How to cut down salt intake in populations
Francesco P Cappuccio and Simon Capewell

Heart 2010 96: 1863-1864
doi: 10.1136/hrt.2010.209023

Updated information and services can be found at:
http://heart.bmj.com/content/96/23/1863.full.html

These include:

References
This article cites 9 articles, 5 of which can be accessed free at:
http://heart.bmj.com/content/96/23/1863.full.html#ref-list-1

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://journals.bmj.com/cgi/ep
How to cut down salt intake in populations

Francesco P Cappuccio, 1 Simon Capewell 2

Cardiovascular diseases are the major cause of morbidity, disability and death in the world. Furthermore, approximately 62% of all strokes and 49% of coronary heart disease events are attributable to high blood pressure. High salt intake is one of the major potentially modifiable causes of the global burden of stroke and other cardiovascular events, 1 2 mainly through its effect on population blood pressure. A 5 g/day difference in habitual salt intake is associated with a 23% difference in the rate of stroke (representing approximately 1.25 million deaths worldwide each year) and a 17% difference in the rate of total cardiovascular disease (approximately 3 million deaths worldwide). 2 Citizens in most countries eat salt far in excess of healthy physiological requirements. Substantially reducing dietary salt intake is therefore an important priority for public health. In recent years, the debate has shifted from 'whether reducing salt intake is of public health benefit' to 'how best to reduce population salt intake to save the most lives'. Several countries and health organisations have therefore developed recommendations for the reduction of salt intake in populations to reduce the increasing burden of cardiovascular disease. They have also provided evidence-based appraisals on how this might be achieved in specific settings. 3-6

The current population salt targets set by the World Health Organization are 5 g/day, 9 with some countries aiming for even less in the longer term. 4 5 In most developed economies, however, the majority of salt in our diets is added during food production, long before it is sold. That excess is therefore not a matter of personal choice. Moreover, before acting, all countries will need to satisfy increasingly stringent cost-effectiveness criteria within a general climate of ageing populations, escalating healthcare demands and recently reduced financial resources.

The study by Cobiac et al 7 in this issue of Heart now examines some critical questions and provides further compelling evidence for public health action (see page 1920). Their study evaluated a range of salt reduction interventions intended to prevent cardiovascular disease in Australia. These ranged from changing individual dietary behaviour (in individuals at high cardiovascular risk or in those with hypertension) through programmes of 'voluntary' food reformulation by the industry to moderate 'mandatory' industry targets enforced by government legislation. The authors assessed the cost effectiveness of each intervention under different modelling scenarios. They included government and industry costs, patient’s costs, costs of unrelated healthcare in added years of life and lag in risk reversal. Irrespective of the modelling scenario, all population-wide approaches were cost-saving interventions, whether using 'voluntary' or 'mandatory' reductions in the salt content of processed food. Dietary advice targeting individuals, however, was not cost effective, averaging AUS$100 000 per disability-adjusted life year. Furthermore, the population health benefits under the 'mandatory' programme could be 20 times greater than those achievable under the 'voluntary' schemes.

This study raises at least three important considerations. First, consistency of the evidence. The present economic appraisal from Australia confirms studies from the USA, 5 9 from the UK 4 and from World Health Organization global estimates. 10 Furthermore, each study used a very different methodology. Any reduction in national salt intake, with policies applied to the whole population rather than to a high-risk group, is undoubtedly cost saving. This is a crucial concept when evaluating health policies. Evidence is accruing of health benefits from using antihypertensive combination treatment in the management of moderately raised blood pressure levels. But with an ageing population, the cost of this prevention approach for high-risk individuals is destined to escalate unless the increasing population prevalence of hypertension is somehow controlled. Action on the major causes of age-related rises in blood pressure, like excessive salt intake, will therefore be essential. Furthermore, the benefits of salt reduction may be even greater with primordial prevention, in other words maintaining the naturally low blood pressure seen in normal children through to adolescence and adult life. 4 9

Second, population approaches to dietary salt reduction are consistently cost saving, 4-10 whereas attempts to change individual dietary behaviour are not. 5 This is perhaps not surprising when some 80% of the salt we eat is added to the food before we buy it. Furthermore, a high-risk individual approach altering food-purchasing behaviour is destined to widen social inequalities by delivering better diet to the educated and affluent, whereas a population approach will probably narrow the inequalities gap. 11 In the USA for instance, the food industry has fuelled a fake controversy in order to confuse the public. 12 Average salt intake in the US population has thus risen rather than declined. 5 Conversely, in countries where effective public health actions have been implemented, like Japan, Finland and the UK, 1 significant reductions in population salt intake have been paralleled by long-term reductions in blood pressure, and in stroke rates. 1 Many governments and health organisations are therefore now contemplating population approaches to cardiovascular disease prevention by developing and implementing population-wide salt reduction public health strategies.

Following the historical examples given by Finland and Japan, and the general guidance of the World Health Organization, the USA, UK and Canada have, among others, recently developed far-reaching recommendations based on the three-pronged approach of communication (establishing and evaluating public awareness campaigns), reformulation (setting salt targets for many food items and collaborating with the industry) and monitoring (surveying population salt intake, reformulation progress and effectiveness of communication). 4-6

Recently in the UK, some progress has been made with the support of the Food Standard Agency and other voluntary organisations to reduce population salt intake towards the government target of 6 g/day. 1 The population salt intake in Britain has fallen to 8.6 g/day, 1 g less than 4 years earlier. This reduction is likely to translate into an approximate 3%
dangerous.13 As both worrying and potentially
in the UK. This is all considered by some
healthier. The major restructuring of the
population salt intake. However, the speed
positive steps in the reformulation of
instance, in the UK, the embryonic
promises are not ful-

In conclusion, Cobiac et al provide further evidence that: ‘lives can be saved by
cutting salt. How many depends on whether
politicians choose to accept the evidence, or
instead cave in to industry pressure’.12

The publication does not necessarily represent the
decisions or the stated policy of WHD and the
designations employed and the presentation of material
do not imply the expression of any opinion on the part of
WHD.

Competing interests None.

Provenance and peer review Commissioned; not
eexternally peer reviewed.

Heart 2010;96:1863—1864.
doi:10.1136/hrt.2010.209023

REFERENCES

1. He FJ, MacGregor GA. Reducing population salt
intake worldwide: from evidence to implementation.
Prog Cardiovasc Dis 2010;52:363—82.
intake, stroke, and cardiovascular disease:
2009;339:b4567.
3. World Health Organization. Reducing salt intake in
populations: report of a WHD forum and technical
4. NIH National Institute for Health and Clinical
Excellence. Prevention of cardiovascular disease at
population level. NICE public health guidance 25.
5. Institute of Medicine. Strategies to reduce sodium
intake. Washington, DC: National Academies Press,
2010.
6. Ministry of Health. Sodium reduction strategy
7. Cobiac LJ, Vos T, Veerman L. Cost-effectiveness of
interventions to reduce dietary salt intake. Heart
Population strategies to decrease sodium intake and
the burden of cardiovascular disease. A cost-
effectiveness analysis. Ann Intern Med
Projected effect of dietary salt reductions on future
disease prevention: health effects and financial costs
of strategies to reduce salt intake and control tobacco
11. Capewell S, Graham H. Will cardiovascular disease
2010;7:e1000320.
The Scientist 2010;22—3.
The Observer 19 July 2010.
15. Sharma LL, Teret SP, Brownell KD. The food industry
and self-regulation: standards to promote success
and to avoid public health failures. Am J Public Health
ethical issues. London: Nuffield Council on Bioethics,
2007.