Introduction to Safety Cases

Tim Kelly
E-mail: tim.kelly@cs.york.ac.uk
High Integrity Systems Engineering Group
Department of Computer Science
THE UNIVERSITY of York

Overview

- Historical Context
- Definitions
- Role of Argument & Evidence
- Safety Case Reports
- Safety Arguments
A Brief History of Safety Cases

- Number of serious accidents, e.g.
 - Windscale Nuclear Accident (late 1950s)
 - Piper Alpha Off-shore Oil and Gas Platform Disaster (1990s)
 - Clapham Rail Disaster (1990s)
- Prompted reconsideration of how safety is managed in the safety-critical sector
 - Industries were not ignorant of safety
 - Safety standards existed – but often based on prescriptive codes
 - What Was Missing: Systematic and thorough consideration of safety, and communication of this to a regulator
- Prescription
 - Designers / operators claim safety through satisfaction of the regulator’s requirements
- ‘Goal-based’ standards
 - Up to the designers / operators to demonstrate that they have an adequate argument of safety in support of high level objectives (e.g. ALARP)

Motivation for Safety Cases

- Completeness – hard to judge ...
 - ... when evidence is distributed and diverse
 - ... when arguments are implicit
- Rationale behind prescriptive requirements missing
- Knowledge Imbalance – developers know more about their products than the regulators
- Some existing forms of assurance are increasingly considered too indirect (e.g. software)
Fault Tree Analysis Example 1

Unannunciated Loss of All Wheel Braking
LSSALLWBP3
5.00E-07 Requirement is per 5 hour flight

Loss of All Wheel Braking
LOSSLALLWB
5.00E-07 Requirement is per 5 hour flight

Normal Brake System Does Not Operate
LOSSNORMP3

Alternate Brake System Does Not Operate
LSSALTERP3

Emergency Brake System Does Not Operate
LSSEMERGP3

Loss of Annunciation Capability
NOANCREDIT

PROB: 5.00E-03 (0) Budgeted Prob.
No Credit Taken

PROB: 1.00E-00 (0) No Credit Taken

PROB: 1.00E+00 (0) No Credit Taken

Loss of Green Hydraulic Supply
LSSGRHYDP3

Loss of Normal Brake System Hydraulic Components
LSSNRMBRP3

Loss of BSCU Ability to Command Braking
LSSOF2BSCU

Loss of Aircraft Electrical Power to Both BSCU Systems
LBSCUPWRP3

BSCU Fault Causes Loss of Braking Commands
BOTHBSCUSF

BSCU 1 Failure Causes Loss of Braking Commands
BSCU1FAILS

BSCU 2 Failure Causes Loss of Braking Commands
BSCU2FAILS

5.00E-07 Requirement is per 5 hour flight

Historical Data
PROB: 5.75E-03 (1)
RATE: 1.15E-03 /H
EXPO: 5 H
Budgeted F.R.

Choice in Failure Rate Budgeting - Justified?

How is this dealt with?

THE "ILLUSION OF NUMBERS" - COULD MEET THE NUMBERS BUT...
Fault Tree Analysis Example 2

Loss of Green Hydraulic Supply
LSSGRHYDP3

Loss of Normal Brake System Hydraulic Components
LSSNRMBRP3

Loss of BSCU Ability to Command Braking
LSSOF2SCU

BSCU Fault Causes Loss of Braking Commands
BOTHBSCUSF

Loss of Aircraft Electrical Power to Both BSCU Systems
LBSCUPWRP3

BSCU 1 Failure Causes Loss of Braking Commands
BSCU1FAILS

BSCU 2 Failure Causes Loss of Braking Commands
BSCU2FAILS

Redundant BSCUs Required to Meet Budgeted Probability

Historical Data

Why has an exposure interval of 5 hrs been used?

Another choice - justified?

Independence - how justified?

PROB: 3.30E-05
RATE: 1.15E-03
EXPO: 5

Copyright © 2011, Tim Kelly
(Further) Motivation for Safety Cases

- Completeness – hard to judge ...
 - ... when evidence is distributed and diverse
 - ... when arguments are implicit
- Rationale behind prescriptive requirements missing
- Knowledge Imbalance – developers know more about their products than the regulators
- Some existing forms of assurance are too indirect
- The role of evidence can otherwise be unclear
- The assumptions and implicit judgements in evidence need to be presented explicitly and argued

The Purpose of a Safety Case

Principal Objective:
- safety case presents the argument that a system will be acceptably safe in a given context

- ‘system’ could be ...
 - physical (e.g. aero-engines, reactor protection systems)
 - procedural (e.g. railway operations, off-shore)
 - Software (in a system context)

In practice:
- often series of safety cases produced — stages of development and/or operation
- safety cases are large, complex, technical and political documents
Some Safety Case Definitions

- "A safety case is a comprehensive and structured set of safety documentation which is aimed to ensure that the safety of a specific vessel or equipment can be demonstrated by reference to:
 - safety arrangements and organisation
 - safety analyses
 - compliance with the standards and best practice
 - acceptance tests
 - audits
 - inspections
 - feedback
 - provision made for safe use including emergency arrangements"

 (JSP 430 Issue 1)

- "A Safety Case is a structured argument, supported by a body of evidence, that provides a compelling, comprehensible and valid case that a system is safe for a given application in a given operating environment."

 (DS 00-56 Issue 4)

Argument & Evidence

A safety case requires two elements:

- **Supporting Evidence**
 Results of observing, analysing, testing, simulating and estimating the properties of a system that provide the fundamental information from which safety can be inferred

- **High Level Argument**
 Explanation of how the available evidence can be reasonably interpreted as indicating acceptable safety – usually by demonstrating compliance with requirements, sufficient mitigation / avoidance of hazards etc

- Argument without Evidence is **unfounded**
- Evidence without Argument is **unexplained**
Safety Cases vs. Safety Case Reports

- The Safety Case is the totality of the safety justification + all the supporting material: testing reports, validation reports, relevant design information etc.

- The Safety Case Report is the document that summarises all the key components of the Safety Case and references all supporting documentation in a clear and concise format.

Safety Case Reports

- Exact contents depends on regulatory environment.
- The following are key elements of most standards:
 - scope
 - system description
 - system hazards
 - safety requirements
 - risk assessment
 - hazard control / risk reduction measures
 - safety analysis / test
 - safety management system
 - development process justification
 - conclusions
Safety Arguments

- Safety Case is NOT just a collection of disparate pieces of information
- Safety Argument should form the ‘spine’ of the Safety Case showing how these elements are related and combined to provide assurance of safety.
 - within the limits defined [Scope], the system [System Description] is SAFE because all identified hazards [System Hazards] and requirements [Safety Requirements] have been addressed. Hazards have been sufficiently controlled and mitigated [Hazard Control / Risk Reduction Measures] according to the safety risk posed [Risk Assessment]. Evidence [Safety Analysis / Test] is provided that demonstrates the effectiveness and sufficiency of these measures. Appropriate roles, responsibilities and methods were defined throughout the development of this system [Development Process Justification] [Safety Management System] and defined future operation.

Presenting Clear Arguments

- Basic argument structure
 - claim – what we want to show
 - argument – why we believe the claim is met, based on
 - evidence – test results, analysis results, etc.

- In general, argument broken down hierarchically
 - claim, argument, sub-claims, sub-arguments, evidence
 - easy to show graphically, although can be done in document structure (sub-section numbering, etc.)

- In practice, other concepts useful
 - e.g. context to claims, assumptions
The Goal Structuring Notation

Purpose of a Goal Structure

To show how goals are broken down into sub-goals, and eventually supported by evidence (solutions) whilst making clear the strategies adopted, the rationale for the approach (assumptions, justifications) and the context in which goals are stated.
Control System is Safe
All identified hazards eliminated / sufficiently mitigated
Software developed to I.L. appropriate to hazards involved
Process Guidelines defined by Ref X.

Hazards Identified from FHA (Ref Y)
Tolerability targets (Ref Z)
Fault Tree Analysis
Formal Verification

Primary Protection System developed to I.L. 4
Secondary Protection System developed to I.L. 2

Probability of H_1 occurring < 1×10^{-6} per annum
Probability of H_2 occurring < 1×10^{-3} per annum

A Simple Goal Structure

Safety Requirements & Objectives

Safety Argument

Safety Evidence
Summary

- Production of a Safety Case is a key objective of all the safety lifecycle activities
- The objective of the Safety Case is to ‘pull together’ many forms of information and present a coherent argument of safety
- However, safety cases are not just documents
- Clear arguments *essential* for safety case approach