An Optimal Approximation algorithm for Feedback Vertex Set in Tournaments

Pranabendu Misra

Chennai Mathematical Institute, India.

FEEDBACK VERTEX SET

Input: Directed graph G on n vertices.

Output: Minimum subset $S \subseteq V(G)$ such that G - S is acyclic.

It is NP-Complete and has a factor- $O(\log n \log \log n)$ approximation.

FEEDBACK VERTEX SET in Tournaments (FVST)

Tournament: A complete digraph, i.e. either (u, v) or (v, u) exists for every pair u, v of vertices.

Input: Tournament G on n vertices.

Output: Minimum subset $S \subseteq V(G)$ such that G - S is acyclic.

Still NP-Complete, but easy to get 3-approximation

3-approximation for FVST

Lemma

A tournament G contains a cycle if and only if it contains a cycle of length 3.

3-approximation for FVST

Lemma

A tournament G contains a cycle if and only if it contains a cycle of length 3.

Algorithm: While there exists a triangle $\{u, v, w\}$ in the graph, find and delete all three vertices of it.

Analysis:

- At least one of $\{u, v, w\}$ must be in any optimum solution.
- On deleting $\{u, v, w\}$ the optimum solution decreases by at least 1 vertex, at the cost of 3 vertices.

Better than 3-approximation?

Theorem

Unless the Unique Games Conjecture is false, FVST can't have a factor- $(2 - \epsilon)$ approximation algorithm for any constant $\epsilon > 0$.

• [Cai et.al. SICOMP 2000] 5/2 approximation.

Local Ratio Technique

• [Mnich et.al. ESA 2016] 7/3 approximation.

Iterative Rounding

- [Mathieu, Schudy STOC 2007] PTAS for FEEDBACK ARC SET in tournaments.
- Under <u>Unique Games Conjecture</u>, FVS has no α -approximation for any constant $\alpha > 0$.

Better than 3-approximation?

Theorem

Unless the Unique Games Conjecture is false, FVST can't have a factor- $(2 - \epsilon)$ approximation algorithm for any constant $\epsilon > 0$.

• [Cai et.al. SICOMP 2000] 5/2 approximation.

Local Ratio Technique

• [Mnich et.al. ESA 2016] 7/3 approximation.

Iterative Rounding

- [Mathieu, Schudy STOC 2007] PTAS for FEEDBACK ARC SET in tournaments.
- Under Unique Games Conjecture, FVS has no α -approximation for any constant $\alpha > 0$.

<u>Long standing question</u>: Is there a 2-approximation for FVST?

TT · 1 A 1 · · · · TD 1 ·

Universal Algorithmic Technique

Pick a random vertex and ... (do something)

Some Simple Ingredients

Lemma

Let G be an acyclic tournament. Then G has a unique topological ordering.

Some Simple Ingredients

Lemma

Let G be an acyclic tournament. Then G has a unique topological ordering.

Lemma

Let G be a tournament, and $u \in V(G)$. Then u is part of a cycle if and only if u is part of a triangle.

Smallest Cycle containing u

Some Simple Ingredients

Lemma

Let G be an acyclic tournament. Then G has a unique topological ordering.

Lemma

Let G be a tournament, and $u \in V(G)$. Then u is part of a cycle if and only if u is part of a triangle.

Lemma

Let S_{OPT} denote an optimum solution to FVST in G. If $|S_{OPT}| \ge n/2$ then V(G) itself is a 2-approximate solution.

So we can assume that $|S_{OPT}| < n/2$.

So we can assume that $|S_{OPT}| < n/2$.

• Let $R = V(G) \setminus S_{OPT}$. Then G[R] is an acyclic tournament on at least n/2 vertices.

Note that G[R] is not known to us, but it exists.

- Consider the unique topological ordering of the vertices of G[R]
- Partition R into equal 3 parts, with respect to the topological order, say R_1, R_2, R_3

 $G - S_{OPT}$ is an Acyclic Tournament on > n/2 vertices

Any vertex $v \in \mathbb{R}_2$ has at least n/6 in-neighbors and at least n/6 out-neighbors, and there are at least n/6 such vertices in G.

Random Sampling

If we pick a vertex $v \in V(G)$ uniformly at random, then with probability at least $\frac{n/6}{n} = \frac{1}{6}$ we have $v \in R_2$.

Random Sampling

If we pick a vertex $v \in V(G)$ uniformly at random, then with probability at least $\frac{n/6}{n} = \frac{1}{6}$ we have $v \in R_2$. v is called the Pivot

Random Sampling

If we pick a vertex $v \in V(G)$ uniformly at random, then with probability at least $\frac{n/6}{n} = \frac{1}{6}$ we have $v \in R_2$.

v is called the Pivot

Key properties of $v \in R_2$:

- (1) There is an optimum solution S_{OPT} that excludes v
- (2) at most 5n/6 in-neighbors and 5n/6 out-neighbors in G.

(1) There exists optimum S_{OPT} that excludes v

- \bullet For every triangle $\{u,v,w\}$ at least one of v,w lies in $S_{OPT}.$
- Pick v, w into the approximation solution, which is locally 2-approximate.

 A_v = vertices picked with respect to v

ullet We stop when there are no more triangles containing v

(2) v has at most 5n/6 in-neighbors / out-neighbors

• V_1 be the in-neighborhood of v, V_2 be the out-neighborhood of v.

$$|V_1|, |V_2| \le 5n/6$$

- The remaining cycles of G lie in either $G[V_1]$ or $G[V_2]$. Recursively solve these two instances to get A_1 , A_2
- Output $A = A_v \cup A_1 \cup A_2$ as the approximate solution.

Approximation factor and Probability

- $\Pr[v \in R_2] \ge 1/6$
- Let $S_{OPT} = S_v \uplus S_1 \uplus S_2$
 - S_v = all vertices of S_{OPT} that lie in a triangle of v.
 - $S_1 = S \cap V_1$, $|S_1| \ge |S_1^{\star}|$ an optimum solution of $G[V_1]$.
 - $S_2 = S \cap V_2$, $|S_2| \ge |S_2^{\star}|$ an optimum solution in $G[V_2]$.
- We know vertices picked for v satisfy $|A_v| \leq 2|S_v|$.
- Suppose the <u>recursive calls</u> on G_1 and G_2 return 2-approximate solutions A_1 and A_2 .

$$|A_1| \le 2|S_1^{\star}| \le 2|S_1|, \quad |A_2| \le 2|S_2^{\star}| \le 2|S_2|$$

We assume recursive calls succeed with probability $\geq 1/2$.

By induction on smaller (5n/6 vertices) instances $G[V_1], G[V_2]$

Approximation factor and Probability

- $\Pr[v \in R_2] \ge 1/6$
- Let $S_{OPT} = S_v \uplus S_1 \uplus S_2$
 - S_v = all vertices of S_{OPT} that lie in a triangle of v.
 - $S_1 = S \cap V_1$, $|S_1| \ge |S_1^{\star}|$ an optimum solution of $G[V_1]$. • $S_2 = S \cap V_2$, $|S_2| \ge |S_2^{\star}|$ an optimum solution in $G[V_2]$.
- We know vertices picked for v satisfy $|A_v| \leq 2|S_v|$.
- Suppose the <u>recursive calls</u> on G_1 and G_2 return 2-approximate solutions A_1 and A_2 .

$$|A_1| \le 2|S_1^{\star}| \le 2|S_1|, \quad |A_2| \le 2|S_2^{\star}| \le 2|S_2|$$

We assume recursive calls succeed with probability $\geq 1/2$.

By induction on smaller (5n/6 vertices) instances $G[V_1]$, $G[V_2]$

Then,

- $A = A_v \cup A_1 \cup A_2$ is a 2-approximate solution in G
- with probability at least 1/6 * 1/2 * 1/2 = 1/24

If we randomly sample a vertex v as the pivot, then with probability at least 1/24 we obtain a 2-approximation solution.

If we randomly sample a vertex v as the pivot, then with probability at least 1/24 we obtain a 2-approximation solution.

Boosting the success probability:

Repeat the random sampling 20 times

• For each randomly sampled pivot vertex v_i , we make 2 recursive calls

we make 40 recursive calls in total

- We obtain a solution A^i for the pivot v_i
- We output the minimum amongst A^1, A^2, \ldots, A^{20} .

If we randomly sample a vertex v as the pivot, then with probability at least 1/24 we obtain a 2-approximation solution.

Boosting the success probability:

Repeat the random sampling 20 times

• For each randomly sampled pivot vertex v_i , we make 2 recursive calls

we make 40 recursive calls in total

- We obtain a solution A^i for the pivot v_i
- We output the minimum amongst A^1, A^2, \dots, A^{20} .
- Probability that all 20 iterations fail $\leq (1-1/24)^{20} \leq 1/2$.

If we randomly sample a vertex v as the pivot, then with probability at least 1/24 we obtain a 2-approximation solution.

Boosting the success probability:

Repeat the random sampling 20 times

• For each randomly sampled pivot vertex v_i , we make 2 recursive calls

we make 40 recursive calls in total

- We obtain a solution A^i for the pivot v_i
- We output the minimum amongst A^1, A^2, \ldots, A^{20} .
- Probability that all 20 iterations fail $\leq (1 1/24)^{20} \leq 1/2$.

Lemma

If we randomly sample 20 pivot vertices, then with probability at least 1/2 we obtain a 2-approximation solution.

Running time

• If we sample a vertex $v \in R_2$, then we know that $|V_1|, |V_2| \leq 5n/6$

The recursive calls are on graphs with at most 5n/6 vertices

• Using the Master theorem we can bound the running time as:

$$T(n) \le 40T(5n/6) + O(n^3) \le O(n^{21})$$

Running time

• If we sample a vertex $v \in R_2$, then we know that $|V_1|, |V_2| \le 5n/6$

The recursive calls are on graphs with at most 5n/6 vertices

• Using the Master theorem we can bound the running time as:

$$T(n) \le 40T(5n/6) + O(n^3) \le O(n^{21})$$

Theorem (Lokshtanov et.al. SODA 2020)

There is a randomized polynomial time algorithm for Feedback Vertex Set in Tournaments that outputs a 2-approximation with probability at least 1/2.

FEEDBACK VERTEX SET in Tournaments

Our results also extend to the weighted version:

Input: Tournament G, weight function $w:V(G)\to\mathbb{R}^+$. **Output**: Minimum weight subset $S\subseteq V(G)$ such that G-S is acyclic.

FEEDBACK VERTEX SET in Tournaments

Our results also extend to the weighted version:

Input: Tournament G, weight function $w: V(G) \to \mathbb{R}^+$. **Output**: Minimum weight subset $S \subseteq V(G)$ such that G - S is acyclic.

Theorem (Lokshtanov et.al. SODA 2020)

There is a randomized polynomial time algorithm for WEIGHTED FEEDBACK VERTEX SET in Tournaments that outputs a 2-approximation with probability at least 1/2.

Next questions...

- FVST is an special case of 3-HITTING SET, which cannot have a factor-3 ϵ -approximation algorithm.
 - Given universe U and a collection of d-size subsets \mathcal{F} , find a minimum $S \subseteq U$ such that $F_i \cap S \neq \emptyset$ for every $F_i \in \mathcal{F}$.
- However, special cases, such as FVST, can indeed have better approximation ratios.

Next questions...

- FVST is an special case of 3-HITTING SET, which cannot have a factor-3 ϵ -approximation algorithm.
 - Given universe U and a collection of d-size subsets \mathcal{F} , find a minimum $S \subseteq U$ such that $F_i \cap S \neq \emptyset$ for every $F_i \in \mathcal{F}$.
- However, special cases, such as FVST, can indeed have better approximation ratios.
- (ICALP 2020:) SPLIT VERTEX DELETION admits a $2 + \epsilon$ approximation algorithm for any constant $\epsilon > 0$. This is (almost) optimal.
- (SOLVED) Cluster Vertex Deletion: 2-approximation.

Next questions...

- FVST is an special case of 3-HITTING SET, which cannot have a factor-3 ϵ -approximation algorithm. Given universe U and a collection of d-size subsets \mathcal{F} , find a
- minimum $S \subseteq U$ such that $F_i \cap S \neq \emptyset$ for every $F_i \in \mathcal{F}$.
- However, special cases, such as FVST, can indeed have better approximation ratios.
- (ICALP 2020:) SPLIT VERTEX DELETION admits a $2 + \epsilon$ approximation algorithm for any constant $\epsilon > 0$. This is (almost) optimal.
- (SOLVED) CLUSTER VERTEX DELETION: 2-approximation.
- (OPEN) Deterministic 2-approximation for FVST?
- (OPEN) Better than 3-approximation for FVS in (subclasses of) Directed Chordal Graphs.

Thank you