Contents

The University of Warwick 2
About the Analytical Sciences & Instrumentation MSc 4
Analytical Sciences & Instrumentation MSc Overview 5
Analytical Sciences & Instrumentation MSc Modules 6
After You Graduate 10
Entry Requirements and Application 12
Warwick’s International Community contributes greatly to the vibrant, cosmopolitan atmosphere on campus. With over 100 different nationalities represented you will be working and living with people from all over the world.

Accommodation consists of modern, comfortable rooms on campus, mostly en-suite and with high-speed internet and network access. Residences are set in pleasant parklands close to all the campus facilities.

Warwick’s Students’ Union is one of the largest in the country with over 250 societies to choose from. Student events such as ‘one world week’ are internationally recognised and mirror the University’s reputation for innovation and dynamism.

Warwick Sport provides every opportunity for you to try something new or compete in your sport. It offers over 70 different sports clubs, a swimming pool, gym, indoor climbing wall, all-weather tennis courts, 60 acres of outdoor playing fields and much more.

Warwick Arts Centre houses two theatres, a cinema, a 1,400 seat concert hall, the Mead Art Gallery, and a specialised music centre. It is nationally recognised as an outstanding venue for both famous and new artists.

The International Office provides a wide range of services for both prospective and current students, including immigration advice, welfare support and an orientation programme for those new to the UK.

Warwick University’s Campus is an award-winning 700 acre, self-contained campus in the heart of England yet just one hour from London. With fantastic facilities and excellent access to local towns, cities and countryside, it provides an attractive, safe and supportive environment in which to live and study.
A member of the Russell Group, Warwick has consistently been ranked within the UK ‘top ten’ and is positioned within the top 50 universities in the world.

The Library holds over 1 million printed titles and 16,000 electronic journals and offers outstanding resources. The University’s acclaimed ‘Learning Grid’ provides a 24/7 relaxed learning environment with an impressive range of multimedia equipment.

Warwick Careers Service gives students a real head-start in their job searches. Voted by students as the best in the country, the careers service provides outstanding guidance and support. Warwick University is widely recognised by employers as an ideal recruiting ground.

Language Support is offered by The Centre for Applied Linguistics. The Programme in English for Postgraduate Studies (PEPs) prepares students in academic English over 1, 2 or 3 terms. Six or ten week pre-sessional English courses may also be offered if you narrowly miss the English language criteria for Master’s study.

Worship is encouraged by the multi-faith Chaplaincy which welcomes all members of the University community. It is home to Christian, Jewish and Muslim chaplains who, as a valued part of the University’s welfare network, offer spiritual and emotional support.
About the Analytical Sciences & Instrumentation MSc

The success and reputation of analytical sciences & instrumentation at Warwick is measured through track record; attracting the very best students for over ten years and having graduated over 100 students in the process.

General Overview
The Analytical Sciences & Instrumentation MSc is delivered by internationally leading experts from the Departments of Chemistry, Physics, Statistics, Engineering and Life Sciences as well as guest lectures from our industrial partners.

Students gain hands-on practical experience with a range of equipment relevant to each discipline, enabling our graduates to work in any modern laboratory.

This Royal Society of Chemistry accredited MSc will give you excellent opportunity to start your career in a field of analytical sciences.

Learning Style
The taught component of the programme is a blend of formal lectures, seminars, syndicate work and practical exercises, which encourages teamwork and practical grounding of the material. E-learning and forum activities are widely used to complement these.

Modules are usually taught in an intensive block, allowing you to be fully immersed in each subject area. Tutors are highly qualified and work at the forefront of their specialisation.

A 20 week research project enables you to immerse yourself in a real research project, once again supervised by renowned academics in their field.

Assessment
Performance in modules is assessed by both module assignments and post module examinations. The research component is assessed through a 15,000 word thesis and a presentation.

Industrial interactions
Warwick has a long standing strong relationship with Industry. Several of the modules in the Analytical Sciences & Instrumentation MSc course are taught in collaboration with Industry; the students have a chance to undertake industry led research projects and placements.

Careers
Our recent graduates have gone on to pursue PhD research at Warwick and other universities in the UK and internationally or taken up careers in industry and academia.
The academic programme is both highly challenging and rewarding. Innovative teaching methods are used to ensure our students engage practically with their studies and are well equipped on graduation to apply this to real world scenarios.

The Analytical Sciences & Instrumentation MSc is is structured so that each student takes a combination of eleven taught modules and completes a major 20 week research project.

Help at hand
A personal tutor is assigned to you from the outset of your MSc, whose role is to provide general academic advice on: (i) progress/development; (ii) pastoral/non-academic matters; (iii) assist you with induction and orientation into university life at Warwick; and (iv) a range of other advice from course changes to financial and accommodation issues.

Modules
Modules consist of nominally 50 hours of directed tuition usually delivered in an intensive, fully immersive block. A variety of innovative teaching methods are used to maximise learning and ensure students are well equipped to apply their knowledge in the work place on completion of the course.

Core modules are compulsory and relate specifically to Analytical Sciences & Instrumentation. There is also a transferrable skills module that is common to all our MSc programmes as we recognise the crucial importance that these skills play in the real world.

Research Project
Each student has to undertake a major individual research project. This accounts for 40% of the overall credit and is submitted in the form of a dissertation of approximately 15,000 words. An oral examination is held upon completion.

Near the mid point of the course you will be provided with a list of projects relevant to your degree course. However, we can also usually accommodate supervision of projects proposed by students specifically focused on their individual career paths or aspirations.

The project must fulfil the academic requirements of the course. All projects are supervised by a contributing department member of staff and many relate closely to research developments in industry or research at Warwick.

Work on your project runs subsequently to your module work, and offers you an opportunity to immerse yourself in an exciting and modern area of Analytical Sciences & Instrumentation.
CH908 Mass Spectrometry
This module introduces the student to the many facets of modern mass spectrometry. Emphasis is placed both on the interpretation of spectra and also on instrumental methods, covering modern methods of ionisation (including ESI and MALDI) and mass analysis (including orthogonal TOF and FT-ICR) and the use of linked methods such as GC/MS, HPLC/MS and tandem mass spectrometry. Practical sessions include practice at interpretation and experiments using various mass spectrometric techniques.

CH911 Chromatography and Separation Science
During this interdisciplinary module, students will learn about theory and practice of different types of chromatography and their application in real-world scenarios. They will develop the skills necessary to decide which methods are the most appropriate for a given separation problem - whether for analysis or purification of, for example, synthetic polymers, biomolecules, or biopharmaceuticals.

CH913 Team Research Project: Real World Analysis
Research questions in academia and industry generally require the development and integration of several analytical techniques. The aim of this module is to make students aware of these requirements. It is the culmination of the taught part of the course, and constitutes the ideal preparation for the research project and future careers in analytical laboratories. The practical work for this module involves team work to solve real analytical problems using at least two techniques and professional data analysis. Literature work will be required as the basis of method development. Research work is complemented by interactive sessions with industrial visitors.

CH914 Electrochemistry and Sensors
This module provides a grounding in the fundamentals of electrochemistry, electroanalytical techniques and sensor technology. The module encompasses potentiometric methods, voltammetric/amperometric techniques, microfluidic devices, lab-on-a-chip methods, and electronic noses and tongues. Electrochemistry aspects draw on Warwick’s major strengths in this area and include developments in ion selective electrodes, electrode kinetics and mass transport and key techniques, such as linear sweep and cyclic voltammetry, hydrodynamic electrodes, stripping voltammetry, ultramicroelectrodes and array devices. Lectures and problems classes are supplemented by laboratory sessions which provide students with practical hands-on experience.
CH915 Principles and Techniques in Quantitative and Qualitative Analysis
This module covers theoretical and practical fundamentals of qualitative and quantitative analysis. We will discuss sources of errors in chemical and instrumental analysis, and will consider practical aspects of sampling and calibration techniques. Theory and instrumentation of a range of spectroscopic techniques will be covered in lectures. Practical sessions will include quantitative analyses using volumetry, gravimetry, uv/visible spectroscopy, atomic absorption spectroscopy, and state-of-the-art inductively coupled plasma spectroscopy (ICP) techniques (OES and MS).

CH916 Magnetic Resonance
Nuclear magnetic resonance (NMR) in both solution and the solid state as well as electron paramagnetic resonance (EPR) will be described. The module will cover the underlying theory of the experiments as well as practical aspects of recording spectra and their interpretation. The importance of magnetic resonance across science, in, e.g., organic chemistry, pharmaceuticals, proteins and polymers will be demonstrated.

CH921 Techniques for the Characterisation of Biomolecules
This module introduces students to biophysical instrumentation, methods of data collection and analysis. Issues of data quality will be addressed and students will be equipped with data sets for use in later modules. It provides an introduction to absorbance, fluorescence, X-ray crystallography, mass spectrometry, NMR, circular and linear dichroism.
CH922 Microscopy and Imaging
This module provides a foundation in the principles and applications of microscopy, starting with basics of light microscopy and progressing to state of the art confocal microscopy, electron microscopy and scanned probe microscopy. The latter includes atomic force microscopy and electrochemical imaging techniques for which Warwick is particularly well-known. The module includes workshops on image analysis and seminars that cover the most recent developments in the field.

CH923 Statistics for Data Analysis
The aim of this module is to give students a basic understanding of the statistical methods appropriate to data analysis in analytical science, and to provide guidance on some statistical tools for more advanced study. Topics include: basic probability; error analysis and calibration; summarising data and testing simple hypotheses; statistical computing (software and practice, including simple graphics); experimental design and analysis of variance; sampling methods and quality control; simple analysis of multivariate data. Each session will combine lecture and data analysis workshop. At the end of the course the student should be able to appreciate the added value that statistical analysis can bring to research to perform basic statistical analyses of simple data sets using statistical software to design simple experiments.

CH948 Transferrable Skills
This module is designed to be integrated with all the other modules and research work you undertake during your Analytical Sciences & Instrumentation MSc. CH948 aims to help you realise the skills that you have learned during your MSc that ‘transfer’ across the boundaries of any particular module. Its content is the kind of skills that future employers whether in academia or industry or elsewhere are concerned about. Frequently employers are less concerned about your specific technical skills than the fact that you can acquire such skills and use them in a diverse range of future projects.
PX903 Advanced Electron Microscopy - Theory and Practice
This module aims to give a good general grounding in the theory and practice of modern electron microscopy and associated techniques. Module topics include electron diffraction; the Transmission Electron Microscope (TEM); the Scanning Electron Microscope (SEM); Chemical Analysis in the Electron Microscope (X-ray Microanalysis; EELS; Introduction to Scanning Transmission electron microscopy (STEM)); Image and diffraction simulation; Recent Advances in instrumentation (aberration correction and monochromation); Specialised imaging techniques (electron tomography and holography); and Complementary imaging techniques.

ST914 Advanced Statistics and Chemometrics
This module provides theoretical background and a comprehensive practical toolbox for extracting information from experimental data, with particular focus on the full complexity of modern analytical science techniques. We will examine how appropriate explicit mathematical descriptions of processes underlying analytical data acquisition, based on sound physics and chemistry, can be incorporated in statistical models. Core theoretical components of this module are univariate and multivariate distribution theory and principles of statistical inference. Practical components of the module include the implementation of selected models using standard computer languages (e.g. Matlab, R) and the analysis of benchmark experimental datasets.

Each Analytical Sciences & Instrumentation MSc student carries out an individual research project (20 weeks full-time). Projects are proposed by members of staff from the Chemistry, Physics, Statistics, Life Sciences and Engineering Departments, and students join their respective research teams for the duration of the project. Projects cover a wide range of topics, from instrument and technique development to application of analytical methods and procedures. The projects are carried out either at Warwick or at a sponsoring company.

Many of our former students have published their project work and have gone on to study for a Ph.D.

Example projects include:
- Addressing the challenges of proteomics data
- Design-led Nano-diagnostics
- Quantitative visualisation of dissolution and crystallisation
- Non-invasive analysis and modelling of trace metals in the human body
- Advanced experimental modelling study into nanoscopic and microscopic behaviour of polymer graphene nanocomposites
Finding a job

Our greatest resource is the knowledge and network base of our world leading academics, which they have built over many years. They will provide you with guidance in making sure you utilise your skills-set to your fullest potential. The well established links with leading research groups, both in the UK and worldwide, along with the strong links with chemical and pharmaceutical industries will ensure that a career path in academia or industry is well within your grasp. Our academics will assist you in many aspects of career advice including preparing your CV to providing you with practice interviews. Our track record of success speaks for itself!
“The course allowed me to be well-prepared for working in an industrial field, as well as providing an opportunity to explore the high quality research at the University of Warwick.”

Yuko Lam
2015 Graduate
Entry Requirements and Application

Warwick is a world class university that will provide you with a qualification that is recognised internationally. While our standards are very high, we encourage you to contact us to discuss your potential study with us.

Entry Requirements
Admission onto the Analytical Sciences & Instrumentation MSc programme requires at least a British Second Class Honors Degree or Overseas equivalent. The Analytical Sciences & Instrumentation MSc programme requires a physical sciences background but candidates from other disciplines may also be considered - please feel free to contact us if you have any questions.

English Language Requirements
Non-native speakers of English must satisfy the English language requirements:
- IELTS 6.5*
- PTE (Pearson) 62*
- Three years of UG study in an English speaking country
*minimum element scores apply

Course Duration
- 12 months duration
- Start date: 26 September 2016

How to Apply
Applications are made online at: www2.warwick.ac.uk/pgapply

The cost of a single application is £50.

The following supporting documents are required:
- Academic transcripts and certificates
- Two academic references
- English language qualifications

Tuition Fees (2016-17)
- UK and EU fee payers £7,780
- Overseas fee payers £22,340
- New PGT loans information at: www.warwick.ac.uk/chemistry/masters/fees

Scholarships
The Department of Chemistry will be awarding scholarships for the October 2016 intake. For more details, www.warwick.ac.uk/chemistry/masters/fees

Contact us at: chem-pgt@warwick.ac.uk
Getting to Warwick

Warwick is located in central England, making it easy to reach by road, rail or air. Public transport links are plentiful, with bus stops across campus, train stations a short distance away and a national coach service operating close to our campus.

- 1 hour to London by train
- Nearest airport: Birmingham International 20 minutes
- Nearest train: Coventry
Getting in touch

Department of Chemistry
The University of Warwick
Coventry
CV4 7AL
+44 (0)24 7652 4621
chem-pgt@warwick.ac.uk
warwick.ac.uk/chemistry/masters