Lung Cancer Risk From Exposure to Radon in the Home - Are Policies in the U.K. Appropriate to the Risk?

Andrew T. Arthur MPH MCIEH FRSH
Public Health Policies
Public Health Policies

- All policies have costs to society
Public Health Policies

- All policies have costs to society
- Excess mortality, morbidity and premature death with failure to recognise problem
Public Health Policies

- All policies have costs to society
- Excess mortality, morbidity and premature death with failure to recognise problem
- Unnecessary expenditure, opportunity costs if risk wrongly attributed or applied
Radon

- Naturally occurring radioactive gas
Radon

- Naturally occurring radioactive gas
- Part of decay chain of uranium
Radon

- Naturally occurring radioactive gas
- Part of decay chain of uranium
- Usually associated with hard rock, especially granite
Radon

- Naturally occurring radioactive gas
- Part of decay chain of uranium
- Usually associated with hard rock, especially granite
- Seeps through soil and can enter buildings
Naturally occurring radioactive gas
Part of decay chain of uranium
Usually associated with hard rock, especially granite
Seeps through soil and can enter buildings

Radon

1 through cracks in solid floors
2 through construction joints
3 through cracks in walls below ground level
4 through gaps in suspended floors
5 through cracks in walls
6 through gaps around service pipes
7 through cavities in walls
Why a Potential Problem?
Why a Potential Problem?

- Alpha emitter with high LET
Why a Potential Problem?

- Alpha emitter with high LET
- Decays to solid daughter particles, several of which are also alpha emitters
Why a Potential Problem?

- Alpha emitter with high LET
- Decays to solid daughter particles several of which are also alpha emitters
- Particles combine with moisture to form aerosol which is respired
Why a Potential Problem?

- Alpha emitter with high LET
- Decays to solid daughter particles several of which are also alpha emitters
- Particles combine with moisture to form aerosol which is respired
- Become trapped in airways and can irradiate sensitive lung tissue and cause DNA damage
Why a Potential Problem?

- Alpha emitter with high LET
- Decays to solid daughter particles, several of which are also alpha emitters
- Particles combine with moisture to form aerosol which is respired
- Become trapped in airways and can irradiate sensitive lung tissue and cause DNA damage
- Evidence linking it to lung cancer
Lung Cancer
Lung Cancer

- Major importance in public health terms
Lung Cancer

- Major importance in public health terms
- Largely but not completely preventable
Lung Cancer

- Major importance in public health terms
- Largely but not completely preventable
- Survivability very low
Lung Cancer

- Major importance in public health terms
- Largely but not completely preventable
- Survivability very low
- Most common form of cancer death in U.K.
Lung Cancer

- Major importance in public health terms
- Largely but not completely preventable
- Survivability very low
- Most common form of cancer death in U.K.
- Tobacco implicated in vast majority of cases (approx. 90%)
Radon and Lung Cancer
Radon and Lung Cancer

- Recognised as a problem following cohort studies of miners - excess lung cancer mortality with high level exposures
Radon and Lung Cancer

- Recognised as a problem following cohort studies of miners - excess lung cancer mortality with high level exposures
- Since 1980’s exposures in certain homes considered potential cause of lung cancer
UK Policy - Radon at Home
UK Policy - Radon at Home

- Precautionary principle advised
UK Policy - Radon at Home

- Precautionary principle advised
- Remedial action advised where dose equivalent levels => 200 bq m$^{-3}$
UK Policy - Radon at Home

- Precautionary principle advised
- Remedial action advised where dose equivalent levels $\Rightarrow 200$ bq m$^{-3}$
- Survey of radon by NRPB
UK Policy - Radon at Home

- Precautionary principle advised
- Remedial action advised where dose equivalent levels $=> 200 \text{ bq m}^{-3}$
- Survey of radon by NRPB
- No cost measurement in high radon areas
UK Policy - Radon at Home

- Precautionary principle advised
- Remedial action advised where dose equivalent levels => 200 bq m\(^{-3}\)
- Survey of radon by NRPB
- No cost measurement in high radon areas
- Public awareness campaign
UK Policy - Problems
UK Policy - Problems

- Low proportion of homes undertaking remedial works (10-20%)
UK Policy - Problems

- Low proportion of homes undertaking remedial works (10-20%)

So:-
UK Policy - Problems

- Low proportion of homes undertaking remedial works (10-20%)

So:-

- Change in policy to target remediation in co-operation with L.A.’S
Low proportion of homes undertaking remedial works (10-20%)

So:-

Change in policy to target remediation in co-operation with L.A.’S

Introduction of changes to building regulations to require protection in new homes
Evidence Base
Evidence Base

Individual level:
Evidence Base

Individual level:

- Indirect - extrapolation from prospective cohort studies of miners individual level
Evidence Base

Individual level:

- Indirect - extrapolation from prospective cohort studies of miners individual level
- Direct - from retrospective residential case-control studies
Evidence Base

Individual level:
- Indirect - extrapolation from prospective cohort studies of miners individual level
- Direct - from retrospective residential case-control studies

Population level:
Evidence Base

Individual level:
- Indirect - extrapolation from prospective cohort studies of miners individual level
- Direct - from retrospective residential case-control studies

Population level:
- Direct - from ecologic studies of cancer mortality and average radon levels
Problems With the Evidence
Problems With the Evidence

No disagreement that high level exposure carries risk, *but*:
Problems With the Evidence

No disagreement that high level exposure carries risk, \textit{but}:

- Extrapolation from miner studies assume exposure response curve of LNT theory correct
Problems With the Evidence

No disagreement that high level exposure carries risk, *but*:

- Extrapolation from miner studies assume exposure response curve of LNT theory correct
- Case control study results inconsistent and do not provide definitive support of excess risk
Problems With the Evidence

No disagreement that high level exposure carries risk, *but*:

- Extrapolation from miner studies assume exposure response curve of LNT theory correct
- Case control study results inconsistent and do not provide definitive support of excess risk
- Limits to ecologic method
Review of Case-control Studies
Review of Case-control Studies

All have limitations in one form or another because of retrospective nature, typically:
Review of Case-control Studies

All have limitations in one form or another because of retrospective nature, typically:

- Inaccuracy in measuring exposures
Review of Case-control Studies

All have limitations in one form or another because of retrospective nature, typically:

- Inaccuracy in measuring exposures
- Inadequacies controlling confounders such as ETS and occupational lung carcinogens
Review of Case-control Studies

All have limitations in one form or another because of retrospective nature, typically:

- Inaccuracy in measuring exposures
- Inadequacies controlling confounders such as ETS and occupational lung carcinogens
- Modelling of doses received needed
Review of Case-control Studies

All have limitations in one form or another because of retrospective nature, typically:

- Inaccuracy in measuring exposures
- Inadequacies controlling confounders such as ETS and occupational lung carcinogens
- Modelling of doses received needed
- Inadequacies of sample size and power to resolve risk with precision
Risk Modelling
Risk Modelling

Because direct evidence inconclusive, risks are modelled from miner data
Risk Modelling

Because direct evidence inconclusive, risks are modelled from miner data

U.K. Policy based on:
Because direct evidence inconclusive, risks are modelled from miner data

U.K. Policy based on:

BEIR VI model which assumes LNT
Outcomes Predicted
Outcomes Predicted

- Current predicted outcomes using this model are for annual lung cancer mortality of between 2000 and 3300
Outcomes Predicted

- Current predicted outcomes using this model are for annual lung cancer mortality of between 2000 and 3300.
- Between 500 and 1300 of these are in non-smokers.
Is the Model Correct?
Is the Model Correct?

- Assumes a static population
Is the Model Correct?

- Assumes a static population
- What does this mean in practice?
Is the Model Correct?

- Assumes a static population
- What does this mean in practice?

US lifetime lung cancer mortality attributable to radon in a cohort of 50,000 males and 50,000 females at age 30

<table>
<thead>
<tr>
<th>Radon, pCi/l</th>
<th><=0.5</th>
<th>0.5-4</th>
<th>>4</th>
<th>>10</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No-mobility model</td>
<td>40 (8.7%)</td>
<td>277 (60.5%)</td>
<td>141 (30.8%)</td>
<td>47 (10.3%)</td>
<td>458 (100%)</td>
</tr>
</tbody>
</table>

Is the Model Correct?

- Assumes a static population
- What does this mean in practice?

US lifetime lung cancer mortality attributable to radon in a cohort of 50,000 males and 50,000 females at age 30

<table>
<thead>
<tr>
<th>Radon, pCi/l</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td><=0.5</td>
<td>458 (100%)</td>
</tr>
<tr>
<td>0.5-4</td>
<td>453 (100%)</td>
</tr>
<tr>
<td>>4</td>
<td>453 (100%)</td>
</tr>
<tr>
<td>>10</td>
<td>453 (100%)</td>
</tr>
</tbody>
</table>

Other Methodological Issues
Other Methodological Issues

Radon mapping
Other Methodological Issues

Radon mapping

- Data may be inaccurate
Other Methodological Issues

Radon mapping

• Data may be inaccurate

Radon control
Other Methodological Issues

Radon mapping
- Data may be inaccurate

Radon control
- Cost effectiveness modelled on static population
Other Methodological Issues

Radon mapping
• Data may be inaccurate

Radon control
• Cost effectiveness modelled on static population
• Ceasing smoking of considerably more benefit
Policies in Practice
Policies in Practice

Assuming model is correct at low doses:
Policies in Practice

Assuming model is correct at low doses:

- Predicted benefits to individual from remediation likely to be overestimated
Policies in Practice

Assuming model is correct at low doses:

- Predicted benefits to individual from remediation likely to be overestimated
- Place responsibility for public health problem at individual level
Assuming model is correct at low doses:

- Predicted benefits to individual from remediation likely to be overestimated
- Place responsibility for public health problem at individual level
- Have not compared radon programme costs with other interventions
Recommendations
Recommendations

- Evaluate and quantify effects of UK population mobility
Recommendations

- Evaluate and quantify effects of UK population mobility
- Calculate true costs of remediation allowing for mobility
Recommendations

- Evaluate and quantify effects of UK population mobility
- Calculate true costs of remediation allowing for mobility
- Re-evaluate numbers and locations of homes with high radon levels
Recommendations

- Evaluate and quantify effects of UK population mobility
- Calculate true costs of remediation allowing for mobility
- Re-evaluate numbers and locations of homes with high radon levels
- Evaluate costs of radon remediation against smoking cessation