate Theorem 3.1 of [47]
directly, because it applies only to regular r-graphs, or, more precisely, to r-graphs with no
large sparse subset. Even if G itself is regular, G[C] might be far from regular.

The next theorem is the result of applying Theorem 5.2 repeatedly to end up with a
collection of sparse containers. Its appearance is rather technical but it is in a form which
can be readily applied.
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Theorem 5.3. Let G be an r-graph on vertex set [n]. Let e0 ≤ e(G). Suppose that, for
each U ⊂ [n] with e(G[U ]) ≥ e0, the function τ(U) satisfies both δ(G[U ], τ) ≤ 1/12r! and
τ(U) ≤ 1/144r!2r. For e0 ≤ m ≤ e(G) define

f(m) = max{−|U |τ(U) log τ(U) : U ⊂ [n], e(G[U ]) ≥ m}
τ∗ = max{ τ(U) : U ⊂ [n], e(G[U ]) ≥ e0}

Let k = log(e0/e(G))/ log(1− 1/2r!). Then there exists a collection C ⊂ P[n] such that

(a) for every independent set I there exists T = (T1, . . . , Ts) ∈ Ps(I) with I ⊂ C(T ) ∈
C, |Ti| ≤ 288r!2τ∗n and s ≤ (k + 1)r,

(b) e(G[C]) ≤ e0 for all C ∈ C,
(c) log |C| ≤ 288rr!2

∑
0≤i<k f(e0/(1− 1/2r!)i).

Moreover, (a) holds for all I ⊂ [n] for which either G[I] is bτ(U)r−1e(G[U ])/12rr!|U |c-
degenerate or e(G[I]) ≤ 24r!rτ(U)re(G[U ]), for all U ⊂ [n] with e(G[U ]) ≥ e0.

Proof. We will show that for all t with e0 ≤ t < e(G)/(1 − 1/2r!), there exists a collection
Ct ⊂ P[n] satisfying conditions (a)–(c), where the constant e0 has been replaced by t in
(a)–(c), and k is replaced by k(t) = log(t/e(G))/ log(1− 1/2r!).

When t ≥ e(G), we may take Ct = {[n]}. Otherwise, suppose t < e(G). It is enough to
show that Ct exists provided D = Ct/(1−1/2r!) exists. Each D ∈ D is specified by a tuple
T ′ = (T1, . . . , Ts′) with s′ ≤ (k(t/(1−1/2r!))+1)r = k(t)r. If e(G[D]) ≤ t, let Ct(D) = {D}.
Otherwise, apply Theorem 5.2 with τ = τ(D) ≤ τ∗ to the r-graph G[D], and let Ct(D) be
the collection of containers given by the theorem. Then put Ct =

⋃
D∈D Ct(D).

If C ∈ C(D) then C is specified completely by T ′, together with the r-tuple appearing in
condition (a) of Theorem 5.2 if the theorem was applied. Hence C is specified completely
by a tuple of size at most (k(t) + 1)r, so satisfying condition (a). If D ∈ D then either
e(G[D]) ≤ t in which case |Ct(D)| = 1, or e(G[D]) > t in which case

log |Ct(D)| ≤ 288rr!2|D|τ(D) log(1/τ(D)) ≤ 288rr!2f(t).

Hence
log |Ct| ≤ log |D|+ 288rr!2f(t) ≤ 288rr!2

∑
0≤i<k(t)

f(t/(1− 1/2r!)i).

Finally for C ∈ Ct(D), note that e(G[C]) ≤ t, since if e(G[D]) > t then by condition (c) of
Theorem 5.2 e(G[C]) ≤ (1− 1/2r!)e(G[D]) ≤ t. �

For certain applications the technical detail of Theorem 5.3 is not needed; what is re-
quired is a simple statement that a few iterations will produce a container with a negligible
proportion of the original edges. Such a statement was presented earlier as Corollary 2.7.

Proof of Corollary 2.7. Let e0 = εe(G). Observe that for U ⊂ [n], if e(U) ≥ εe(G) then
δ(G[U ], τ) ≤ δ(G, τ)/ε ≤ 1/12r!. Therefore we may apply Theorem 5.3 to the graph G
with e0 = εe(G) and τ(U) = τ for all U . Then τ∗ = τ and f(m) = nτ log(1/τ). Hence we
obtain a collection C satisfying conditions (a) and (b) of the corollary, and

log |C| ≤ 288r!2r
(

1 +
log ε

log(1− 1/2r!)

)
nτ log(1/τ),

giving condition (c). �
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6. Uniformly bounded containers

Theorem 2.5 provides containers of bounded degree measure, and §5 provides containers
with few edges inside. For some purposes, though, what is required is containers of bounded
size, that is, of bounded uniform measure.

For regular hypergraphs the results of §5 can be used directly. If G is d-regular and
C ⊂ [n] is such that e(G[C]) = o(nd) then |C| ≤ (1−1/r+o(1))n. However for non-regular
hypergraphs we get no such information. Indeed, it is perfectly possible to have µ(C) and
e(G[C]) both small whilst |C| is close to n. Hence it is not possible to guarantee a container
of bounded uniform measure.

Instead, what we can show is that there is some initial interval [v] ⊂ [n] such that
|C ∩ [v]| is bounded. The basic lemma which translates information about µ-measure into
information about uniform measure is the following one. In the lemma, S is a multiset, so
µ(S), |S ∩ [v]| and so on have their natural interpretations counting with multiplicities.

Lemma 6.1. Let µ : [n] → R be a measure with µ(1) ≥ µ(2) ≥ · · · ≥ µ(n), and let S ⊂ [n]
be a multiset. Then

α µ ({ v ∈ [n] : |S ∩ [v]| ≥ αv }) ≤ µ(S)
holds for all α ≥ 0.

Proof. Let W = {v : |S∩ [v]| ≥ αv}. We must show αµ(W ) ≤ µ(S). Let W = {w1, . . . , wk}
where k = |W | and w1 < w2 < . . . < wk. Define the numbers s1, . . . , sk by s1 = |S ∩ [w1]|
and si = |S∩ [wi−1 +1, wi]| for i ≥ 2. Then we have µ(S∩ [wi−1 +1, wi]) ≥ siµ(wi), because
µ(1) ≥ µ(2) ≥ · · · ≥ µ(n). Therefore

µ(S) ≥ µ(S ∩ [w1]) + µ(S ∩ [w1 + 1, w2]) + · · ·+ µ(S ∩ [wk−1 + 1, wk])

≥ s1µ(w1) + s2µ(w2) + · · ·+ skµ(wk)

=
k∑

i=1

αµ(wi) + (s1 + · · ·+ si − αi)(µ(wi)− µ(wi+1)) ,

= αµ(W ) +
k∑

i=1

(s1 + · · ·+ si − αi)(µ(wi)− µ(wi+1)) ,(5)

where µ(wk+1) is defined to be zero. Now |S ∩ [wi]| = s1 + · · · + si holds for 1 ≤ i ≤ k,
and so s1 + · · · + si ≥ αwi, because wi ∈ W . In particular, s1 + · · · + si ≥ αi, since
wi ≥ i. Moreover µ is a decreasing function, so each summand in (5) is non-negative, and
the lemma follows. �

In fact we shall need not just that |C ∩ [v]| is bounded for a single container C but that
the average

∑t
i=1 |Ci∩ [v]| is bounded for a collection C1, . . . , Ct. The next lemma prepares

the way.

Lemma 6.2. Let µ be a probability measure on [n] with µ(1) ≥ µ(2) ≥ · · · ≥ µ(n) ≥ 0. Let
T1, . . . , Ts, C1, . . . , Ct be subsets of [n], with µ(Ti) ≤ λ for 1 ≤ i ≤ s and µ(Cj) ≤ 1− c− η
for 1 ≤ j ≤ t, where c, η > 0. Suppose moreover that k ∈ [n] and µ([k]) ≤ ηc. Then there
exists v ∈ [k, n] with

1
s

s∑
i=1

|Ti ∩ [v]| < λ

η
v and

1
t

t∑
i=1

|Ci ∩ [v]| < (1− c)v .
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Proof. Let U = {v :
∑s

i=1 |Ti ∩ [v]| ≥ sλv/η}. Writing S for the multiset which is the
disjoint union of T1, . . . , Ts, so that µ(S) ≤ sλ and |S ∩ [v]| =

∑s
i=1 |Ti ∩ [v]|, we can apply

Lemma 6.1 with α = sλ/η to obtain µ(U) ≤ µ(S)/α ≤ η.
In like manner, let W = {v :

∑t
i=1 |Ci∩ [v]| ≥ t(1− c)v}. Writing now S for the multiset

which is the disjoint union of C1, . . . , Ct, so that µ(S) ≤ t(1−c−η) and |S∩[v]| =
∑t

i=1 |Ci∩
[v]|, we apply Lemma 6.1 with α = t(1−c) to obtain µ(W ) ≤ t(1−c−η)/α = 1−η/(1−c).

It follows that µ(U ∪W ∪ [k]) < η + 1 − η/(1 − c) + ηc < 1, so there exists v ∈ [n] not
contained in U ∪W ∪ [k]. This v satisfies the conditions of the corollary. �

We can now prove the main result about containers and uniform measure, which was
stated earlier as Theorem 2.8.

Proof of Theorem 2.8. Apply Theorem 2.5 to G to obtain a collection C of containers C(T )
for T = (Tr−1, . . . , T0) ∈ Pr[n]. Since τ ≤ ζ2/r we have 2rτ/ζ ≤ 2ζ so µ(C(T )) ≤
1− 1/r! + 6ζ.

Let (C1, . . . , Ct) ∈ Ct, where t ∈ N. Each Ci is specified by an r-tuple of sets Tj , so
the whole collection (C1, . . . , Ct) is specified by rt sets which, after re-labelling, we call
T1, . . . , Trt, with µ(Ti) ≤ 2τ/ζ for 1 ≤ i ≤ rt. Let c = 1/r! − 8ζ and η = 2ζ. Then
µ([k]) ≤ ζ/2r! < ηc so the conditions of Lemma 6.2 are satisfied with s = rt and λ = 2τ/ζ,
and we may choose v ∈ [k, n] with

1
s

s∑
i=1

|Ti ∩ [v]| < τ

ζ2
v and

1
t

t∑
i=1

|Ci ∩ [v]| < (1− 1
r!

+ 8ζ)v .

Define g(C1, . . . , Ct) = v. Then (a) and (c) of the theorem are satisfied.
To obtain (b), we need that the containers have the online property: in other words, the

t-tuple (C1 ∩ [v], . . . , Ct ∩ [v]) is determined by T1 ∩ [v], . . . , Ts ∩ [v]. This online property
is guaranteed by Theorem 2.5. Hence the size of the set Z = {(C1 ∩ [v], . . . , Ct ∩ [v]) :
g(C1, . . . , Ct) = v} is bounded by the number of tuples (T1∩[v], . . . , Ts∩[v]). Now

∑s
i=1 |Ti∩

[v]| < sθv, where θ = τ/ζ2 < 1. So by Lemma 5.1

log |Z| ≤ sθv(1 + log(1/θ)) ≤ sθv log(1/τ) = ζ−2vtrτ log(1/τ) ,

which completes the proof. �

7. An example of large containers

Theorem 2.5 provides a small collection of containers for independent sets in an r-graph,
each container having degree measure at most 1− 1/r! (plus a term that is usually small).
It is conceivable that an algorithm different to the one in §3 might yield smaller online
containers. But in this section we describe examples to indicate that 1 − 1/r! is the limit
of the present method.

Indeed, for each r ≥ 2, there are examples of simple r-uniform hypergraphs G and
independent sets I for which µ(C(G, T, τ, ζ)) can be as large as 1 − 1/r! + o(1) when
T = T (G, I, τ, ζ). Because a precise detailed definition of the examples would be very long
and opaque, we give instead a sketch showing how the examples work, together with a few
words about how the details can be filled in.
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A
B1 B2

B3 B4

G
P3 P2

P1

Figure 1. Approximate setup sufficient to produce a container of measure
23/24 in a 4-graph G.

7.1. Sketch for r = 4. Suppose G is a simple d-regular 4-graph with the following proper-
ties (see Figure 1). Let the vertex set be A∪B1∪B2∪B3∪B4, where |B1| = 18k, |B2| = 4k,
|B3| = k, |B4| = k, |A| = o(k), so µ(B4) = 1/4!+o(1) and so on, where o(1) → 0 as d →∞.
Since G is regular, the degree ordering used by Theorem 2.5 is not determined by the 4-
graph itself, so we may suppose we have an ordering with A < B1 < B2 < B3 < B4. Let
the induced subgraph of G on B1 ∪ · · · ∪ B4 be approximately d-regular (so that only a
few edges meeting B1 ∪ · · · ∪B4 also meet A), and suppose every edge has 3 vertices in B1

and 1 vertex in B2 ∪B3 ∪B4 (the sizes of the sets Bi have been chosen to ensure that this
is possible). Suppose we run the algorithm with τ = d−1/3 (which is roughly the typical
value of τ for a d-regular simple 4-graph).

First the algorithm is run with s = 3. After the vertices in A have been inspected but
before any vertex in B1 has been inspected, the partially constructed subgraph of P3 will
contain 3-edges that depend on I and on the edges of G that contain a vertex of A. But
suppose for now that we can choose I,G so that at this point, P3 contains a d2/3-regular
graph on B2∪B3∪B4, in which every edge has two vertices in B2 and one vertex in B3∪B4

(see Figure 1). Then since Γ3 contains vertices with degree at least τd = d2/3, all vertices
in B2 ∪ B3 ∪ B4 will be in Γ3. Therefore, as the algorithm for P3 proceeds to inspect the
vertices after A, all vertices in B1 will be kept in C3 (since, for each vertex v ∈ B1, there are
very few edges whose first vertex is v that do not meet Γ3). Furthermore, all the vertices
in B2 ∪B3 will be kept in C3 since they are not the first vertex of any 4-edge in G.

Similarly, if we can arrange things so that when the algorithm is run with s = 2, B3∪B4

contains a d1/3-regular bipartite graph, and when the algorithm is run with s = 1, B4

contains a 1-regular 1-graph, then the sets B1∪B2∪B3 will be kept in C2 and C1. Also Γ1

contains no singletons from B1∪B2∪B3, so B1∪B2∪B3 ⊂ C, and so µ(C) ≥ 23/24+o(1)
as required.

This broad setup generalizes to all r by taking sets B1, . . . , Br of size |Bi| = ((r−i+1)!−
(r−i)!)k, such that the induced graph of G on B1∪· · ·∪Br is approximately d-regular with
every edge having r−1 vertices in B1 and 1 vertex in B2∪· · ·∪Br. Then provided that the
Ps are similarly generalized, we will have B1∪· · ·∪Br−1 ⊂ C and so µ(C) ≥ 1−1/r!+o(1).

7.2. Priming the Ps. In the example above, we did not specify how to guarantee that the
graphs Ps are as stated. This is achieved by adding edges to G containing vertices from A
and specifying I ⊂ A appropriately; we indicate how this may be achieved for r = 4.

Suppose |A| = 2kd−1/3. Choose an equipartition D1 ∪ D2 of B2, and consider the 4
vertex classes A,D1, D2, B3 ∪ B4. The last three classes each have size 2k. Add edges to
G forming a simple 4-partite 4-graph between these classes, such that in this set of edges
the vertices in A have degree d and the vertices in B2 ∪ B3 ∪ B4 have degree d2/3. Now
let I = A. Consider what happens when the algorithm is run on this graph. Each vertex
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v ∈ A will be added to T3 and the corresponding edges will be added to P3, producing the
required d2/3-regular graph on B2 ∪B3 ∪B4.

Suppose now that A = A1 ∪ A2 ∪ A3, |A1| = kd−2/3, |A2| = kd−1/3. Consider the 4
vertex classes A1, A2, B3, B4. Add edges forming a simple 4-partite 4-graph between these
classes, such that in this set of edges the vertices in A1 have degree d, the vertices in A2

have degree d2/3, and the vertices in B3 ∪B4 have degree d1/3. Add also edges between A2

and A3 so that every vertex in A2 ∪ A3 has degree d in G. Let I = A1 ∪ A2, and suppose
the degree ordering on A is A1 < A2 < A3. When the algorithm is run, the vertices in A1

will be added to T3. Let a1 ∈ A1 be the last vertex in the degree order in A1. After vertex
a1 has been inspected by the algorithm, the graph P3 will be a 3-partite graph between
classes A2, B3, B4, where the vertices in A2 have degree d2/3 and the vertices in B3 ∪ B4

have degree d1/3. Every vertex v ∈ A2 will be added to T2, and the graph P2 will then be
the required d1/3-regular graph on B3 ∪B4.

The graph P1 can be achieved similarly. This argument overlooks the point that the
graphs P1, P2, P3 cannot be simultaneously produced as stated; for example, it would
require the degree in P3 of a vertex in b ∈ B2 to be d2/3 + d1/3 + 1, whereas the maximum
degree, by construction of P3, is d2/3 + 1. Nonetheless, we can adjust some of the edge sets
slightly so that the example works. These constructions generalize to all r.

8. List colourings

In [47], a lower bound for the list colouring number of a regular hypergraph was proved.
Theorem 2.1 of that paper, based on a simple probabilistic argument, gave a bound of
approximately (log k)/ log(1/c) provided there is a collection C of containers for the inde-
pendent sets, with |C| ≤ (1 − c)n for each C ∈ C and with |C| ≤ en/k. This proof fails to
work for a general hypergraph because it is not possible to find containers of bounded size,
but Theorem 2.8 provides conditions under which we can recover the proof.

Let [t] be a set of colours. We say that a collection of lists {Lu ⊂ [t] : u ∈ [n]} is
C-compatible if there is a colouring function f : [n] → [t] and a tuple (C1, . . . , Ct) ∈ Ct, such
that, for each u ∈ [n], f(u) ∈ Lu and u ∈ Cf(u).

Theorem 8.1. Let 0 < ε, c < 1. Then there exists k0 = k0(ε, c), such that the following
property holds for all k > k0.

Let ` = b(1−ε) log k/ log(1/c)c and let t = b2`2/cc. Let n > k and let C ⊂ P[n]. Suppose
that there is a map g : Ct → [k, n], such that

(a)
1
t

t∑
i=1

|Ci ∩ [v]| ≤ (1− c)v

holds for every (C1, . . . , Ct) ∈ Ct, where v = g(C1, . . . , Ct). Suppose moreover that

(b) |{ (C1 ∩ [v], . . . , Ct ∩ [v]) : g(C1, . . . , Ct) = v }| ≤ evt/k

holds for all v ∈ [n]. Then there is a collection of lists {Lu : u ∈ [n]}, each of size |Lu| = `,
which is not C-compatible.

Proof. For each u ∈ [n], let Lu ∈ [t](`) be a subset of [t] of size ` chosen uniformly and
independently at random, and let L = {Lu : u ∈ [n]} be the collection of lists.

Given a tuple (C1, . . . , Ct) ∈ Ct, we define, for each u ∈ [n], the set of colours

Bu = Bu(C1, . . . , Ct) = {i ∈ [t] : u ∈ Ci} .
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We say that L fits (C1, . . . , Ct) if Lu ∩Bu 6= ∅ for each u ∈ [n]. This is the same as saying
there is a function f : [n] → [t] with f(u) ∈ Lu ∩ Bu, or in other words, f(u) ∈ Lu and
u ∈ Cf(u). Hence we shall prove the theorem by showing that, with positive probability, L
fits no tuple (C1, . . . , Ct), since then L is not C-compatible.

In fact, we claim something stronger: with positive probability, L rejects every tu-
ple (C1, . . . , Ct), meaning that there is some u ∈ [v] with Lu ∩ Bu = ∅, where v =
g(C1, . . . , Ct). To establish the claim, fix for the time being some tuple (C1, . . . , Ct) and
let v = g(C1, . . . , Ct). Let u ∈ [v] and let pu be the probability that Lu ∩ Bu = ∅, or
equivalently Lu ⊂ [t] \Bu. Then

pu = Pr(Lu ∩Bu = ∅) =
(

zu

`

)(
t

`

)−1

where zu = max{`− 1, t− |Bu|} .

We note here that ` ≥ 1 if k0 is large enough and thus ct > `. Write z for the average of
the values zu for u ∈ [v]; then by condition (a) of the lemma we have

vz =
∑
u∈[v]

zu ≥
∑

u

t− |Bu| = vt−
∑

u

|Bu| = vt−
t∑

i=1

|Ci ∩ [v]| ≥ vct .

So, since the function
(
zu

`

)
is convex for zu ≥ `− 1, we have∑

u∈[v]

pu =
∑
u∈[v]

(
zu

`

)(
t

`

)−1

≥ v

(
z

`

)(
t

`

)−1

≥ v

(
ct

`

)(
t

`

)−1

≥ v(c− (`− 1)/t)` .

Since ` ≥ 1 we have (` − 1)/t ≤ (` − 1)/(2`2/c − 1) ≤ c/2`, and so (c − (` − 1)/t)` ≥
c`(1− 1/2`)` ≥ c`/2. Hence the probability that L fails to reject (C1, . . . , Ct) is

Pr(Bu ∩ Lu 6= ∅ for all u ∈ [v]) =
∏

u∈[v]

(1− pu)

≤ exp{−
∑
u∈[v]

pu} ≤ exp{−vc`/2} .

Notice that the probability of (C1, . . . , Ct) not being rejected depends only on the tuple
(C1∩ [v], . . . , Ct∩ [v]) which, by condition (b) of the lemma, takes at most exp{vt/k} values
as (C1, . . . , Ct) ranges over Ct. Hence if we fix v and write Pv for the probability that there
is some tuple (C1, . . . , Ct) with v = g(C1, . . . , Ct) which is not rejected, then

Pv ≤ exp{vt/k − vc`/2}

≤ exp

{
v

2k

[
4
c

(
(1− ε) log k

log 1/c

)2

− kε

]}
≤ exp

{
− v

2k
kε/2

}
if k0 is large enough

≤ exp
{
−1

2
vε/2

}
since k ≤ v

≤ v−2 if k0 is large enough.
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Finally, if we consider all tuples (C1, . . . , Ct) ∈ Ct, the probability that one of them is
not rejected is at most ∑

v∈[k,n]

Pv ≤
∑
v≥k

v−2 < 1

if k0 is large. This establishes our claim and so proves the theorem. �

We can now prove a lower bound on the list chromatic number of a hypergraph. It
is awkward to state the most general conditions under which a non-trivial bound can be
obtained, so instead we state a couple of typical results. The first applies to many r-graphs
of average degree d, and certainly to simple r-graphs; indeed, Theorem 1.1 stated earlier is
the special case when G is simple.

Corollary 8.2. Let r ∈ N be fixed. Let G be an r-graph with average degree d. Suppose
that d(j)(v) ≤ d(r−j)/(r−1)+o(1) for every v ∈ V (G) and for 2 ≤ j ≤ r (recall Definition 2.2),
where o(1) → 0 as d →∞. Then

χl(G) ≥ (1 + o(1))
1

(r − 1)2
logr d .

Moreover, if G is regular then

χl(G) ≥ (1 + o(1))
1

r − 1
logr d .

Proof. We shall apply Theorem 2.8 to G. Choose ζ = ζ(d) so that, as d → ∞, then
ζ = o(1), ζ = do(1) and d(j)(v) ≤ d(r−j)/(r−1)ζ−1 for all v ∈ V (G) and 2 ≤ j ≤ r. Let
τ = d−1/(r−1)ζ−3. Then ζ ≤ 1/12r! because ζ = o(1). Also, recalling Definition 2.2,
δj =

∑
v d(j)(v)/τ j−1nd ≤ ζ2 = o(ζ), so δ(G, τ) ≤ ζ. Moreover τ ≤ ζ2/r because ζ = do(1).

Let k = bζ3/τ log(1/τ)c. Then log k = (1/(r − 1) + o(1)) log d. Let v ∈ V (G). For
each u ∈ V (G), at most d(2)(v) ≤ d(r−2)/(r−1)ζ−1 edges contain both u and v, and so
d(v) ≤ nd(r−2)/(r−1)ζ−1. It follows that µ([k]) ≤ (1/nd)knd(r−2)/(r−1)ζ−1 ≤ ζ5 ≤ ζ/2r!. So
the conditions of Theorem 2.8 are satisfied. It follows that there exists a collection C of
containers for the independent sets of G, satisfying properties (b) and (c) of Theorem 2.8,
and since ζ−2rτ log(1/τ) < 1/k it follows that conditions (a) and (b) of Theorem 8.1 are
satisfied, with c = 1/r!− 8ζ ≥ (1 + o(1))r−(r−1).

Consequently there are lists of size (1 + o(1)) log k/ log(1/c) that are not C-compatible,
which is to say lists of size at least (1/(r−1)+o(1)) log d/ log(1/c) ≥ (1/(r−1)2+o(1)) logr d.
Since C is a set of containers for the independent sets of G, the first claim of the corollary
follows.

The proof for regular graphs is similar, except that we take c = 1/r + o(1). To achieve
this we make use of Corollary 2.7 instead of Theorem 2.8. With τ , ζ and k defined as
before, we can take ε = ζ in Corollary 2.7 because δ(G, τ) = o(ζ). We obtain a collection
C of containers such that e(G[C]) ≤ ζe(G) = o(e(G)) for all C ∈ C. Because G is regular
this means that |C| ≤ (1 − c)n, where c = 1/r + o(1) and n = |G|. We can now apply
Theorem 8.1 by defining g(C1, . . . , Ct) = n for all (C1, . . . , Ct); note that condition (b) of
the theorem is satisfied because, by Corollary 2.7, log |C| ≤ c(r) log(1/ε)nτ log(1/τ) < n/k.
The remainder of the proof is the same. �

The bound given for r-graphs of average degree d is weaker than that for regular r-graphs
because we only had containers of measure 1−1/r! available, rather than 1−1/r. Probably
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this is an artifact of our algorithm, and χl(G) ≥ (1/(r− 1) + o(1)) logr d holds for r-graphs
of average degree d.

The bound for regular graphs is tight. Indeed, let K(r, m) be the complete r-partite
r-graph with m vertices in each class. Suppose that lists of size ` are given to the vertices.
Randomly choose, for each colour in the palette, a vertex class on which that colour is
forbidden to be used; then the expected number of vertices with no available colour is
rmr−` which is less than one if ` > 1 + logr m, and so χl ≤ 2 + logr m (see Haxell and
Verstraëte [23]). This graph is d-regular where d = mr−1 so χl ≤ 2 + (1/(r − 1)) logr d.
Note that d(j)(v) = mr−j = d(r−j)/(r−1).

It is not hard to construct an m-regular simple subgraph G of K(r, m), and so (putting
d = m) we have simple d-regular r-graphs with χl ≤ 2 + logr d. Quite possibly χl ≤
2 + (1/(r − 1)) logr d in this case too, because a subgraph of G with d1−1/(r−1) vertices
in each class is likely to be very sparse, and a random colouring might be repairable if
rdr−` < d1−1/(r−1), or ` > 1 + (1/(r − 1)) logr d. But this argument is far from rigorous.

As an illustration of the use of containers for non-independent sets we finish with the
next result.

Corollary 8.3. Let G be a graph with average degree d. Then, for each u ∈ V (G) there is
a list Lu of (1+o(1)) log2 d colours, such that it is not possible to choose a colour c(u) ∈ Lu

with the vertices of each colour spanning a planar graph.

Proof. We follow the proof of Corollary 8.2 with r = 2, except we use a set C of containers
for those subsets I for which G[I] is planar. Since a planar graph is 5-degenerate, we can
apply Theorem 2.8 and continue with the proof exactly as before, provided 5 ≤ τdζ/r. But
τ = d−1ζ−3 so this condition holds comfortably. �

9. H-free graphs

Theorem 1.3 is obtained by a routine application of Corollary 2.7 to the following hy-
pergraph, whose independent sets correspond to H-free `-graphs on vertex set [N ].

Definition 9.1. Let H be an `-graph. Let r = e(H). The r-graph G(N,H) has vertex set
[N ](`), where B = {v1, ..., vr} ∈ V (G)(r) is an edge whenever B, considered as an `-graph
with vertices in [N ], is isomorphic to H.

Lemma 9.2. Let H be an `-graph with r = e(H) ≥ 2 and let γ ≤ 1. For N sufficiently
large, δ(G(N,H), γ−1N−1/m(H)) ≤ r2r2

v(H)!2γ.

Proof. Let G = G(N,H). Consider σ ⊂ [N ](`) (so σ is both a set of vertices of G and an
`-graph on vertex set [N ]). The degree of σ in G is the number of ways of extending σ
to an `-graph isomorphic to H. If σ as an `-graph is not isomorphic to any subgraph of
H, then clearly d(σ) = 0. Otherwise, let v(σ) be the number of vertices in σ considered
as an `-graph, so there exists V ⊂ [N ], |V | = v(σ) with σ ⊂ V (`). Edges of G containing
σ correspond to copies of H in [N ](`) containing σ, each such copy given by a choice of
v(H) − v(σ) vertices in [N ] − V and a permutation of the vertices of H. Hence d(σ) =
cσ

( N−v(σ)
v(H)−v(σ)

)
for some integer cσ in the range 1 ≤ cσ ≤ v(H)!. Thus for N sufficiently

large,
1/v(H)! ≤ d(σ)N−v(H)+v(σ) ≤ v(H)!.
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For v ∈ V (G) and 1 ≤ j ≤ e(H), the quantity d(j)(v) is the maximum of d(σ) over all
σ ⊂ [N ](`) with v ∈ σ and |σ| = j. Thus

1/v(H)! ≤ d(j)(v)N−v(H)+f(j) ≤ v(H)!, where f(j) = min
H′⊂H, e(H′)=j

v(H ′).

Let τ = γ−1N−1/m(H). Since f(1) = ` and γ ≤ 1, for 2 ≤ j ≤ e(H)

δj =
∑

v d(j)(v)
τ j−1

∑
v d(v)

≤ v(H)!2τ1−jN `−f(j) ≤ v(H)!2N `−f(j)+(j−1)/m(H)γ.

By definition of f(j) and m(H), `− f(j) + (j − 1)/m(H) ≤ 0. Hence δj ≤ v(H)!2γ and so,
with r = e(H),

δ(G, τ) = 2(r
2)−1

r∑
j=2

2−(j−1
2 )δj ≤ r2r2

v(H)!2γ

as claimed. �

We use a well-known supersaturation theorem to bound the number of edges in contain-
ers.

Proposition 9.3 (Erdős and Simonovits [20]). Let H be an `-graph and let ε > 0. There
exists N0 and η > 0 such that if C is an `-graph on N ≥ N0 vertices containing at most
ηNv(H) copies of H then e(C) ≤ (π(H) + ε)

(
N
`

)
.

Proof of Theorem 1.3. Let η be given by Proposition 9.3, let β = min{ε, η}, let G =
G(N,H), let r = e(H) and let τ = 12r!r2r2

v(H)!2N−1/m(H)/β. By Lemma 9.2, δ(G, τ) ≤
β/12r!. The vertex set of G is [N ](`), n =

(
N
`

)
; and the edge set of G is the set of `-graphs

isomorphic to H, of which there are at most v(H)!
(

N
v(H)

)
. We claim that the collection C

given by Corollary 2.7 applied with β for N sufficiently large satisfies the conditions of the
theorem. Write c′ for the constant c = c(r) in Corollary 2.7.

Condition (a): C covers the independent sets of G, which are precisely the H-free `-graphs
on vertex set [N ].

Condition (b): for each I, the corresponding C ∈ C with I ⊂ C is specified by a tuple
T = (T1, . . . , Ts) ∈ Ps(I) with s bounded by a constant depending on r and ε. Furthermore
|Ti| ≤ c′τn ≤ cN `−1/m(H) for c sufficiently large as a function of H, ε.

Condition (c): the number of copies of H in C is at most βe(G) ≤ βNv(H). Note also
that since β ≤ η, Proposition 9.3 implies that e(C) ≤ (π(H) + ε)

(
N
`

)
.

Condition (d): this holds as log |C| ≤ c′ log(1/β)nτ log(1/τ) ≤ cN `−1/m(H) log N for c
and N sufficiently large. �

Proof of Corollary 1.4. We may assume that e(H) ≥ 2, since otherwise the result is trivial.
Let ε > 0 and let C ⊂ P([N ](`)) be the collection given by Theorem 1.3 (we may assume
that N is sufficiently large). Note that |C| = 2o(N`) and e(C) ≤ (π(H) + ε)

(
N
`

)
for each

C ∈ C. Since every H-free `-graph on N vertices is a subgraph of some graph C ∈ C, this
means there are at most

∑
C∈C 2e(C) ≤ 2(π(H)+ε+o(1))(N

` ) H-free graphs on N vertices. Since
ε > 0 was arbitrary this completes the proof. �

Proof of Theorem 1.5. The proof is very similar to Theorem 1.3, and we only sketch the
details.



HYPERGRAPH CONTAINERS 31

Let r =
(v(H)

`

)
. Let G be the r-graph whose vertex set is two copies of [N ](`), denoted

by VR and VB (vertices in VR correspond to `-edges and vertices in VB correspond to non-
`-edges), and whose edges correspond to copies of H; thus f ∈ (VR ∪ VB)(r) is an edge of
G whenever f ∩ VR and f ∩ VB are the edges and non-edges, respectively, of an `-graph
isomorphic to H with vertices in [N ]. Note that every induced-H-free `-graph I ⊂ [N ](`)

corresponds to an independent set of G, namely the set of vertices in VR corresponding to
the edges of I together with the set of vertices in VB corresponding to non-edges of I.

G has very similar properties to G′ = G(N,K
(`)
v(H)) given in Definition 9.1, where K

(`)
v(H)

is the complete `-graph on v(H) vertices. In particular, for fixed τ , the δj for G differ only

by a constant factor by those for G′. Let m = m(K(`)
v(H)) =

((v(H)
`

)
− 1
)

/(v(H) − `), so

that δ(G, N−1/m/ε) = O(ε).
As in the proof of Theorem 1.3, we may apply Corollary 2.7 with τ = O(N−1/m/ε)

to obtain the required collection C ⊂ P(VR ∪ VB), where each C ∈ C is identified with a
2-coloured `-multigraph in the obvious way. �

We now prove Theorem 1.6. First we must define the function hp(H). For a 2-coloured
`-multigraph J with red and blue edge sets JR and JB, define

Hp(J) = −|JR − JB| log2 p− |JB − JR| log2(1− p).

Observe that the probability that a random `-graph on the same vertex set is a subgraph
of J is 2−Hp(J). Let

hex(H,N) = min{Hp(J) : JR ∪ JB = [N ](`),H 6⊂ J } .

Then we put hp(H) = limN→∞ hex(H,N)
(
N
`

)−1
.

As always, we need a supersaturation lemma for the proof of Theorem 1.6. The proof of
the following is essentially the same as that of Proposition 9.3, and we do not give details.

Lemma 9.4. Let H be an `-graph and let 0 < ε, p < 1. There exists N0 and η > 0 such
that if C is a 2-coloured `-multigraph on N ≥ N0 vertices containing at most ηNv(H) copies
of H then Hp(C) ≥ (hp(H)− ε)

(
N
`

)
.

Proof of Theorem 1.6. The lower bound on the stated probability follows from the defi-
nition of hp(H). Let ε > 0 and let η be given by Lemma 9.4. Let C be the collection
of 2-coloured `-multigraphs given by Theorem 1.5 satisfying |C| = 2o(1)(N

` ) and for every
C ∈ C, the number of copies of H in C is at most ηNv(H). By Lemma 9.4, for each C ∈ C
we have Hp(C) ≥ (hp(H) − ε)

(
N
`

)
. Since every induced-H-free graph on vertex set [N ] is

contained in some C ∈ C,

P(G(`)(N, p) is induced-H-free) ≤
∑
C∈C

2−Hp(C) ≤ 2−(hp(H)−ε+o(1))(N
` ).

Since ε > 0 was arbitrary this completes the proof of Theorem 1.6. �

10. Linear equations

In this section, F denotes a finite field, the set of integers [N ], or an abelian group.
We consider linear systems of the form Ax = b, where A is a k × r matrix. As in the
introduction, when F is a finite field or [N ], then A has entries in F . Our methods apply
to abelian groups as well: in this case, let A have integer entries, where integer-group
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multiplication ax, a ∈ Z, x ∈ F , is a copies of x, x + · · · + x; or −a copies of −x if a is
negative. The definitions of full rank and abundant given in the introduction extend to
abelian groups.

Often one wishes to discount solutions to an equation Ax = b where the vector x contains
repeated values. For example, in forbidding a 3-term arithmetic progression, we take
A = (1, 1,−2) and b = (0) and discount solutions of the form x + x − 2x = 0. To
accommodate this setup, we let Z ⊂ F r be a set of discounted solutions. We also call
(F,A, b, Z) a k × r linear system, where a solution to the system is a vector x ∈ F r − Z
such that Ax = b. A subset I ⊂ F is solution-free if there is no x ∈ Ir − Z with Ax = b.

In this setup, we could also define ex(F,A, b, Z) to be the maximum size of a solution-
free subset when Z 6= ∅. However, this turns out to be unnecessary, since typically |Z| =
o(|F |r−k) so ex(F,A, b, Z) = ex(F,A, b) + o(|F |) by Proposition 10.7.

Definition 10.1. Let (F,A, b, Z) be a k× r linear system with A abundant. When F is a
finite field or [N ], define (as in Rödl and Rucińksi [40])

mF (A) = max
J⊂[r], |J |≥2

|J | − 1
|J | − 1 + rank(AJ)− k

,

where the matrix AJ is the k × (r − |J |) submatrix of A obtained by deleting columns
indexed by J . Otherwise, when F is an abelian group, let t be the maximum value of j for
which AJ has full rank whenever |J | = j, and let

mF (A) =
k + t− 1

t− 1
.

It can readily be checked that if A is abundant then the denominators appearing in the
definition of mF (A) are strictly positive. The separate definition of mF (A) when F is an
abelian group is necessary since the rank of an integer matrix over an abelian group is not
well-defined; in general, when the pair (F,A) could either be considered a finite field or an
abelian group with A integer valued, the value of the second definition is at least as big as
the value of the first definition. This is since rank(AJ) = k when |J | ≤ t, and is otherwise
at least max{0, k + t− |J |}.

This is our main theorem for linear equations. The determinantal of a k × r integer
matrix is the greatest common divisor of the determinants of its k × k submatrices.

Theorem 10.2. Let ε > 0 and let (F,A, b, Z) be a k × r linear system with A abundant.
There are constants c, β, depending on A, ε in the case F = [N ], and depending only on
k, r, ε otherwise, such that if |F | ≥ c and |Z| ≤ β|F |r−k then there exists C ⊂ P(F )
satisfying

(a) for every solution-free subset I ⊂ F there exists C ∈ C with I ⊂ C,
(b) moreover, for each pair I, C in (a), there exists T = (T1, . . . , Ts) where Ti ⊂ I,

s ≤ c and
∑

i |Ti| ≤ c|F |1−1/mF (A), such that C = C(T ),
(c) for every C ∈ C, the number of solutions to Ax = b with x ∈ Cr − Z is at most

ε|F |r−k,
(d) if F is a finite field or [N ], or F is an abelian group and the determinantal of A is

coprime to |F |, then |C| ≤ ex(F,A, b) + ε|F |,
(e) log |C| ≤ c|F |1−1/mF (A) log |F |.

Theorem 10.3. Let (F,A, b, Z) be a k × r linear system with |Z| = o(|F |r−k) and A
abundant, and additionally with the determinantal of A coprime to |F | in the case that F
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is an abelian group. Then the number of solution-free subsets of F is 2ex(F,A,b)+o(|F|). Here
o(1) → 0 as |F | → ∞, with A fixed in the case F = [N ].

Note that Theorem 10.3 generalizes Theorem 1.9 by including abelian groups and allow-
ing Z 6= ∅.

If A is not abundant, then the conclusion of Theorem 10.3 need not hold. For example,
let A = (1, 1), b = (0), and consider the cyclic group Cn for n odd. Observe that the pairs
(x, y) such that x+ y = 0 and x 6= y partition Cn \{0}. Therefore ex(Cn, A, b) = (n+ 1)/2.
However, one can construct a solution-free set by including either x or y or neither for each
pair (x, y), so there are at least 3(n−1)/2 solution-free sets. There are similar examples with
larger values of k and r > k + 2.

Additionally, when F = [N ], the condition that A is fixed as |F | = N →∞ is necessary.
For example, for the equation w + x + (10N)y − (10N)z = N , the maximum size of a
solution-free subset of [N ] is N/2 (since for every pair w, x ∈ [N ] with w + x = N , a
solution-free set can include at most one of x or y), but there are at least 3(N−1)/2 solution
free sets, since for every w, x ∈ [N ] with w + x = N and w 6= x, we can include either x
or y or neither to form a solution-free set.

Theorem 10.2 follows from an application of Corollary 2.7 to the following hypergraph,
whose independent sets correspond to solution-free subsets of F .

Definition 10.4. Let (F,A, b, Z) be a k × r linear system. The r-partite r-graph G =
G(F,A, b, Z) has vertex set V (G) = X1 ∪ · · · ∪Xr, where each Xi is a disjoint copy of F ,
and edge set E(G) = {x = (x1, . . . , xr) ∈ X1 × · · · ×Xr − Z : Ax = b}.
Fact 10.5. Let F be a finite field or abelian group, let A be a k× ` matrix and let b ∈ F k.
If A has full rank then there are |F |`−k solutions to Ax = b. More generally if F is a finite
field, there are at most |F |`−rank(A) solutions to Ax = b.

Proof. If A has full rank, then for every b1, b2 ∈ F k there exists x ∈ F ` with Ax = b2 − b1.
Thus if x1 is a solution to Ax1 = b1 then A(x1 + x) = b2, so by symmetry every b ∈ F k has
|F |`/|F |k solutions to Ax = b. The case when F is a finite field is standard. �

Lemma 10.6. Let (F,A, b, Z) be a k × r linear system where F is a finite field or abelian
group, A is an abundant matrix and |Z| ≤ |F |r−k/2. Let G = G(F,A, b, Z), γ ≤ 1 and
τ = |F |−1/mF (A)/γ. Then δ(G, τ) ≤ r2r2

γ.

Proof. The number of edges in G is the number of solutions to Ax = b not in Z. The matrix
A has full rank, so by Fact 10.5 the number of edges of G is |F |r−k − |Z| ≥ |F |r−k/2.

For v ∈ V (G) and j ≥ 2, d(j)(v) is the maximum over all sets σ = {y1, . . . , yj} with v ∈ σ
of the number of edges of G containing σ. If σ contains two vertices in the same part Xi

then there are no edges containing σ. Otherwise suppose y` ∈ Xi` for ` = 1, . . . , j, where
1 ≤ i1 < · · · < ij ≤ r. Let J = {i1, . . . , ij}. The number of edges containing σ is at most
the number of solutions to Ax = b with xi` = y` for ` = 1, . . . , j, which for some b∗ ∈ F k

is the number of solutions to AJx∗ = b∗, x∗ ∈ F r−j . We now split the proof into two cases
depending on whether F is a finite field or an abelian group.

When F is an abelian group: If j ≤ t (recall Definition 10.1), then AJ has full rank by
assumption, and so Fact 10.5 implies the number of solutions is at most |F |r−j−k. When
2 ≤ j ≤ t, we have d(j)(v) ≤ |F |r−j−k, so

δj =
∑

v d(j)(v)
τ j−1

∑
v d(v)

≤ 2|F |r−j−k

τ j−1|F |r−k−1
= 2|F |1−jτ1−j .
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When t + 1 ≤ j ≤ t + k, the bound d(j)(v) ≤ d(t)(v) implies that

δj ≤
2|F |r−t−k

τ j−1|F |r−k−1
= 2|F |1−tτ1−j ≤ 2|F |1−tτ1−t−k,

When t + k + 1 ≤ j ≤ r, the bound d(j)(v) ≤ |F |r−j implies that

δj ≤
2|F |r−j

τ j−1|F |r−k−1
= 2|F |k−j+1τ1−j .

Since τ = γ−1|F |−1/mF (A) = γ−1|F |−(t−1)/(k+t−1) and γ ≤ 1, this implies that δj ≤ 2γ for
all j.

When F is a finite field: By Fact 10.5 the number of solutions to AJx∗ = b∗ is at most
|F |r−j−rank(AJ). Hence

d(j)(v) ≤ max
J⊂[r], |J |=j

|F |r−j−rank(AJ).

Using τ = γ−1|F |−1/mF (A) and γ ≤ 1, this implies that

δj =
∑

v d(j)(v)
τ j−1

∑
v d(v)

≤ 2 max
J⊂[r], |J |=j

|F |1−j+k−rank(AJ)+(j−1)/mF(A)γ.

The exponent is at most 0 be definition of mF (A) so δj ≤ 2γ.
In both cases, δ(G, τ) = 2(r

2)−1∑r
j=2 2−(j−1

2 )δj ≤ r2r2
γ. �

The proof of part (d) of Theorem 10.2 requires the following removal lemma of Král’,
Serra and Venna. Note that if A has determinantal coprime to |F | then in particular A has
full rank.

Proposition 10.7 (Král’, Serra and Vena [31, 32]). Let (F,A, b) be a k × r linear system
where F is a finite field or abelian group and A has full rank. Suppose further that A has
determinantal coprime to |F | in the case that F is an abelian group. Let α > 0. Then there
exists η = η(α, k, r) > 0 such that for all Y1, . . . , Yr ⊂ F and b ∈ F k, if there are at most
η|F |r−k solutions to Ax = b with xi ∈ Yi, then there are sets Y ′

1 ⊂ Y1, . . . , Y
′
r ⊂ Yr with

|Y ′
i | ≤ α|F | such that there is no solution to Ax = b with xi ∈ Yi \ Y ′

i .

Proof of Theorem 10.2. We may assume that F is a finite field or abelian group. Indeed,
[N ] can be embedded into the finite field Zp for a sufficiently large prime p. Taking p in
the range 4k!|A|kN ≤ p ≤ 8k!|A|kN , where |A| is the sum of the absolute values of A,
guarantees that A is still abundant in Zp and that a solution to Ax = b (mod p) is also a
solution to Ax = b (provided, say, |bi| ≤ p/2; but we may assume this since otherwise there
are no solutions to Ax = b in [N ]). Then the result of this theorem for (Zp, A, b, Z) implies
the result for ([N ], A, b, Z), since p/N is bounded by a constant depending only on A.

Let η be given by Proposition 10.7 applied with α = ε/r. Let β = min{ε, η/2, 1/12r!}.
Note that β = β(ε, k, r).

Let G = G(F,A, b, Z) and let τ = 12r!r2r2 |F |−1/mF (A)/β so that by Lemma 10.6,
δ(G, τ) ≤ β/12r!. Note also that τ < 1/144r!2r for |F | sufficiently large, so Corol-
lary 2.7 gives a collection of sets D covering the independent sets of G. For D ∈ D,
let πi(D) = D ∩Xi ⊂ F be the part of D in the ith copy of F and let

C = {C(D) : D ∈ D} ⊂ P(F ) where C(D) = π1(D) ∩ · · · ∩ πr(D).

We claim that C satisfies the conditions of the theorem.
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Condition (a): consider a solution-free set I ⊂ F . The subset J of V (G) formed by
taking a copy of I in each Xi is an independent set in G. In particular, it is contained in
some D ∈ D, hence I ⊂ C(D).

Condition (b): for I, C in (a), there exists a tuple T = (T1, . . . , Ts) such that Ti ⊂ J ,
D = D(T ), |Ti| ≤ 288r!2τn ≤ c|F |1−1/mF (A) and s ≤ c for c sufficiently large as a function
of r and β. Thus C is specified by the rs-tuple (T1 ∩X1, . . . , T1 ∩Xr, . . . , Ts ∩Xr) ⊂ Irs.
This verifies condition (b) (with rs in place of s).

Condition (c): consider C ∈ C. Each solution to Ax = b with x ∈ Cr − Z corresponds
to an edge of G[D], of which there are at most βe(G) = β|F |r−k.

Condition (d): there are at most β|F |r−k + |Z| ≤ η|F |r−k such x ∈ Cr with Ax = b, so
by Proposition 10.7 there exists a set Y = ∪iYi ⊂ C, |Y | ≤ ε|F | such that there are no
x ∈ (C − Y )r with Ax = b, implying that |C| ≤ ex(F,A, b) + ε|F |.

Condition (e): observe that

log |C| ≤ log |D| ≤ c(r) log(1/β)|F |τ log(1/τ) ≤ c|F |1−1/mF (A) log |F |,

for c sufficiently large as a function of r and β. �

Proof of Theorem 10.3. The proof is the same as the proof of Corollary 1.4, where the
collection given by Theorem 10.2 is used instead of the collection given by Theorem 1.3. �

11. Sidon sets

In this section we prove Theorem 1.10. To prove the upper bound we construct, in
the natural way, the hypergraph representing the solutions to w + x = y + z in a subset
S ⊂ [n]. We then apply Theorem 5.3 in an entirely mechanical way; all that is needed is to
set appropriate values and to check the conditions. We remark that the codegree function
δ for this hypergraph exhibits a change in behaviour when |S| < n2/3, as the dominant
contribution then comes from δ2 rather than δ4 (see equation (6)); Kohayakawa, Lee, Rödl
and Samotij [29] noticed an interesting behavioural change at the same point, for a closely
related problem.

Proof of Theorem 1.10. Lower bound construction. Suppose n = 4p(p−1) for some prime p.
Ruzsa [41] shows that there is a set S ⊂ [p(p − 1)] of size p − 1 such that every sum of
two elements of S is distinct modulo p(p − 1). Thus for any U1, U2, U3, U4 ⊂ S satisfying
Ui ∩ Uj = ∅ for i 6= j, the set

U1 ∪ (U2 + p(p− 1)) ∪ (U3 + 2p(p− 1)) ∪ (U4 + 3p(p− 1))

is a Sidon subset of [4p(p − 1)], where V + x := {v + x : v ∈ V }. This gives 5p−1 =
√

5
(1+o(1))

√
n

> 2(1.16+o(1))
√

n Sidon subsets of [n] = [4p(p−1)]. The general case follows by
embedding [4p(p−1)] into [n], where p is the largest prime such that 4p(p−1) < n, and using
the fact that the ratio of successive primes tends to 1. (We note that any construction for
large modular Sidon sets could have been used here; this includes the classical constructions
of Singer [50] and of Bose [9].)

Upper bound. Let G be the 4-graph on vertex set [n], where {w, x, y, z} ∈ [n](4) is an
edge whenever w + x = y + z. Sidon sets correspond to independent sets in G (although
the converse is not always true, since solutions to w + x = y + z where w = x or y = z
do not correspond to edges of G). We shall apply Theorem 5.3 to the graph G; our task is
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to bound f(m). To this end, let β = 3 × 1014, let u0 = β
√

n, and consider U ⊂ [n] where
u = |U | ≥ u0.

For i ∈ [n− 1], let ti = |{{x, y} ∈ U (2) : x < y, y − x = i}|. Note that
∑

i ti =
(
u
2

)
. Each

pair of sets {w, z} 6= {y, x} with w− z = y− x corresponds to an edge with w + x = y + z,
and each such edge corresponds to the two pairs {w, z} 6= {y, x} and {w, y} 6= {x, z}. Hence
the number of edges in G[U ] satisfies

m = e(G[U ]) =
1
2

n−1∑
i=1

(
ti
2

)
≥ n− 1

2

( 1
n−1

∑
i ti

2

)
≥ u4/20n,

where the last inequality holds for u ≥ u0. Let e0 = β4n/20, as used for Theorem 5.3.
Thus m ≥ e0. Let k = 12r! = 288. For the application of Theorem 5.3, put

τ = τ(U) = max{24ku2/m, (4ku/m)1/3}.

We must check that the conditions of Theorem 5.3 hold.
Recall the definition of d(j)(w). In G[U ], observe that d(2)(w) ≤ u/2 + u = 3u/2, since

for x ∈ U , the number of solutions of the form w+x = y+z is at most u/2 and the number
of solutions of the form w + y = x + z is at most u; similarly d(3)(w) ≤ 3 and d(4)(w) ≤ 1.
Hence

δ2 ≤
3u2

8τm
δ3 ≤

3u

4τ2m
δ4 ≤

u

4τ3m
,

and (since τ < 1/12)

(6) δ = 32δ2 + 16δ3 + 4δ4 ≤
12u2

τm
+

2u

τ3m
.

Then both terms on the right hand side of (6) are less than 1/2k, so δ ≤ 1/12r! is satisfied.
To apply Theorem 5.3, we also require τ ≤ 1/144r!2r = 1/331776.

If τ ≤ 24ku2/m, then the constraint τ ≤ 1/144r!2r is automatically satisfied (since
m ≥ u4/20n and u ≥ β

√
n), and

uτ log(1/τ) ≤ (24ku3/m) log(m/(24ku2))

≤ 203/448k
√

n
( n

m

)1/4
log

(m/n)1/4

(24k)1/2(20)1/4

=: f1(m),

where the first inequality holds since τ log(1/τ) is an increasing function of τ when τ < 1/e,
and the second inequality holds since u3 log(m/(24ku2)) is an increasing function of u when
u ≤ e−1/3

√
m/24k, and u ≤ (20nm)1/4 which is less than e−1/3

√
m/24k because m ≥ e0.

Alternatively, if τ ≤ (4ku/m)1/3 then the constraint τ ≤ 1/144r!2r is automatically
satisfied, and

uτ log(1/τ) ≤ (4ku4/27m)1/3 log(m/4ku)

≤ 6k1/3n1/3 log n

=: f2(m) when m ≤ e(G),

where the second inequality holds since u4/3 log(m/4ku) is an increasing function of u when
u ≤ e−3/4m/4k and u ≤ (20nm)1/4, together with the bound m ≤ n4. Let f2(m) = 0 for
m > e(G).
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Let α = 1 − 1/2r! and mi = e0/αi = β4n/20αi. The conditions of Theorem 5.3 hold,
so let C be the collection of containers given by Theorem 5.3 for the graph G, where each
C ∈ C satisfies e(C) ≤ e0 (and hence |C| ≤ u0), and log |C| ≤ 288rr!2

∑
i≥0 f(mi). Since f1

and f2 are non-increasing functions of m, f(m) ≤ max{f1(m), f2(m)} for m ≥ e0.
Note that

∑
i≥0 γi = 1/(1− γ) and

∑
i≥0 iγi = γ/(1− γ)2, so

288rr!2
∑
i≥0

f1(mi) = 288rr!2203/448k
√

n
∑
i≥0

(20αi)1/4

β
log

β

αi/4
√

480k

= 288rr!2
960k

√
n

β

(
α1/4 log(1/α)
4(1− α1/4)2

+
log(β/

√
480k)

1− α1/4

)

<
7
√

n

2
.

Observe that mi ≥ n4 > e(G) when i ≥ 3 log n/ log(1/α) (and hence f2(mi) = 0), so∑
i≥0

f2(mi) = o(
√

n).

Each Sidon set in [n] is a subset of size at most (1 + o(1))
√

n of some C ∈ C, |C| ≤ u0.
By Lemma 5.1 the number of such subsets is at most exp{θu0(1 + log(1/θ))}, where θu0 is
the maximum size of a Sidon set, so θ = 1/β + o(1). Letting S be the collection of Sidon
subsets of [n],

log |S|√
n

≤ θu0(1 + log(1/θ))√
n

+
288rr!2√

n

∑
i≥0

f1(mi) +
288rr!2√

n

∑
i≥0

f2(mi)

< 1 + log β + 7/2 + o(1) < 55 log 2 + o(1),

which completes the verification. �

12. Sparsity

In this section we prove Theorem 1.11 and related theorems. Note that the condition
p ≥ cN−1/m(H) in Theorem 1.11 is tight up to the value of c. Indeed, if p = o(N−1/m(H)),
it is readily checked that for some subgraph H ′ ⊂ H with m(H ′) = m(H), the expected
number of copies of H ′ is much less than the number of edges, and removing very few edges
will result in an H-free subgraph.

As a further illustration of the paradigm described in §1.6, we prove two other conjectures
of Kohayakawa,  Luczak and Rödl [30]. The first of these has already been proved, by Conlon
and Gowers [12] for strictly balanced graphs and by Samotij [42], following Schacht [48],
for all graphs. It states that, for non-bipartite H, not only does every H-free subgraph
I of a random graph have at most (1 + o(1))pπ(H)

(
N
2

)
edges, but in the case that I has

close to pπ(H)
(
N
2

)
edges, it can be made (χ(H) − 1)-partite by removing a small number

of edges. The dense (p = 1) version of this theorem is the stability theorem of Erdős and
Simonovits [14, 15, 49].

Theorem 12.1. Let H be a 2-graph with π(H) > 0 and let 0 < γ < 1. There exist
constants ε, c > 0 such that for N sufficiently large and for p ≥ cN−1/m(H), the following
is true. Let E0 be the event that there exists an H-free subgraph I ⊂ G(N, p) with e(I) ≥
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(1− 1
χ(H)−1 − ε)p

(
N
2

)
which cannot be made (χ(H)− 1)-partite by removing at most γp

(
N
2

)
edges. Then P(E0) ≤ exp{−ε2p

(
N
2

)
}.

The other conjecture from [30], sometimes known as the K LR conjecture, has a more
technical statement. Let G be a graph. For U,W ⊂ V (G), write EG(U,W ) ⊂ E(G) for the
set of edges of G with one vertex in U and one vertex in W . Let eG(U,W ) = |EG(U,W )|
and write dG(U,W ) = eG(U,W )/(|U ||W |) for the edge density. For 0 < η, p ≤ 1, say that
the pair (U,W ) is (η, p)-regular if for every U ′ ⊂ U with |U ′| ≥ η|U | and W ′ ⊂ W with
|W ′| ≥ η|W |, the edge density satisfies

|dG(U ′,W ′)− dG(U,W )| ≤ ηp.

This extends the notion of regularity to sparse graphs of density p.
Let H be a graph on vertex set [h]. In what follows, V1 ∪ · · · ∪ Vh is a partition of

[N ] = [hn], where each part has size |Vi| = n. If G is a graph on vertex set [N ], say that G
is (H, η, p)-regular if for every pair (Vi, Vj) with {i, j} ∈ E(H), the bipartite subgraph of G
between Vi and Vj is (η, p)-regular.

Let G = G(n, M, H) denote a graph chosen uniformly at random from all h-partite
graphs with parts V1, . . . , Vh, having eG(Vi, Vj) = M if {i, j} ∈ E(H) and eG(Vi, Vj) = 0
otherwise. We say that G(n, M, H) is H-free if there is no set of vertices v1, . . . , vh with
vi ∈ Vi such that {vi, vj} is an edge of G whenever {i, j} ∈ E(H).

A proof of the next theorem in the case that H is balanced was given by Balogh, Morris
and Samotij [6]. The theorem verifies the K LR conjecture.

Theorem 12.2. Let H be a graph and let α > 0. Then there exist η, c > 0, such that for n
sufficiently large, if M ≥ cn2−1/m(H), then

P(G(n, M, H) is both H-free and (H, η,M/n2)-regular) ≤ αM .

Thus Theorem 12.2 says that although there might be sparse (H, η, p)-regular graphs
with no copy of H (unlike in the dense case), there are extremely few of them.

A similar result to Theorem 1.11 applies to other structures, such as solutions to linear
equations as in §10. So we can say, for example, that if J is a solution-free subset of F of
maximum size, and if a subset X ⊂ F is chosen with probability p, then almost certainly
the maximum size of a solution-free subset of X is p(|J |/|F | + o(1))|F |, provided p is not
too small.

Theorem 12.3. Let 0 < γ < 1 and let (F,A, b, Z) be a k×r linear system with A abundant,
and additionally with the determinantal of A coprime to F in the case that F is an abelian
group. Then there exist constants ε, c > 0, depending on γ, A when F = [N ], and depending
only on γ, k, r otherwise, such that for |F | ≥ c, |Z| ≤ ε|F |r−k and p ≥ c|F |−1/mF (A), if
X ⊂ F is a random subset with each element included independently with probability p,
then the following event holds with probability greater than 1− exp{−γ3p|F |/512}:

every solution-free subset has at most p(ex(F,A, b) + γ|F |) elements.

When F is a finite field, the condition p ≥ c|F |−1/mF (A) in Theorem 12.3 is known to
be tight up to the value of the constant c appearing, at least under some slightly more
restrictive assumptions on (F,A, b, Z). See Rödl and Ruciński [40].

Theorems 1.11, 12.1 and 12.3 follow by applying the following lemma to the collections
given by Theorems 1.3 and 10.2.
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Lemma 12.4. Given 0 < ν < 1 and s ≥ 1, there is a constant φ = φ(ν, s) such that the
following holds. Let M be a set, |M | = n, and let I ⊂ P(M). Let t ≥ 1, let φt/n ≤ p ≤ 1
and let νn/2 ≤ d ≤ n. Suppose for each I ∈ I there exists both TI = (T1, . . . , Ts′) ∈ Ps′(I)
and D = D(TI) ⊂ M , where s′ ≤ s,

∑
i |Ti| ≤ t and |D(TI)| ≤ d. Let X ⊂ M be a random

subset where each element is chosen independently with probability p. Then

(7) P (|D(T ) ∩X| > (1 + ν)pd for some I ⊂ X, I ∈ I) ≤ exp{−ν2pd/32}.

Proof. Consider I ∈ I and T = TI = (T1, . . . , Ts′). Let J(T ) = T1 ∪ · · · ∪ Ts′ . Let ET be
the event that

J(T ) ⊂ X and |D(T ) ∩X| ≥ (1 + ν)pd.

The event ET is contained in FT ∩GT , where FT is the event that J(T ) ⊂ X and GT is the
event that |(D(T ) − J(T )) ∩X| ≥ (1 + ν)pd− |J(T )|. Since FT and GT are independent,
P(ET ) ≤ P(FT )P(GT ). Now |J(T )| ≤ t ≤ pn/φ ≤ 2pd/φν ≤ νpd/2 if φ is large. So by
standard estimates (e.g., Chernoff’s bound),

P(GT ) ≤ P(Bin(d, p) ≥ (1 + ν/2)pd) ≤ exp{−ν2pd/16},

where Bin(n, p) is the binomial random variable. Note that P(FT ) = p|J(T )|. Let x =
pn/t ≥ φ, so t ≤ 2pd/xν. If φ is large we may assume p(n− t) > t, so∑

T

P(FT ) ≤
t∑

i=0

(
n

i

)
2sipi ≤ (t + 1)

(
ne2sp

t

)t

≤ (xe22s)t ≤ (xe22s)
2pd
xν ≤ exp{ν2pd/32}

holds if φ, and therefore x, is large. If there exists I ⊂ X, I ∈ I with |D(TI)∩X| ≥ (1+δ)pd,
then the event ETI

holds. Hence the probability in (7) is bounded by∑
T

P(FT )P(GT ) ≤ exp{ν2pd/32} exp{−ν2pd/16} ≤ exp{−ν2pd/32}

as claimed. �

Proof of Theorem 1.11. Let I be the set of H-free `-graphs on vertex set [N ]. Let ε = γ/4
and M = [N ](`). For I ∈ I, let T = TI , C = C(T ) and c′ = c(H, ε) be given by Theorem 1.3.
Our aim is to apply Lemma 12.4 with D(T ) = C(T ) and

ν = γ/2, d = (π(H) + ε)
(

N

`

)
, s = c′, t = c′N `−1/m(H).

The conditions of Lemma 12.4 then hold with n =
(
N
`

)
, noting that d ≥ νn/2 and that

p ≥ cN−1/m(H) ≥ φt/n if c is large enough. Finally, note that in (7), each H-free `-graph
I ∈ I is contained in C(TI) and (1 + ν)pd ≤ (π(H) + γ)p

(
N
`

)
, so the probability in the

statement of the theorem is bounded by

exp{−ν2pd/32} ≤ exp
{
−γ3p

(
N

`

)
/512

}
,

completing the proof. �

Proof of Theorem 12.1. Notice that π(H) = 1 − 1/(χ(H) − 1) and χ(H) ≥ 3. It is a
standard exercise, using either the stability arguments of Erdős and Simonovits or using
Szemerédi’s regularity lemma, that there exists ε > 0 such that if C is a 2-graph on vertex
set [N ] for N sufficiently large with e(C) ≥ (1− 1

χ(H)−1 −11ε)
(
N
2

)
and such that C contains

at most ε
(

N
v(H)

)
copies of H, then there exists a subgraph F ⊂ C of size e(F ) ≤ (γ/2)

(
N
2

)
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such that C − F is (χ(H) − 1)-partite. We may and shall assume that ε ≤ 1/66 and
65ε2 ≤ γ3.

Let I be the set of H-free graphs on vertex set [N ]. For I ∈ I let T = TI , C = C(T )
and c′ = c(H, ε) be given by Theorem 1.3 with ε as above. Let

I1 =
{

I ∈ I : e(C(TI)) ≥
(

1− 1
χ(H)− 1

− 11ε

)(
N

2

)}
,

I2 = I − I1.

For I ∈ I1 let F = F (TI) ⊂ C(TI) be as above, so that C(TI)−F (TI) is (χ(H)−1)-partite.
Let X = G(N, p). Let E1 be the event that there exists I ⊂ X, I ∈ I1 such that

|F (TI) ∩ X| ≥ γp
(
N
2

)
. Let E2 be the event that there exists I ⊂ X, I ∈ I2 such that

|C(TI) ∩X| ≥ (1− 1
χ(H)−1 − ε)p

(
N
2

)
. Observe that E0 ⊂ E1 ∪ E2.

The probability of E2 is bounded by applying Lemma 12.4 to the collection I2, with
M = [N ](2), n =

(
N
2

)
, D(TI) = C(TI), ν = 10ε, d = (1 − 1

χ(H)−1 − 11ε)
(
N
2

)
≥ 1

3

(
N
2

)
, s = c′

and t = c′N2−1/m(H); provided p ≥ cN−1/m(H) and c,N are sufficiently large,

P(E2) ≤ exp
{
−ν2pd/32

}
≤ exp

{
−25ε2p

(
N

2

)
/24
}

.

The probability of E1 is bounded by applying Lemma 12.4 to the collection I1, with
D(TI) = F (TI), ν = γ, d = (γ/2)

(
N
2

)
, s = c′ and t = c′N2−1/m(H); provided p ≥ cN−1/m(H)

and c,N are sufficiently large,

P(E1) ≤ exp
{
−ν2pd/32

}
= exp

{
−pγ3

(
N

2

)
/64
}
≤ exp

{
−65pε2

(
N

2

)
/64
}

.

Since P(E0) ≤ P(E1)+P(E2) and pN2 is large, this completes the proof of Theorem 12.1. �

Proof of Theorem 12.2. Let N = hn, let p = M/n2 and let X = G(n, M, H). For ease of
notation we shall often identify graphs with their edge sets. Let ν = ν(H,α), η = η(H, ν)
and ε = ε(H, η) be sufficiently small constants to be chosen later. Let C be given by
Theorem 1.3 applied with H and ε. For T = (T1, . . . , Ts), let J(T ) = T1 ∪ · · · ∪ Ts, and
define the following probabilistic events:

ET : J(T ) ⊂ X ⊂ C(T ) and X is (H, η, p)-regular,

FT : J(T ) ⊂ X,

GT : X ⊂ C(T ) and X − J(T ) is (H, 2η, p)-regular.

Theorem 1.3 tells us that if X is H-free then there exists T = (T1, . . . , Ts) with J(T ) ⊂
X ⊂ C(T ), and if in addition X is (H, η, p)-regular then ET holds. By the union bound, it
is hence sufficient to show that

∑
T P(ET ) ≤ αM .

Theorem 1.3 also states that s ≤ c′ and |J(T )| ≤ c′N2−1/m(H), where c′ = c′(ε,H), so it
is easily checked that if X is (H, η, p)-regular then X − J(T ) is (H, 2η, p)-regular provided
that p ≥ (c′/η3)N−1/m(H). This holds provided M ≥ cn2−1/m(H) for c sufficiently large,
which we shall assume. Therefore ET ⊂ FT ∩GT and so P(ET ) ≤ P(FT )P(GT |FT ).

In order to bound P(GT |FT ), let T be fixed, let J = J(T ) and let C = C(T ) ∈ C. Consider
an η-regular Szemerédi partition of C refining the partition V1, . . . , Vh, i.e., for r sufficiently
large depending only on η, and for each i ∈ [h] an equitable partition Vi = Vi,1 ∪ · · · ∪ Vi,r

so that all but at most ηr2e(H) of the bipartite graphs between pairs (Vi,x, Vj,y) with
{i, j} ∈ E(H) are η-regular.
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Provided η and ε are sufficiently small then, by standard arguments, for every choice
of x1, . . . , xh ∈ [r] there exists some pair {i, j} ∈ E(H) such that the pair (Vi,xi , Vj,xj ) is
either irregular or has density dC(Vi,xi , Vj,xj ) < ν (since otherwise there would be more
than εNh copies of H in C, contradicting the conditions of Theorem 1.3). In particular, by
averaging, there exists {i0, j0} ∈ E(H) such that at least r2/e(H) of the pairs (Vi0,x, Vj0,y)
with x, y ∈ [r] are either irregular or of density less than ν. Let

R = {(Vi0,x, Vj0,y) : x, y ∈ [r] and dC(Vi0,x, Vj0,y) < ν},
S = {{u, w} : u ∈ U , w ∈ W , for some (U,W ) ∈ R}.

Since there are at most ηr2e(H) irregular pairs (Vi0,x, Vj0,y) with x, y ∈ [r], this implies
that |R| ≥ r2/2e(H) for η sufficiently small. Allowing for the sets Vi,x not being all
exactly the same size, this implies that |S| ≥ n2/4e(H). Note that, by the definition of R,
|S ∩ C| ≤ ν|S| ≤ νn2 holds.

Write P (i, j) for the set of pairs of vertices {{u, v} : u ∈ Vi, v ∈ Vj}. If GT holds, then
X − J is (H, 2η, p)-regular and so

(8) |S ∩ (X − J)| ≥ (1− 2η)p|S| ≥ M/8e(H).

However |S ∩ C| ≤ νn2 and if GT holds then X ⊂ C, so the probability of (8) is small.
Specifically, in generating the random graph (X−J)∩P (i0, j0) when conditioned on J ⊂ X,
we are selecting a set of M − |J ∩ P (i0, j0)| ≤ M edges uniformly from at least n2 − |J ∩
P (i0, j0)| ≥ n2/2 possible edges, and for (8) to hold, we must select at least M/8e(H) edges
from a set of νn2 possibilities. This probability is at most

P(GT |FT ) ≤
(

M

M/8e(H)

)(
νn2

n2/2

)M/8e(H)

≤ 2M (2ν)M/8e(H) ≤ (α/2)M ,

provided ν = ν(H,α) is small enough.
Thus

∑
T P(ET ) ≤

∑
T P(FT )P(GT |FT ) ≤ (α/2)M

∑
T P(FT ), and to complete the proof

it is enough to show
∑

T P(FT ) ≤ 2M . Now∑
T

P(FT ) =
∑
T

P(J(T ) ⊂ X) =
∑
T

E1J(T )⊂X = E |{T : J(T ) ⊂ X}| .

Since T = (T1, . . . , Ts) where s ≤ c′, Lemma 5.1 tells us that |{T : J(T ) ⊂ X}| ≤
exp{c′θ|X|(1 + log(1/θ))} where θ|X| is the average size of the Ti. Now |X| = Me(H) ≥
ce(H)n2−1/m(H) and θ|X| ≤ c′n2−1/m(H). We can make θ as small as we wish to by making
c large, thus ensuring |{T : J(T ) ⊂ X}| ≤ 2M , as desired. �

Proof of Theorem 12.3. Repeat the proof of Theorem 1.11 with M = F and use Theo-
rem 10.2 instead of Theorem 1.3 for the collection C. �

Proof of Theorem 1.12. Let ([N ], A, b, Z) be the (`− 2)× ` linear system corresponding to
forbidding an `-term arithmetic progression in [N ]. For example if ` = 3 then A = (1, 1,−2),
b = (0) and Z is the set of solutions of the form x + x − 2x = 0 that are discounted, so
|Z| = N . It can readily be checked that m[N ](A) = `− 1. Since ex(F,A, b) = 0, the result
immediately follows by applying Theorem 12.3. �
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[11] P.J. Cameron and P. Erdős, On the number of sets of integers with various properties, Number Theory

(Banff, AB, 1988), de Gruyter, Berlin (1990), 61–79.

[12] D. Conlon and W.T. Gowers, Combinatorial theorems in sparse random sets, submitted.

[13] R. Dotson and B. Nagle, Hereditary properties of hypergraphs, J. Combinatorial Theory (Ser. B) 99

(2009), 460–473.
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[18] P. Erdős, A. Rényi and V.T. Sós, On a problem of graph theory, Studia Sci. Math. Hungar. 1 (1966),

51–57.
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[38] H.-J. Prömel and A. Steger, Excluding induced subgraphs III: a general asymptotic, Rand. Struct. Alg.

3 (1992), 19–31.
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