Question 1

A.

i) \(c \sqrt{b} \)

- Odd mass seeds
- \(n \) or \(p \)

- 151/153 indicates \(b \)

ii) \(m - 28 = m - co \)

- or \(m - (a + 4) \)

iii) \(107 = m - 44 \)

- \(m = CO_2 \)

- or \(m = CO \) or \(NH_2 \)

iv) \(72 = m - 19 \) = loss of Branne

v) \(55 = 72 - 17 \) = indicates N\(_2\) or ammonia

vi) \(44 = CO_2 \) or \(CO \) or \(NH_2 \)
B)

i) $127 = \text{molecular ion} \\
\text{in } \text{Sily.} \text{ and E.} \\
\text{CN}$

ii) $100 = m - \text{CN}$

iii) $89 = m - 40 \\
\text{in } \text{C}_2\text{H}_3\text{N}_2$

iv) $84 = m - 44 = m - \text{C}-\text{NH}_2$

v) $\text{C}_2\text{H}_2 - \text{C} - \text{NH}_3$

vi) $\text{C}_2\text{H}_2 - \text{C} - \text{NH}_3$

vii) $\text{C}_2\text{H}_2 - \text{C} - \text{NH}_3$

viii) $31 = \text{CH}_2\text{-CH}$

$30 = \text{CH}_2\text{-NH}$

$29 = \text{C}_2\text{H}_5\text{NH}_3$ or CH_3NH_2
Cyanoacetylene

Formula: C₂H₂N₂

Molecular weight: 40.05

IUPAC Standard Name:

- Nitrilicethene
- Cyanogen methene
- Cyanomethene
- Cyanoacetylene
- Cyanomethylene
- Sulfurized ethene

CAS Registry Number: 148-66-2

Chemical Structure:

- This structure is also available as a 3D Mol file or as a rendered 2D ID
- The 3D structure may be viewed using Jmol or O梅.
- Other names:
 - Cyanethylidene
 - Dicyanoethylenecyclobutadiene

Permanent link:

- Use this URL for backlinking this species for future reference.
- Information on this page:
 - Mass spectrum (electron ionization)
 - References

Spectrum

- Plot
- Help / Software credits

Mass Spectrum (Electron Ionization)

Go to Top, Share/Email, Move / Error Report

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by NIST Mass Spectrometry Data Center, US. Dept. of Commerce.

Additional Data

- Mass library and printed spectrum (not to be printed for hardcopy publication).
- More spectra are in EDS revision.
- Described spectra in ICDP-ZDE report.

Chemical

- NIST Mass Spectrometry Data Center
- Collection (2011) copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved.
- Data compiled by NIST Mass Spectrometry Data Center. Spectrum No. 2011-02029

Notes / Error Report

- If you have a question or comment, please contact us.
- All data is subject to change without notice. Only the current version is guaranteed to be correct.
- All comments are welcome.

References

- Go to Top, Share/Email, Move / Error Report

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

About this site: general information about the NIST Mass Spectral Library. Please see the following for information about the library and its accompanying search program.

All mass spectra in this entry (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.

Copyright

- NIST Standard Reference Data is governed by the Standard Reference Data Act.

If you have comments or questions about this site, please contact us.
Question 2

(i) \(m^\ast + e \rightarrow n \rightarrow \text{fregemb} \)

For left-right forces, forces \(C = 0 \)

\[c = m_{12} \]

(ii) the \([L_3B_3S + 2(21)] \) peak

at \(\frac{m}{m} \) 800

(iii)

\(P^1 \text{H}_1^2 \text{H}_3^2 \text{N} \text{Q} \text{L}_{11}^2 \text{W} \text{A}_{1}^2 \text{N} \text{I}_{1}^2 \text{V} \text{H}_{1}^2 \text{L} \text{M} \text{L}_{1}^2 \)

(iv) yes, \(G \) and \(Z \to 0 \)

(v) any atom contains \(O_2 \) will be \(18 \) due to light.

Any atom containing \(O_2 \) will be

1. \(\text{O}_2 \) light.

(vi) \(O_2 \)
b) i) Sulfur dioxide
decolour

ii) to have a handle

\[
\text{Use } \frac{\text{mass difference}}{\text{mass at the } \text{fuser point}}
\]

\[
\text{Use } \frac{\text{mass at } \text{fuser point}}{\text{mass difference}}
\]

\[
\text{Use } \frac{\text{mass difference}}{\text{mass at } \text{fuser point}}
\]

\[
\text{Use } \frac{\text{mass at } \text{fuser point}}{\text{mass difference}}
\]

\[
\text{Use } \frac{\text{mass at } \text{fuser point}}{\text{mass difference}}
\]

\[
\text{Use } \frac{\text{mass difference}}{\text{mass at } \text{fuser point}}
\]

\[
\text{Overall quadrupole act the filter point}
\]

\[
0.9002 = 1 - \frac{\text{mass at } \text{fuser point}}{\text{mass difference}}
\]

\[
q_n = 0
\]
(iv) \(M = \text{R}^n \quad \text{or} \quad \text{O} \)

15 = \text{CH}_3

16 = \text{O} \quad \text{or} \quad \text{NH}_2 \quad \text{or} \quad \text{CH}_4

17 = \text{OH} \quad \text{or} \quad \text{NH}_3

18 = \text{OH}_2

(2)

\[\text{NH}_2 - c - \text{NH} - c - \text{OH}_2 - \text{C} = \text{N} \]
(vii) \[\begin{align*}
28 &= CO_{2}^{+} \text{ or } CO_{3}^{2-} \\
27 &= C_2H_3^{+} \\
29 &= C_2H_5^{+} \text{ or } HCO^{+} \\
30 &= +CH_2NH_2 \\
\end{align*} \]

(viii) \[\begin{align*}
16 &= NH_{2} \text{ or } CH_4 \text{ or } O \\\n17 &= NH_3 \text{ or } OH \\\n18 &= H_2O \\
\end{align*} \]

2) Yes - explains all the peaks. Is M+.

3) \[\text{Diagram of a molecule with } \text{NH}_{3} \text{ attached to a carbon atom.} \]