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1 Setting the scene

Motivation

@ Usually two independent randomized controlled trials (RCTs)
are required to demonstrate efficacy and safety for marketing
authorization.

@ In small populations the conduct of a single RCT with a
sufficient sample size might be difficult or not feasible.

@ This is particularly the case
© in paediatric studies,
@ if the intervention is to treat a rare disease, or
© if randomization is challenging.

@ In situations where randomization is difficult to achieve,
methods that incorporate data from other sources in the
estimation of the treatment effects may be beneficial.
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1 Setting the scene

Examples

Examples where the required number of patients were not
randomized include
@ several RCTs in patients with ankylosing spondylitis.
Patients were randomly assigned (in a 4:1 ratio) to either treatment or
placebo. To support the small placebo control, data from eight previous

trials in patients with ankylosing spondylitis were included (Baeten et al.
2013).

@ an RCT in patients with Creutzfeldt-Jakob disease
Meta-analysis combining evidence on the effects of a certain treatment in
patients with Creutzfeldt-Jakob disease from both a randomized study
and a non-randomized study (Varges et al. 2017).

© the EARLY PRO-TECT trial in paediatric Alport patients
(Gross et al. 2012a).

Warwick, April 26th 2017 3/29



1 Setting the scene

Trial design that mimics the Alport trial
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2 Methodology

Endpoints

@ The primary efficacy endpoint in the EARLY PRO-TECT
Alport trial is “time-to-progression to the next disease level”.

@ This time-to-event endpoint will be assessed in 6-monthly
intervals over the treatment period of 3 years.

@ The second efficacy endpoint “albuminuria after 3 years
corrected for baseline albuminuria for patients randomized to
receive ramipril compared to placebo” is continuous.

@ One might also think of binary endpoints such as “progression
to the next disease level within 3 years (yes/no)".
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2 Methodology

@ We consider a binary endpoint.

e Randomized arms: let Xj, be the number of events and pj,
denote the probability of an event in group i (i = T, C).

e Non-randomized arms: let X, be the number of events and
pi, denote the probability of an event in group i (i = T, C).

@ Binomial model:

X,-j.NB(n,-j,p,-j), I:T,C,j:R,O

1. (1—pcs) P1o(1—pPcy)
o Let Og = log (M) and 0p = log (M) denote

the log odds ratio for the randomized and observational data,
respectively.
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2 Methodology

Model frameworks
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2 Methodology

Arm-based versus contrast-based synthesis of data
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Absolute or relative effects? Arm-based
synthesis of trial data

S. Dias* and A. E. Ades

We congratulate Hwanhee Hong and colleagues on another fascinating paper (Hong et al, 2015a) arguing the
case for arm-based models for meta-analysis.

The standard approach to meta-analysis is the contrast-based model where the information that is pooled over
trials is the information of the trial-specific relative treatment effect, expressed for example as a log relative risk,
log odds ratio, or as a mean treatment difference. In an arm-based model, it is the absolute log risk, log odds,
or mean outcome on each arm that are pooled.
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2 Methodology

Methods for evidence synthesis

@ The power prior approach assigns a weight to the external
data somewhere in between the cases of irrelevance and full
equality.

@ Bias allowance models assume that the external data are
potentially biased and the potential bias is modelled using an
extra variance component that represents the bias.

© Meta-analytic approaches or hierarchical models for evidence
from different study designs are an extension of standard
random-effects meta-analysis that explicitly model
between-study-type variability.
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2 Methodology

Hierarchical models

@ The hierarchical structure of model A may be stated as

Yilbs, 55 ~ N(6),57)
9j|M?TNN(M?T2) 3 J:R,O 5

where y; is an estimate of 6; and s; is its standard error.
The §; differ from study to study and are distributed around a

common mean g with between-study-type variability or
heterogeneity 7.

@ The framework for model B consists of two hierarchical structures
with parameters (u7,77) and (uc, 7c).

The overall treatment effect is computed as a contrast: pur — pc.
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2 Methodology

Model A

Model B

Figure: Hierarchical structures for model A (top) and model B (bottom).
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2 Methodology

Fitting Bayesian hierarchical models

@ We use a Bayesian approach for fitting the hierarchical models.

@ Inference for i and 7 is captured by the joint posterior
distribution, from which the marginal distribution of p is used
to derive point estimates and probability intervals for .

@ Our approach requires prior distributions for p and 7:
o For y1 one may use a noninformative (improper) uniform prior
or a normal prior with mean zero and large variance.

e For 7 we use half-normal (HN) prior distributions.

@ The R package bayesmeta provides a collection of functions
to facilitate Bayesian inference in the random-effects
meta-analysis model.
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Numerical example
3 Numerical experiments Simulations

Generating data

RCT Treatment Control Observational data | Treatment Control
No event 31 9 No event 29 29
Event 9 11 Event 11 31
> nt, =40 nc, =20 > nt, =40 nc, =60
Log odds ratio yr = 1.4374 Log odds ratio yo = 1.0361
Standard error sg = 0.5877 Standard error: sp = 0.4383
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Numerical example
3 Numerical experiments Simulations

Fitting model A

@ bma <- bayesmeta(y, s, mu.prior.mean=0, mu.prior.sd=10,
tau.prior=function(t){dhalfnormal(t,scale=0.5)1})

@ Marginal posterior summary:

tau mu
mode 0.0000 1.1870
median 0.2833 1.1960
mean 0.3428 1.1931
sd 0.2680 0.4699
95% lower 0.0000 0.2637
95% upper 0.8651 2.1278
U.‘D 0‘5 1‘0 1‘5 2‘.0 2.‘5 0.0 U.‘Z 0‘4 0‘6 U‘vS 1‘.0 1.‘2 1‘4
effect g heterogeneity T
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Numerical example
3 Numerical experiments Simulations

Fitting model B

o Compute estimates for the logits(p;) (i = T, C;j = R, 0) and
associated standard errors.

@ bma.t <- bayesmeta(y=yt, s=st, labels=names(yt),
mu.prior.mean=0, mu.prior.sd=10,
tau.prior=function(t){dhalfnormal(t, scale=0.1)})

bma.c <- bayesmeta(y=yc, s=sc, labels=names(yc),

mu.prior.mean=0, mu.prior.sd=10,
tau.prior=function(t){dhalfnormal(t, scale=0.5)})

@ Compute the convolution, that is, the distribution of the
difference (treatment - control).
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Numerical example
3 Numerical experiments Simulations

Fitting model B (2)

] Difference Model A
mean standard error mean sd
1.2056 0.4571 1.1931 0.4699
£ R
% 94 % 2 —«/ S~
B B 4 0 1 2 3
logit(p) difference (treatment-control)
(*] 2.5% 97.5%
Normal.approx  0.3097 2.1015
Convolution 0.3059 2.1165
Model A 0.2637 2.1278
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Numerical example
3 Numerical experiments Simulations

Simulation setup: meta-analysis scenario

@ We investigate the performance of models A and B by means
of a so-called general meta-analysis scenario.

@ We assume that we observe four logit estimates (y1., ycg.
YTor ¥Co) and associated standard errors (75, Scy, STy, SCo)-

@ The underlying true effects are y;, = logit(p;;)
(i=T,Cj=R,0).

e The effects (u7,, MCR,,uTO,,uCO)T are assumed to follow a
multivariate normal distribution with mean (uT, pc, i1, pec) "
and covariance matrix X.
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Numerical example
3 Numerical experiments Simulations

Simulation setup: meta-analysis scenario (2)

@ We consider a scenario in which there are dependencies
between the two randomized arms and between the two
observational arms only.

o That is, the covariance matrix of ({174, gy 1To, 1Co) | 1S
assumed to be

2

-

o2 02—7*" 0 0

2 Th 2

> _ o 5 o 0 0

2 2_To ’
0 o ; o 5
0 02—%0 o2

where 73 = Var(ur, — picy) and 75 = Var(ut, — pc,)-
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Numerical example
3 Numerical experiments Simulations

Simulation setup: data and evaluation criteria

@ Four groups motivated by the EARLY PRO-TECT study
protocol:
- nt, = 40: 8 failures / 32 successes
- nc, = 20: 10 failures / 10 successes
- nt, = 40: 8 failures / 32 successes
- nc, = 60: 30 failures / 30 successes

@ This leads to standard errors: sgT = 0.4, spc = 0.45,
SoT = 0.4 and Soc = 0.26

@ Using 2000 simulation runs per parameter combination, we
computed
@ observed coverages for 95% confidence intervals for the pooled
effect.
@ lengths of meta-analytic confidence intervals relative to the
interval length of the RCT.
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Numerical example
3 Numerical experiments Simulations

Simulation setup: between-study heterogeneity

@ For the between-study-type variability the choice of the prior
distribution can be critical.

@ For log-odds ratios, values for 7 equal to 0.25, 0.5, 1 and 2
represent moderate, substantial, large, and very large
heterogeneity.

e For example, exp(1.097) is the median ratio of the maximum
to the minimum of any random pair of odds ratios.

@ Sensitivity analysis: we choose two half-normal priors for
log-odds ratios with the following characteristics:

prior median  95% interval
Half-normal(scale=0.5)  0.337  (0.016, 1.12)
Half-normal(scale=1.0)  0.674  (0.031, 2.24)
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Numerical example
3 Numerical experiments Simulations

Coverages of confidence intervals (nominal level = 95%)

@ Model A:
10 0 01 02 05 1 2
TR
0| 98.9 99.2 987 97.0 898 732
0.1 ]99.1 992 988 969 892 73.0
02]989 990 987 967 898 73.0
05| 979 97.7 975 954 876 709
1] 0939 042 940 898 824 69.0
2| 818 810 803 782 717 629
@ Model B:
70 0 01 02 05 1 2
TR
0995 99.6 99.3 982 920 715
01]995 996 993 979 016 708
02]99.4 995 992 98.1 0918 70.8
05| 989 084 983 97.0 90.1 69.5
1] 0948 949 953 016 854 67.1
2| 793 784 780 765 709 585
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3 Numerical experiments

Numerical example
Simulations

Lengths of confidence intervals (relative to RCT, in %)

@ Model A (67% relative length means an effective sample size gain of = 123%):

@ Model B

TO

- 0 0.1 0.2 0.5 1 2
0| 6600 660 661 670 70.1 803
0.1 | 66.0 66.0 662 67.1 70.2 80.2
02 | 661 66.1 663 67.3 704 799
05 | 670 67.1 673 682 713 80.2
1702 702 704 712 741 822
21796 799 799 806 820 885
(80% relative length means an effective sample size gain of ~
o 0 01 02 05 1 2
TR
0| 791 793 794 791 799 803
011|794 795 795 795 79.8 80.1
021|795 794 794 795 79.7 80.1
05| 796 795 791 79.7 799 79.7
1794 799 799 79.7 803 799
2|80 801 800 802 800 793

56%):
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Numerical example
3 Numerical experiments Simulations

Coverages (prior: 7 ~ HN(scale = 1.0))

@ Model A:
70 0 0.1 02 05 1 2
TR
0 | 100.0 100.0 100.0 999 085 06.2
0.1 | 100.0 100.0 99.9 99.7 98.8 955
02 | 100.0 99.9 100.0 99.7 98.6 948
05 | 100.0 99.8 99.6 99.6 97.6 93.0
1| 99.7 997 995 082 951 883
2| 981 984 98.0 953 895 79.9
@ Model B:
70 0 0.1 0.2 0.5 1 2
TR

0 | 100.0 100.0 100.0 100.0 99.2 927
0.1 | 100.0 100.0 100.0 99.8 99.1 927
0.2 | 100.0 100.0 100.0 99.9 98.6 93.0
0.5 99.9 99.9 100.0 99.9 98.1 909

1 99.8 99.7 99.7 99.1 95.8 87.2

2 94.8 96.2 94.9 942 89.0 75.0
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Numerical example
3 Numerical experiments Simulations

Lengths of intervals (prior: 7 ~ HN(scale = 1.0))

@ Model A:
70 0 0.1 0.2 0.5 1 2
TR
0| 949 0947 049 072 1035 1188
01| 950 948 949 97.3 1026 1186
02| 950 948 955 974 1035 1184
05| 967 97.0 971 99.4 1043 119.8
1| 1025 1027 1034 1041 1095 121.6
2| 1189 1191 1186 1191 1232 132.4
@ Model B:
70 0 0.1 0.2 0.5 1 2
TR
0 | 1184 1174 1170 1182 1177 1191
0.1 | 1185 1175 1177 1179 1189 1182
0.2 | 1179 1168 117.1 1182 1183 1183
05 | 1175 117.8 1181 1187 117.8 119.2
1| 1178 1184 1186 1172 1181 1183
2| 1184 1185 118.8 1185 1195 118.2
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4 Discussion

Summary and conclusions

@ We have synthesized evidence from a single RCT and observational
data in small populations.

@ We presented two model frameworks within which evidence
synthesis can be performed. Our simulation results indicate that
framework A should be preferred over framework B.

@ Recent computational advances in evidence synthesis facilitate the
application of Bayesian hierarchical models.

@ A meta-analysis of only two studies is a challenging problem, in
particular the choice of a prior distribution for 7.

@ Risk of bias due to lack of comparability of treatment groups or
confounding.

@ Adjustments for covariates can be done before the models are fitted.
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4 Discussion

Further work (some of it under way)

© Simulations: consider a scenario, in which there is no correlation
between the two observational arms, but a correlation between the
randomized arms and open-label arm instead.

@ We will also consider continuous and time-to-event endpoints.

© We estimated a pooled effect, 8*. Other quantities of interest:
o effect, Or, of an RCT in the light of observational data
(shrinkage estimator),
o effect, Oy41, of a future study (prediction / extrapolation).

© Our frameworks bear some similarities to a comprehensive
cohort-study design (Olschewski et al. (1992)). We may also want
to consider a trial design with an additional observational open-label
arm but no registry.
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