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Foreword
Welcome to the 14th annual technical meeting which follows the successful series begun in Oxford in
1997, with the most recent meetings being in Dundee (2008) and Kingston (2009).

The meetings are designed to provide a UK forum for the dissemination and discussion of research in
medical image understanding and analysis, an expanding area in which significant advances are
currently being made. It is an area notable for the range of research communities involved, and the
meeting aims to encourage the growth and raise the profile of this multi-disciplinary field by bringing
together the various communities: to present the state-of-the-art of UK research in medical image
understanding and analysis; to raise awareness of technical advances among potential users; to
encourage dialogue and discussion between workers from across the field; from young researcher to
established clinician or scientist; from blue-sky research to practical application; from university,
hospital and commercial R&D! As in the past, the meeting involves those from the range of technical
and clinical disciplines in medical imaging, including cardiac imaging, tissue perfusion, oncology,
opthalmology, dermatology and neurology. The methods and techniques presented range across the
well established areas of computer aided diagnosis, magnetic resonance image analysis, to computer
aided surgery and image guided intervention. This year is no different and we have a rich programme
of talks and posters from in all of these areas.

We would like to thank the MIUA Steering Committee, and in particular, Neil Thacker, for encouraging
and supporting the hosting of this year’s meeting. Also, the hard-work of the Programme Committee
for taking time to provide fair and critical reviews of all the submissions this year. We are also honoured
this year to have three invited talks from Profs Carl-Fredrik Westin (Harvard Medical School), Tim
Nattkemper (Bielefeld University) and Jean-Christophe Olivo-Marin (Institute Pasteur). We would like
to thank them in advance for their thought provoking and inspiring contributions. Finally, we would like
to acknowledge the stirling work of Anna Guszcza (Computer Science) and Jean Trevis (Warwick
Conferences) for support in the delegate registration, finances and local organisation.

We hope you find the conference stimulating and take the opportunity to interact with young (and a few
old!) researchers from across the UK. The social programme should allow you a little time to see
cultural heart of the UK in Shakespeare’s home town of Stratford-upon-Avon.

Abhir Bhalerao and Nasir Rajpoot (July 2010)
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Abstract

Traumatic brain injury (TBI) is ranked as the fourth highest cause of death in the
developed world. The majority of patients sustain mild TBI, and a significant num-
ber suffer persistent neuropsychological problems. Conventional neuroimaging methods
(CT, MRI) do not reveal abnormalities consistent with the cognitive symptoms. Imag-
ing methods offering prognostic information in acutely injured patients are therefore re-
quired. Here we applied advanced quantitative MRI techniques (T1, T2 mapping and
diffusion tensor MRI) in 24 mild TBI patients and 20 matched controls. We applied a
support vector machine (SVM) to classify the quantitative MRI data. Univariate clas-
sification was ineffective due to overlap between patient and control values, however
multi-parametric classification achieved sensitivity of 88% and specificity of 75%. Fu-
ture work incorporating neuropsychological outcome into SVM training is expected to
improve performance. These results indicate that SVM analysis of multi-parametric MRI
is a promising approach for predicting prognosis following mild TBI.

1 Introduction
Traumatic brain Injury (TBI) is a major cause of death and disability in adults. Each year in
the UK more than 112,000 people are admitted from accident and emergency departments
with a primary diagnosis of TBI [1]. TBI is ranked as the fourth highest cause of death in

c� 2010. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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2 ARIBISALA, et al.: MULTI-PARAMETRIC CLASSIFICATION OF TBI

the developed world, and the number of people sustaining head injuries increases yearly [2].
Computed tomography (CT) is used for initial assessment of TBI patients but CT and con-
ventional MR imaging in mild TBI patients often does not correlate with the severity and
longevity of the clinical neurological picture [3]. It has been reported in small cohort studies
of TBI that advanced MRI techniques such as diffusion tensor imaging (DTI) and image re-
laxometry do detect subtle quantitative changes in brain tissue properties [4], but individual
measurements do not have prognostic value in individual patients. In view of these previous
findings we anticipate that combination of a range of quantitative MRI parameters will be
more sensitive in detection of subtle neuronal damage than when using individual parame-
ters. Hence we hypothesised that multi-parametric analysis would offer a better classification
of TBI patients than univariate analysis. In order to test our hypothesis we applied a machine
learning classification method called Support Vector Machines (SVMs).

SVM works by learning the features which differentiate the groups of a dataset. Once
the learning is achieved, the knowledge acquired during the learning can be used to classify
any new data. SVM application to biological problems is increasing due to its high accuracy,
ability to deal with multi-dimensional and large datasets and the high flexibility in modelling
of data from various sources [5].

2 Materials and Methods

2.1 Subjects
A total of 44 subjects were recruited for this study. This comprised 24 mild TBI patients
(GCS, 14-15, mean age 38± 15yrs) and 20 healthy adults (mean age 41± 16yrs) with no
clinical evidence of neurological diseases or prior history of TBI. Scanning for the patient
group was performed within 10 days of injury (mean 4.9, range 1-10 days).

2.2 MR Protocol
All images were acquired on a 3.0T whole body Philips Achieva MR System (Philips Medi-
cal Systems, Best, NL) using an 8-channel SENSE head coil. The protocol was approved by
the local ethical committee and all subjects provided written consent prior to imaging. The
following scans were acquired in each subject.

T1W Imaging: High resolution 3D T1 weighted anatomical scan (MPRAGE, TR/TE =8.1 /
4.6ms, matrix 150x240 with 240 contiguous slices, 1mm slice thickness, in-plane resolution
of 1mm).
T1 Mapping: A fast quantitative T1 measurement using a custom inversion recovery prepared
EPI sequence (TR /TE=15s /24ms, TIR=0.25 to 2.5s in uniform 12 steps, matrix 128x128,
72 axial slices, isotropic 2mm resolution).
T2 Mapping: Quantitative T2 measurement using MSE sequence (TR=4.7s, 8 spin echoes at
20ms spacing, EPI factor 5, matrix 128x128, 72 slices, isotropic 2mm resolution)
Diffusion Tensor Imaging: DTI using SE EPI sequence (SENSE factor 2, TE /TR=71/2524ms,
matrix 128x128, 24 slices, 6 mm thickness and 2mm in-plane resolution, 16 diffusions di-
rections, b values 0 and 1000 smm−2).
B0 Field-map: B0 Field-map (dual echo 3D GRE sequence TR=27ms, TE=2.6 /6.1ms, ma-
trix 128x128x72, 2mm resolution) which was used to correct the spatial distortion in EPI

14
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Figure 1: Typical images from quantitative data representing the control and patient popula-
tion, Columns 1, 2, 3 and 4 are the T1W, MD, qT2 and qT1 images respectively

based images.

Figure 2: The scatter plot and SVM results in the Frontal Superior region of white matter.
First row represents T1 against T2 and T1 against MD. Second row represents T2 against MD

2.3 Image Analysis
We applied an automatic image analysis method [6] whereby the whole brain is automatically
divided into 16 regions of interest (ROI) for each tissue type. These regions are pairs of
right and left inferior frontal lobe, superior frontal lobe, temporal lobe, temporal-occipital
lobe, occipital lobe, temporal-parietal lobe, parietal lobe and the cerebellum. In brief, the
method uses a standard space brain ROI parcellating the entire brain into 16 chuncks, which
is transformed into subject space based on a multi-step registration using the subject’s high
resolution T1 weighted anatomical scan. Next, the same anatomical scan is segmented into
white matter, grey matter and CSF masks [7] and combined with the brain region template
to generate tissue specific anatomical ROIs which are applied to the quantitative images
under analysis. Multi-spectral analysis using k-means clustering is applied to the regional
quantitative data for removal of partial volume errors in order to improve ROI definitions.
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The algorithm was implemented in MATLAB R2009b (The Mathworks Inc., Natick,
MA, USA) running on a Linux platform using in-house developed routines but incorporated
existing processing methods from the FSL [8] package when appropriate. All segmentation
steps were performed using FSL Segmentation Tool (FAST, [7]). Patients with visible lesions
were excluded from the analysis.

Quantitative T1 maps (qT1) were calculated on a pixel by pixel basis by fitting the ac-
quired data to T1 inversion recovery curve using the standard 3 parameter fit (Mo, flip angle
and T1) while quantitative T2 maps (qT2) were calculated using a 2 parameter (Mo and T2)
monoexponential fit to the acquired data.

DTI data were preprocessed with FDT (FMRIB’s Diffusion Toolbox) [9]. Head move-
ment and eddy currents were corrected using 3D rigid body registration to a reference vol-
ume. Raw DTI data were brain-extracted using FSL BET tool, and mean diffusivity (MD)
images were created by fitting a tensor model to the raw diffusion data using FDT.

The algorithm was then used to automatically determine regional grey and white matter
qT1, qT2, and MD in each of the 16 target ROIs. Finally, the regional mean values for both
grey and white matter were computed in each ROI and used for SVM classification.

2.4 Support Vector Classification of TBI Data
SVM was used to classify the regional mean values computed from qT1, qT2 and MD. Each
subject’s data was divided into the 2 tissue classes with each comprising of 16 x 3 matrices,
representing the 16 ROIs and each of the 3 quantitative MRI parameters. These matrices
were used as input vectors for SVM. Each of the two groups (mild TBI and control) was
divided into 2 mutually exclusive subsets, the training set and the validation set. Selection
was done using the holdout cross validation method; this method randomly divides a given
dataset into 2 equal groups. Training and classification were evaluated on a regional basis for
both white matter (WM) and grey matter (GM) using combinations of qT1 and qT2, qT1 and
MD, qT2 and MD and qT1, qT2 and MD. We compared a number of kernel functions using
sensitivity and specificity analysis, only the radial basis function gave a desirable result. In
view of this finding (no data presented) our implementation used radial basis function.

3 Results and Discussions
Figure (1) shows selections from typical control and patient datasets. Figure (2) shows a
representative scatter plot and SVM results. The scatter plots show that there is significant
overlap between the 2 groups along each axis but that combination of axes reveals some
intra-group relationships. The SVM results on the right hand side of each plots show the
separation between groups. We used sensitivity (True positive) and specificity (True nega-
tive) to measure the performance of SVM. The average sensitivity (and specificity) for white
matter averaged across all the 16 ROIs were 82% (70%) (qT1 vs qT2 and qT1 vs MD), 81%
(73%) (qT2 vs MD) and 83% (68%) (qT1 vs qT2 vs MD) while the average sensitivity (and
specificity) for grey matter averaged across all the 16 ROIs were 80% (75%) (qT1 vs qT2)
87% (79%)(qT1 vs MD), 88% (75%) (qT2 vs MD) and 85% (81%) (qT1 vs qT2 vs MD).
These show that multi parametric analysis using SVM offers a promising tool in to cate-
gorising mild TBI.

Epidemiologically, only approximately half of mild TBI patients manifest ongoing neu-
ropsychological problems related to their injury. In view of this approximately 50% of TBI

16



ARIBISALA, et al.: MULTI-PARAMETRIC CLASSIFICATION OF TBI 5

population are expected to be indistinguishable from normal controls and this could cause
misclassification. We believe that this may be a significant contributing factor to the low
specificity of our analysis. Our future work will include follow up studies in order to identify
the mild TBI patients who have fully recovered without any neuropsychological symptoms
which will help us to redefine the groups which could lead to improved specificity.

4 Conclusions
We have shown that a multi-parametric analysis of quantitative MRI data can be used to
separate mild TBI patients from the control group. Our results show that SVM can detect
changes in normal appearing tissues in some patients suffering mild TBI as compared with
the control group. These changes may represent damage to neuronal tissue and further work
is needed to determine whether this is responsible for the cognitive and affective symptoms
commonly seen following mild head injury, which include memory loss, inability to concen-
trate, irritability and depression
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Abstract
Two mechanisms for classifying Magnetic Resonance Image (MRI) brain scans ac-

cording to the nature of the corpus callosum are described. The first mechanism adopts
an approach founded on the concept of graph mining whereby MRI scans are represented
in terms of frequently occurring sub-graphs across the data set, the second is founded on
a time series representation coupled with a Case Based Reasoning (CBR) approach to
classification. The two mechanisms are evaluated through application to a set of MRI
scans describing musicians and non-musicians. In both cases a high degree of accuracy
is obtained.

1 Introduction
This paper describes and compares two approaches to classifying (catagorising) MRI brain
scans according to the nature of the corpus callosum, a structure of the mammalian brain
that connects the two hemispheres; a graph mining based approach and a time series anal-
ysis based approach. Both approaches, although operating in very different manners, are
essentially supervised learning mechanisms whereby a pre-labelled training set is used to
build a “classifier” which can be applied to unseen data. The first approach uses a tree based
representation for the corpus callosum, one tree per image. A graph mining technique is then
applied to identify frequently occurring sub-graphs (sub-trees). The identified set of trees are
then used to describe the image set so that it is described in terms of a set of attributes, each
of which equates to a frequently occurring sub-tree. A decision tree algorithm is then applied
to this attribute set to build a classifier to be applied to “unseen” data. The second approach
is founded on a time series representation coupled with a Case Based Reasoning mechanism.
The features of interest are represented as time series, one per image. These time series are
then stored in a Case Base (CB) which can be used to categorise unseen data. The unseen
data is compared with the categorisation on the CB using a Dynamic Time Warping (DTW)
based similarity checking mechanism, the categorisation associated with the most similar
time series (case) in the CB is then adopted as the categorisation for the unseen data.

c� 2010. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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2 Application Domain
The work described in this paper is directed at the classification of MRI brain scan data
according to the corpus callosum. This is a highly visible structure in MRI scans whose
function is to connect the left and right hemispheres of the brain, and to provide the commu-
nication conduit between these two hemispheres. Figure 1 gives an example MRI scan, the
corpus callosum is located in the centre of the image. A related structure, the fornix is also
indicated. The fornix often “blurs” into the corpus callosum and thus presents a particular
challenge in the context of the segmentation of these images.

Figure 1: corpus callosum in a midsagittal brain MR image.

The corpus callosum is of interest to medical researchers for a number of reasons. The
size and shape of the corpus callosum have been shown to be correlated to sex, age, neu-
rodegenerative diseases and various lateralized behaviour in people. It is also conjectured
that the size and shape of the corpus callosum reflects certain human characteristics (such as
a mathematical or musical ability). Several medical studies indicate that the size and shape
of the corpus callosum, in humans, are correlated to brain growth and degeneration [4] and
handedness [2].

3 Graph Based Approach
The proposed graph based classification process commences with segmentation and regis-
tration to isolate the corpus callosum in each image. The pixel represented corpus callosum
is then tesselated into homogenous sub-regions. Tessellation entails the recursive decompos-
ing of an identified Region Of Interest (ROI), into quadrants. The tesselation continues until
either sufficiently homogenous quadrants are identified or some user specified level of gran-
ularity is reached. The result is then stored in a quadtree data structure such that each root
node represents a tile in the tesselation. Nodes nearer the root of the tree represent larger
tiles than nodes further away. Thus the tree is “unbalanced” in that some root nodes will
cover larger areas of the ROI than others. The advantage of the representation is thus that it
maintains information about the relative location and size of groups of pixels (i.e. the shape
of the corpus callosum).

A weighted frequent sub-graph mining technique was developed to identify commonly
occuring sub-trees within the tree represented image set. The weightings were calculated
according to the proximity of individual nodes to the root node in each tree. This weighting
concept was built into a variation of the well known gSpan algorithm [7]. The algorithm
operates in a depth first search manner, level by level, following a “generate, calculate sup-
port, prune” loop. Candidate sub-graphs are pruned if their support (frequency of occur-
rance across the graph set) is below a user defined “support threshold”. Note that the lower
the threshold the greater the number of frequent sub graphs that will be identified. The sub-
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graphs identified during the training phase (using the weighted gSpan algorithm) are then the
attributes/features used to define each corpus callosum in terms of a feature vector. Space re-
strictions preclude further detailed discussion of this weighted sub-graph mining algorithm,
however, interested readers are referred to [5].

The identified sub-trees (graphs) thus form the fundamental elements of a feature space.
Experiments conducted by the authors have revealed that, for many image sets, the graph
mining process can identify a great many frequent sub-graphs; more than required for the
desired categorisation. Therefore a feature selection strategy is applied so that only those
sub-tree that serve as good discriminators are retained. A straightforward wrapper method
was adopted whereby a decision tree generator was applied to the feature set. Sub-trees
(features) included as “choice points” in the decision tree were selected, while all remaining
features were discarded. For the work described here, the well established C4.5 algorithm
[6] was adopted. On completion of the feature selection process each image is described
in terms of a binary-valued feature vector indicating the selected features (sub-trees) that
appear in the image. Once the image set has been represented in this manner any appropriate
classifier generator may be applied. For additional information regarding the graph based
approach, including the tesselation process, interested readers are referred to [3].

Figure 2: Conversion of corpus callosum into time series.

4 Time Series Based Approach
As in the case of the graph based approach, the time series based approach commences with
the segmentation and registration of the input images. The next step is to derive a time
series according to the boundary line circumscribing the corpus callosum. The time series is
generated using an ordered sequence of N vectors radiating out from a single reference point.
The derived time series is then expressed as a series of values (one for each of the N vectors)
describing the size (length) of intersection of the vector with the ROI. The representation
thus maintains the structural information (shape and size) of the corpus callosum. It should
also be noted that N is often variable due to the differences of the shape and size of the
individual ROI within the image data set.

With respect to the corpus callosum application the time series generation procedure is
illustrated in Figure 2. The midpoint of the lower edge of the Minimum Bounding Rectangle
(MBR) was selected as the reference point. The vectors were derived by rotating an arc about
the reference point pixel by pixel, hence the value of N will very across the image set. In this
manner a time series curve may be generated of the form described in the top half of Figure
2 where the X-axis represents the vector (arc) number, and the Y-axis the “pixel-distance”
where the vector intersects the ROI (corpus callosum).

Each time series is then conceptualised as a proto-type or case contained in a Case Base
(CB), to which a Case Based Reasoning (CBR) mechanism can be applied. Thus, given an
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unseen record, the record can be classified according to the “best match” discovered in the
CB. The CBR community has proposed many techniques to identify the desired best match.
In this paper the authors advocate a Dynamic Type Warping (DTW) time series analysis
technique for comparing curves [1]. The advantage offered is that DTW is able to find the
optimal alignment between two time series Q and C, of length n and m respectively. The
DTW-distance between the two time series Q and C is D(M,N) was calculated as follows:

D(i, j) = d(qi,c j)+min{D(i−1, j−1),D(i−1, j),D(i, j−1)} (1)

Backtracking along the minimum cost kth index pairs w(i, j)k starting from (m,n) yields the
DTW warping path.

5 Evaluation
To evaluate and compare the two proposed approaches a data set used comprised 106 brain
MRI scans was used. The data set comprised two equal categories (classes), 53 images
per category, namely musicians and non-musicians. There is significant evidence, amongst
the medical community, that traits such as musical ability, influence the shape and size of
the corpus callosum. It should be noted that a visual inspection of the MRI images does
not indicate any discernible distinction between the two categories. Table 1 shows the Ten
Cross Validation (TCV) classification results obtained using the proposed techniques. The
columns labelled GB (Graph Based) and TSB (Time Series Based) indicate the classification
accuracy obtained in each case. With respect to the GB approach a quad tree depth of 6
coupled with a 30% threshold support produced the best classification accuracy. Table 2
shows the confusion matrix for the best result using GB approach listed in Table 1. This gives
a precision of 96.15%, a sensitivity of 94.34% and a specificity of 96.23%. A corresponding
confusion matrix for the best result using the time series approach is unecessary.

Table 1: TCV Classification accuracy (%) for
musicians using GB and TSB approaches

Test set ID GB TSB
1 92.45 91
2 96.23 100
3 95.28 91
4 93.4 100
5 97.17 100
6 94.34 100
7 97.17 100
8 95.28 100
9 96.23 100

10 95.28 100
Average 95.28 98.2

SD 1.54 3.8

Table 2: Confusion matrix for best graph
based approach

Pos. Neg. Totals
True 50 3 53
False 2 51 53
Totals 52 54 106

Table 3 gives some fiuther average TCV results obtained using the GB approach but with
a variety of quad-tree depths and support thresholds. The best result for each depth of quad-
tree is indicated in bold font. Inspection of the two Tables (1 and 3) demonstrate that the
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Table 3: TCV Classification accuracy (%) using graph based ROIBIC
Support Threshold (%)

Levels 20 30 40 50 60 70 80 90
4 70.75 69.81 68.87 71.70 68.87 61.32 52.83 50.94
5 90.57 83.96 80.19 85.85 80.19 81.13 80.19 70.75
6 85.85 95.28 84.91 83.96 90.57 83.96 77.36 75.47
7 83.80 85.85 89.62 86.79 87.74 75.47 76.42 78.30

overall classification accuracy (100%) of the TSB approach improves on the GB approach.
Although both algorithms perform well.

5.1 Conclusions
Two approaches to ROI Based Image Classification, founded on graph mining and time
series analysis respectively, have been described. The work was directed at MRI brain scan
data, and illustrated by considering MRI scan classification according to the nature of the
corpus callosum featured within these images. High accuracy results are reported for both
approahes. However, the approach has general applicability. The research team are also
interested in alternative methods of pre-processing MRI data, and mechanism for the post-
processing of results to provide explanations for specific classifications. The latter is seen as
particularly significant in the context of medical research involving MRI scan data, such as
in the case of the presented application.
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Abstract

A framework for classification of chronic lung disease from high-resolution CT scans
is presented. We use a set of features which measure the local morphology and topology
of the 3D voxels within the lung parenchyma and apply functional data classification to
the extracted features. We introduce the measures, Minkowski functionals, which derive
from integral geometry and show results of classification on lungs containing various
stages of chronic lung disease: emphysema, fibrosis and honey-combing. Once trained,
the presented method is shown to be efficient and specific at characterising the distribu-
tion of disease in HRCT slices.

1 Introduction
Chronic obstructive lung diseases, such as emphysema and pulmonary fibrosis, are progres-
sive respiratory diseases leading to a decline in lung function and, eventually, respiratory
failure. High resolution computed tomography (HRCT) is currently the most accurate, non-
invasive method of detecting and evaluating changes in lung parenchyma and so is used in
clinical practice to diagnose and assess the severity of these diseases. The progress of disease
manifests itself as textural changes of the imaged lung tissue and, in the case of emphysema,
as a reduction of the mean lung density. In clinical practise, quantitative assessment of
emphysema is usually based on summary statistics of the histogram of lung voxel values.
Common statistics are percentile points and the voxel index, which is the proportion of lung
voxels below a pre-defined threshold. However, such simple criteria can be unreliable, for
example, when the pathological process is mixed such as in the presence of inflammation
and fibrosis along with emphysema.

c� 2010. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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As chronic obstructive lung diseases express themselves as textural changes in HRCT
scans, image texture analysis methods have been investigated as tools for a more robust
quantification. The early work of Uppaluri et al. [10] used first and second order texture fea-
tures together with fractal dimension to characterise emphysema. Chabat et al. [4] proposed
the use of texture measures based on grey-level co-occurrence matrices (GLCM). They also
included a number of shape features. The use of GLCM and the related shape and connec-
tivity measures suggested by Chabet et al. are also used in more recent work by Xu et al.
[11]. In Hoffman et al. [7] and Zavaletta et al. [12] spatial maps of lungs have been produced
that graphically show the result of texture classification. The classifiers used in recent work
vary from kNN classification [12], to Bayesian [11] and neural-network based methods [6].
In the following we explore the use of a systematic framework of morphological descriptors
from integral geometry that integrates and extends current approaches based on histogram
analysis.

2 Characterising Texture using Integral geometry
Integral geometry provides a family of measures, intrinsic volumes or Minkowski functionals,
that characterise the morphology and topology of polyconvex sets. A set is polyconvex if it
is a finite union of compact, convex sets. The foreground in a binary image is a finite union
of voxels and therefore a polyconvex set.

In R3 there are four Minkowski functionals which are proportional to more commonly
known quantities: volume V , surface area S, the mean breadth B (which is proportional
to the integral of mean curvature) and the Euler-Poincaré characteristic χ . More formally,
Steiner’s formula can be used to define the Minkowski functionals for convex sets. In R3

Steiner formula shows that

V (K⊕Br) = V (K)+S(K) r +2πB(K) r2 +
4
3

χ(K) r3, (1)

where K⊕Br = {x + y,x ∈ K and y ∈ Br} is the dilation of the convex set K by a sphere of
radius r. Hence we have

W0(K) = V (K), W1(k) =
1
3

S(K), W2(K) =
2π
3

B(K), W3(K) =
4
3

χ(K). (2)

In the following we will use the measures V , S, B and χ but refer to them collectively as
Minkowski functionals.

Minkowski functionals have convenient mathematical properties. They are invariant to
rigid motion, they are continuous in a certain sense and they are additive which allows for
efficient computation of the functionals, see Section 3. Another important property is that
Minkowski functionals are complete in the sense of Hadwiger’s theorem: any image func-
tional that is motion-invariant, continuous and additive is a linear combination of Minkowski
functionals.

Having been shown to be effective in materials science for classification of two-phase
media (see for example [1]), more recently, the functionals have also been applied to HRCT
lung scans. In [2, 3] the measures are used to classify regions of interest of size 40x40x40
voxels into healthy, fibrotic and emphysematous tissue. The authors use an integrative filter-
ing procedure to summarize the four integral geometry measures into a single quantity used
for classification and provide evidence that these measures can outperform standard densito-
metric methods. In [9] the same measures are computed on sub-windows covering the whole
lung and calibrated maps are produced illustrating the spatial distribution of emphysema and
pulmonary fibrosis.
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To apply the Minkowski functionals to HRCT scans, the images have to be binarized via
thresholding. While [9] keep the threshold fixed, in this paper we extend the approach by
letting the threshold vary and computing the Minkowski functionals for each threshold. This
is a natural extension to the clinical densitometry approach as the zeroth order Minkowski
functional (volume) as a function of attenuation is equivalent to the empirical cumulative dis-
tribution function of voxel values. In contrast to [2, 3] who examine large regions of interest
(40x40x40 voxels) we consider small sub-windows (5x5x1 voxels). While this sacrifices
some of the separation between Minkowski functionals for the different disease classes it
allows us to localize the spatial distribution of disease. Also, rather than summarizing the
measures into a single numerical quantity, we take account of the fact that we have functions
of Minkowski functionals by using a classification technique from functional data analysis.
This overcomes the statistical issues posed by having a large number of predictors relative
to the sample size.

3 Computation of Measures and Functional Classification

Legland et al. [8] present an algorithm that computes Minkowski measures for 3D binary
images. These Minkowski measures mi, i = 0, . . . ,3, are local versions of Minkowski func-
tionals Wi, i = 0, . . . ,3, and are computed on voxel level. The Minkowski functional of a set
X restricted to a window Ω can then be computed by summing over the Minkowski values of
the voxels in the window, that is Wi(X ∩Ω) = ∑x∈Ω mi(x). The algorithm is implemented as
a marching cubes type algorithm with hhe Minkowski measure for any 3x3x3 binary voxel
configuration being pre-computed and kept in a look-up table. Linear filtering is then used
to identify the voxel configuration for a given marching cube.

To apply the algorithm to HRCT lung scans we binarised the lung images for a range of
different thresholds. We subdivided each binary image into a grid of windows of size 5x5x1
voxels and then computed the Minkowski functionals for each window. Thus we obtained
Minkowski functionals as functions of attenuation value, see Figure 1 for examples. When
increasing the window size the separation between the Minkowski functionals of different
disease classification becomes more pronounced, however, spatial localisation of the classi-
fication into disease states becomes reduced. In our experiments we used the non-parametric
supervised classification method by Ferraty and Vieu [5] to classify various diseased lung
tissue. Our data represents functions which can pose problems for standard multivariate
techniques such as classical linear discriminant analysis because we have a large number of
predictors relative to the sample size. Functional data analysis, like the method by Ferraty
and Vieu, can overcome these limitations. We give a short overview of the method, further
details can be found in [5].

Let w = {w0,w1,w2,w3} be the observed Minkowski functionals which are functions
of attenuation value and let C denote the categorical variable denoting the class. The clas-
sification method uses a Bayes rule as classification rule, that is it estimates the posterior
probabilities

pc(w) = P
�

C = c
���W = w

�
= E

�
1[C=c]

���W = w
�

(3)

and then assigns the class c with the highest estimated posterior probability to w. The pos-
terior probabilities are estimated using a kernel estimator which is based on a functional
concept of proximity. In our experiments we used the L2 metric applied to data smoothed
via multivariate partial least squares regression.
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Figure 1: Example Minkowski functionals from the training set.

4 Results and Discussion

We manually selected 28 regions of size 30x30x5 voxels as a training set. 10 of these regions
were examples of healthy lung, 10 fibrotic lung and 8 suffering from emphysema. (The
number of emphysematous training regions is smaller as there were fewer such regions in
the available HRCT scans). Both the training set and the lung tissue to be classified were
subdivided into 5x5x1 voxel windows. While we choose the vertical size of classified regions
to be just one voxel note that the Minkowski functional values each voxel take account of the
configuration in the 3D neighbourhood. On the training set we achieved a misclassification
rate of 7%.

Figure 2 illustrates some of our classification results. We should point out that the train-
ing set was classified by a non-expert and is likely to underestimate the variability of the
disease patterns. Also, as the results are not based on a designed survey sample. Thus, at
this stage, the results are indicative only but illustrate the promise of the presented method.
The resolution of classification was chosen as a compromise between spatial localisation
and appropriate separation in the training sample. However, the additivity of the Minkowski
measures presents the opportunity to develop a hierarchical classification approach in which
the resolution in a spatial region can be varied and is determined as part of the algorithm.

In summary, the classification method from functional data analysis has been shown to
appropriately account of the fact that the integral geometry descriptors are functions of atten-
uation. Furthermore, while enhancing the assessment of emphysema the presented frame-
work could readily be applied to any other lung disease that leads to structural changes and
deformations of lung tissue, including pulmonary fibrosis and LAM. As well as further vali-
dation of the framework, we are investigating its wider application.
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Figure 2: Classified lung slices: green regions denote healthy lung, red regions fi-
brotic, honeycombed tissue and blue regions are classified as suffering from em-
physema.
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Abstract
The exact mechanisms leading to placental changes caused by malaria in pregnancy

are not completely understood. However, the change in the appearance of the placenta
with the acquisition of malaria could be detected using ultrasound image analysis. A
method to classify healthy and malarial ultrasound scans of the placenta using image
texture analysis is presented. The Discrete Wavelet Transform (DWT) is performed on a
region of interest (ROI) of the placenta image. A significant difference is seen between
healthy and infected placenta images in the DWT level two approximation coefficient.
Features were extracted from this coefficient and were used as the input to two classifi-
cation algorithms: Support Vector Machines and Neural Networks. Both classifiers were
able to characterize the images as either ‘healthy’ or ‘malaria infected’ with accuracies
as high as 87%.

1 Introduction
Over 45 million women [8] become pregnant in malaria endemic regions per year. Malaria
in pregnancy can cause maternal anemia and impaired fetal growth leading to various com-
plications including low birth weight, spontaneous abortion, premature birth and stillbirth.
Plasmodium falciparum is the main cause of disease and death from malaria. This type of
malaria modifies the surface of red blood cells (RBCs) so that asexual parasites can adhere
to the placenta. The placental tissue changes with the accumulation of parasite. Here, we
investigate whether automated image texture analysis can be used to detect an alteration in
the ultrasound images.

The current diagnosis for malaria is a blood test, which can often give a false-negative
result since the malaria parasite sequesters in the placenta and therefore may not be present
in the blood. The use of ultrasound image texture analysis as a computer aided diagnosis
tool could replace the use of blood tests as a means of diagnosis.

The use of wavelet decomposition for ultrasound image texture analysis has been applied
to many tissues in the human body [3] [5] [2]. The Discrete Wavelet Transform is computed
by successive low pass and high pass filtering of the signal. The signal is then decimated by
halving the number of samples to form each scale. The choice of wavelet therefore defines
the scaling function, and the filters.

c� 2010. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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Figure 1: Ultrasound images of the placenta (highlighted/outlined in red) a.) a large placenta
b.) a placenta effected by fetal shadowing c.) a small placenta

This process of wavelet decomposition can be applied to the 2D ultrasound images; a 1-D
filter is applied to the rows of the image. The same transform is then applied to the columns
of each channel of the result. This produces four sub-bands- LH1, HL1 and HH1- corre-
sponding to the finest scale wavelet coefficients (the detail), and LL1 represents the coarse
level coefficients (the approximation). To obtain the next decomposition, the sub-band LL1
alone is further decomposed and sampled. This process can be iterated: the approxima-
tion sub-band is successively decomposed and the image is represented as many resolution
components. The coefficients from each level of decomposition can then be extracted. The
features derived from these coefficients are used to uniquely characterize the texture [1].

Application of this method to this specific task presents difficulties due to the size of the
placenta. The placenta can also suffer from shadowing from the fetus. In this application,
unlike some in obstetrics, any method needs to work across a range of gestational ages (GAs).
For placenta images of a very young GA, the size of the placenta is often too small for the
application of texture analysis due to a insufficient ROI leading to difficulties in delineating
the boundary of the placenta. The images in Fig 1 depict some of the cases outline above.
The images also highlights the difference in the positioning of the placenta between scans.

2 Method

2.1 Selecting the Region of Interest (ROI)
Each slice in the X-Z orientation of the 3D ultrasound volume files was manually scanned to
obtain the optimum 2D slice. This slice contained the least shadowing and the largest cross
sectional area of the placenta. The slice number was then used in a MATLAB algorithm
to extract the 2D slice from the 3D volume. This 2D slice was then cropped to obtain a
rectangular ROI. This ROI was chosen to include an area of the placenta that is as large as
possible without including any other tissue. During this process, some scans were discarded
for further use due to poor quality of the image of the placenta. Examples of such images
are shown in Fig 1 b.) and Fig 1 c.).

2.2 Discrete Wavelet Transform (DWT)
DWT was performed using the Daubechies 3 wavelet function and two levels of decomposi-
tion. This wavelet function was chosen due to the results of preliminary tests performed to
determine the most suitable wavelet function. The Daubechies family of wavelets produced
the ‘best’ set of coefficients. This is because the approximation and detail coefficients main-
tained details and texture patterns seen in the original image. The Daubechies wavelets are
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often used in image texture analysis, as the wavelet functions are approximately fractal. It
was also found that after two levels of decomposition, information was lost and the detail
coefficients did not contain a significant amount of data.

Statistical features of the resulting coefficients were then calculated. These features in-
cluded mean, standard deviation, normalized energy signature, maximum, minimum, and L2
norm. These features were then combined to form a feature vector for each image.

2.3 Classification
SVMs is a supervised machine learning method used for classification. They are created us-
ing two steps: Firstly, the sample data vectors are mapped to a high dimensional space. This
is achieved by using a transformation Φ(x), which maps the data from the input space to the
feature space. The kernel function, K(x,y) = Φ(x)Φ(y) performs this transformation. There
are many types of kernel functions that can be used including linear functions, quadratic
functions and radial basis functions (RBFs). The algorithm then finds a hyper-plane in this
feature space that has the largest margin separating classes of data [4]

The linear function, quadratic function and Gaussian radial basis function were all inde-
pendently used to classify the features. 50% of observations were randomly selected to hold
out as the test set using holdout cross-validation. The other 50% were used to train the SVM.

NN are non-linear machine learning methods that can be used as a supervised method
to find patterns in data. The NN model simulates the functions of biological neurons. It
consists of a number of interconnected artificial processing neurons called nodes, which are
connected together to form a network.

A pattern recognition neural network was used in MATLAB to classify the data. The
network is a feed-forward network with tan-sigmoid transfer functions in the hidden layer
and the output layer. The inputs to this network were feature vectors for each image and the
output of this network contained two output neurons corresponding to healthy or malarial.

The ‘Scaled Conjugate Gradient Algorithm’ was used to train the network. This algo-
rithm randomly divides the input vectors and output vectors into three groups: 60% are used
for training; 20% are used for validation (this is to ensure that the network is generalizing
and also stops training before over-fitting); 20% are used as an independent set to test the
network [6]. The data used in the testing stage provides an ‘out-of-sample’ dataset so that
the network can be tested accurately.

3 Experimental Results
The method was tested on 52 3D ultrasound images (excluding those that were discarded).
This included 26 healthy placenta images, 1 case of extreme malaria infection (i.e. very large
parasite count) and 25 cases of varying parasite count. The images of the fetus were obtained
from the Shoklo Malaria Research Unit (SMRU), Thailand, following the Intergrowth 21st
protocol [7]. A GE Voluson I ultrasound machine; with a RAB2-5-RS; 2-5MHz /Real time
4D probe for the abdomen was used for all scans.

The DWT was performed on the ROI of each placenta to obtain the coefficients. His-
tograms were plotted to allow visualization of the statistics of the coefficients. It can be
seen from Fig 2 that there is a considerable difference between the level two approximation
coefficients for the cases of a healthy (red) and highly infected placenta (blue). The other
histograms show an overlap between the coefficients of the separate images.
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Figure 2: Histograms of DWT coefficients (Daubechies 3, Level 2)

(a) (b)
Table 1: (a) SVM Classification Results & (b) NN Classification Results

The aim was to use the Discrete Wavelet Transform to detect a difference between images
of a healthy placenta and images of a malarial infected placenta. For this reason the detail
coefficients were rejected for use in classification and the approximation coefficient was used
alone.

Fig 2 represents a case of extremely high parasite count and a healthy placenta. His-
tograms for lower parasite counts were also plotted to see if there was still a sizeable distinc-
tion between the the infected and the healthy case to ensure that this method is robust for all
severities of malaria. A substantial difference was still observed between the two cases.

The statistical features were extracted directly from the coefficients and then combined
to construct a feature matrix containing all 6 features. This feature matrix was then input into
the classifiers. To assess the accuracy of the individual features, each possible combination
of pairs of features was analysed. Classification results may depend heavily on which data
is used in the training set and which is used in the test set. For this reason three trials per test
were performed and the average of these taken. The results are presented in Table 1 with the
best results highlighted in bold.
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4 Conclusions & Future work
This paper has presented a novel method of applying the DWT to images of the placenta
to characterize the texture change seen in the presence of malaria. It has been shown that
a substantial difference in the level two approximation coefficients is observed between a
healthy and malaria infected placenta. Features were extracted based on the statistical mea-
sures of this coefficient only. The results of the classification experiments have shown that
this technique can differentiate between a healthy and malarial placenta image. The best
performance for the SVM classifier was seen using the quadratic kernel and a combination
of the Energy Signature and Maximum; this achieved a classification accuracy of 85%. A
higher correct classification rate of 87% was seen for NN using the Mean and the Maximum.

For the next stage, the inverse DWT of the approximation coefficient could be taken
to observe the reconstructed coefficient in the image domain. This could lead to a better
understanding of the change in physiology of the placenta with the accumulation of parasite.

The results from this study are very promising and provide sound preliminary work that
can be extended to validate the clinical application of this method. An increased, more varied
dataset is needed to undertake more experiments to evaluate the effects of GA, maternal
age and the positioning of the placenta on the results. Importantly, with the availability
of portable ultrasound systems, if our further studies are successful, this method could be
readily employed as a clinical tool in practice in the developing world.
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Abstract
We present a new method for reconstructing a 3D vector field from multiple 3D

Pulsed Wave Doppler echo images. A weakness of Doppler imaging is that only a 1D
projection of the true 3D velocity (the component of the velocity parallel to the echo
beam direction) is measured. We propose a method to use registered multiple Doppler
views to calculate 3D flow vectors using a Least Mean Squares (LMS) minimisation pro-
cess. Spatial and temporal averaging are used to improve reconstruction accuracy. We
investigate the effect on accuracy caused by changes in view angle. We relate our work
to clinical practice by using noise values from real data. We report experiments on sim-
ulated and phantom data. Simulation data results show that when angles between views
are greater than 40◦ (which can be clinically achieved), 3D flow may be reconstructed
with an error of approximately 15% velocity magnitude and 15◦ vector angle. Phantom
data results support these findings.

1 Introduction
Many cardiac abnormalities are characterised by abnormalities of blood flow which can in-
clude regurgitation and narrowing of heart valves resulting in abnormal direction and veloc-
ity of blood flow patterns. Thus, a 3D characterisation of cardiac blood flow may improve
diagnosis of some cardiac diseases. In addition, such information would be useful input to
help constrain patient specific cardiac models or to help validate such models.

The recent introduction of 2D matrix array technology allows rapid acquisition of 3D
B-Mode and 3D Doppler volumes. Nevertheless, Doppler velocity information is only a
1D projection of the true 3D velocity vector into the echo beam direction. Crossed-beam
techniques, which use multiple views to reconstruct the full velocity information, have the
potential to overcome this limitation [2]. The first crossed-beam approach [3] used simulta-
neous acquisition of several 2D Doppler images to compute an instantaneous 3D flow. Xu

c� 2010. The copyright of this document resides with its authors.
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et al. [5] reconstruct 2D flows using more than two views, and improve reconstruction qual-
ity using two averaging methods. Arigovindan et al. [1] proposed using 2D B-Splines and
regularisation to reconstruct smooth 2D flow.

Previous work assumes that the transformation between views is accurately known by
calibration. This is generally not true, instead we propose using image registration to calcu-
late these transformations. The accuracy of 3D flow recovery will depend on a number of
factors, e.g. noise in Doppler images, registration accuracy, angle between views, velocity
range and presence of velocity aliasing. We propose that two major factors are: the noise
in Doppler images; and the angle between views (restricted by anatomy). Our experiments
use noise calculated from real data and investigate methods to improve the SNR, and we ex-
plore the dependence of view angles on reconstruction accuracy. Our aim is to ascertain the
feasibility of the reconstruction under clinical conditions of noise and angular limitation.

2 Description of the Method
We initially describe how our method calculates flow vectors from n 3D volumes, by firstly
registering the images, and then reconstructing the velocity vector fields. We then describe
two clinically compatible methods to improve SNR in input images.

2.1 Image Registration
Echo Doppler images have a reduced Field of View (FOV), which makes registration be-
tween views difficult. In order to achieve accurate registrations, we acquire both large FOV
B-Mode images and Doppler images at the same probe position which are registered to-
gether. We then register the large FOV images acquired from different views using a phase-
based registration algorithm [4].

2.2 3D Vector Field Reconstruction
In the general case, we may have more than three echo Doppler datasets. We extend to 3D
the method by Xu et al [5] for fusing multiple velocity images based in LMS optimisation.

�
m1 . . . mN

�� =
�
�d1 . . . �dN

�� [�v]+
�
g1 . . . gN

�� =⇒M = D ·�v+G (1)

where M is the measured velocity along the beam direction D, �v is the true velocity vector,
N is the number of images and G models the additive Gaussian noise. Applying the LMS
algorithm, leads to a linear system:

A�v = b =⇒�v = A−1b (2)

2.3 Methods to improve SNR
We propose two methods to improve SNR which could fit within a clinical workflow i.e.
restricting our input data to available echo views and exploiting the cyclic nature of the
cardiac sequences:

1. Temporal Averaging (TA). We propose averaging successive cardiac cycles from one
probe position to improve SNR before vector reconstruction. We use an averaging
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(a) (b) (c) (d)

Figure 1: Simulated flow model (a) and resulting Doppler image (b). Flow phantom (c) and
acquired Doppler image (d).

method which weights the contribution from frames based on the inverse of the local
variance (3×3×3 neighbourhood).

2. Spatial Averaging (SA). We propose acquiring multiple acquisitions from approxi-
mately the same view, which are all then input into eq. 2 for vector reconstruction.

3 Experiments
In echocardiography, acoustic windows of the human chest permit acquisition of 3 standard
views: apical view (AV), parasternal long view (PLV) and parasternal short view (PSV).
These are three independent views in 2D. However, in 3D, both parasternal views are the
same except for a 90◦ probe rotation. Nevertheless, the clinician may change the axis be-
tween PLV and PSV views to produce an angle between parasternal views of αp. The AV
axis is approximately orthogonal to both the PLV and PSV axes.

Our experiments are designed to characterise the reconstruction error with respect to the
angle αp. Also, we know that the AV is such that the main flow component through the
mitral valve (a typical region of interest for our proposed method) is approximately aligned
with the beam direction. Thus, in our experiments we place the AV at a 20◦ angle to the flow
direction and the other views (PLV and PSV) orthogonal to AV and spread at an angle αp.

3.1 Experiments on Simulated Data
A synthetic phantom was used to measure the impact of noise for different values of αp on
3D vector accuracy. Our simulated flow model is a rectangular tube with a laminar constant
flow (fig 1(a)). In our simulations, we added zero mean Gaussian noise of standard deviation
σ = 20% of the real velocity value. This σ value was calculated from real data by comparing
corresponding frames from a single view position. We measured σ to be between 10 and
20% of the velocity value, compared to the 9% reported in 2D [1]. The AV was placed at
20◦ with respect to the flow direction. The angle αp was given values from 10◦ to 110◦ in
intervals of 10◦. For each configuration, the 3D flow was reconstructed in 4 different ways:
1) using 3 views with no TA (temporal averaging) or SA (spatial averaging); 2) using 3 views
and another 3 views at similar but not exactly the same positions and then applying SA; 3)
using 3 views with 3 temporal cycles applying TA; and 4) Combining 2) and 3). We report
magnitude and angle errors with respect to the theoretical flow, and results show the average
of 5 repeat experiments.
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3.2 Experiments on Flow Phantom
Our flow phantom consisted on a reticulated foam pipe lined with a thin layer of latex sub-
merged into a water tank, where an pump injected a constant water flow (fig. 1(c) ). We ac-
quired 25 3D+T images, with at least 3 temporal cycles at each position, from approximately
uniformly distributed positions which were classified as AV, PLV and PSV. AV images had
their beam direction aligned at approximately 20◦ to the flow direction. The PLVs and PSVs
were at an angle of between 70◦ and 120◦ to the AV. Images were grouped into sets of three
views (one AV, one PLV and one PSV, the angle between the PLV and the PSV ranged from
15.4◦ to 91.6◦). For the SA experiments an additional set of AV, PLV and PSV were used,
acquired at approximately the same position as the other three views.

As the true velocity of the flow was not known, flow errors could not be calculated as in
3.1. Instead, a synthetic Doppler image was produced from the reconstructed vector field.
This was then compared with independent data acquired at the same probe position. Intensity
(i.e. projected velocity value) difference was used as an error measure.

4 Results
Results are presented in fig.s 2 and 3 for the simulated and phantom experiments respectively.
From our experiments on simulated data there appears to be three intervals of αp: 1. αp <
40◦, large errors which rapidly decrease; 2. interval where errors values do not change
significantly with respect to angle; 3. αp > 90◦, large angles where errors increase again.
A significant finding is that clinically obtainable angles lie within interval 2. This finding
is also supported by our phantom experiments (fig. 3(a)). In both simulated and real data
SA and TA improves the reconstruction (fig. 2(a) and 3(b)). By combining both SA and
TA leads to further improvements (almost 50%). Good consistency was observed between
vector fields constructed from independent data sets using the phantom data (fig. 3(c)).
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Figure 2: Magnitude and angle errors for different SNR improvement methods(a). Flow
vectors reconstructed from simulated data for αp = 70 (red) and true flow (green) (b)

5 Conclusions and discussion
We have carried out a sensitivity analysis of 3D flow reconstruction with respect to angle
between views, αp. Our results using both simulated and phantom data show that recon-
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Figure 3: Flow phantom results. Improvement of accuracy due to TA on phantom data (a).
Performance of TA and SA on phantom data for a given angle of 40 degrees (b). Flow
vectors reconstructed from phantom data, with αp ≈ 90 (green) and αp ≈ 70 (red) (c).

struction error remains approximately constant if the angle between two parasternal views
αp is between 40◦ and 90◦. In discussion with clinicians we believe that it is possible to
achieve a value of αp > 40◦ in a clinical acquisition. We have used realistic levels of noise in
our experiments and investigated the use of two clinically compatible strategies to improve
SNR. These were able to improve the reconstruction accuracy by up to 50%.

Flow can only be reconstructed where all the Doppler images intersect. Thus, only small
structures can be targeted. However, our interest lies in imaging small, rapidly moving
structures, such as valves, which will benefit from the high temporal resolution of echo.

Echo Doppler-based 3D flow reconstruction is a novel technique and needs further im-
provement. Future work will include validation on clinical data, incorporation of physical
knowledge of flow behaviour to the problem and extension to 3D+T flow recovery.
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Abstract 
Echocardiography, though an established tool for assessing cardiac morphology and 
function, suffers from speckle as well as static and dynamic noise. In this study, we 
introduce 3D-to-2D Compounding, which suppresses speckle/noise by averaging adjacent 
(along the elevation plane), partially uncorrelated, 2D slices of the heart extracted as a 
sector of a volumetric pyramid scan. We then examine the effect of 3D-to-2D 
Compounding on clinical measurements performed on routine echocardiographic 
examinations. Results from 20 volunteers demonstrate speckle/noise suppression (mean 
SNR increase of 36%), anatomical structure enhancement and improvement in clinical 
measurement repeatability (CR increase of up to 49%) with no significant or systematic 
bias introduced. Due to recent advances in real-time 4D acquisition technology, 3D-to-2D 
Compounding can be implemented for use in clinical examinations as an alternative to B-
Mode data and act as a first step to further post-processing of cardiac ultrasound data. 

1 Introduction 
Cardiovascular diseases (CVD) constitute the single most important cause of death in the UK 
[1]. The early diagnosis and treatment of CVDs is crucial in order to reduce mortality and 
improve patients’ quality of life. Echocardiography, a widely used tool for assessing cardiac 
morphology and function, offers a number of advantages when compared to other available 
imaging modalities. However, cardiac ultrasound suffers from speckle as well as static and 
dynamic noise which tend to reduce: (i) the ability of the human observer to resolve fine detail 
during a diagnostic examination and (ii) the effectiveness of further image processing methods 
such as image segmentation and registration. As a result, there is wide scope for improving 
image quality (increase Signal-to-Noise Ratio, SNR) and therefore the diagnostic potential of 
cardiac ultrasound.  

Spatial compounding suppresses noise by combining partially uncorrelated images of an 
anatomic structure by imaging the target region-of-interest from various angles. Spatial 
compounding on cardiac ultrasound data is challenging due to the constant, rapid heart motion 
and the limited acoustic windows through the patient rib cage and lungs. Recent advances in 
data acquisition technologies, such as matrix transducers, enable the acquisition of real-time, 
non-gated, 4D cardiac ultrasound data through a single acoustic window [2]. In this study we 
introduce 3D-to-2D Compounding, a novel and effective noise/speckle suppression and tissue 
enhancement method. 3D-to-2D Compounding utilises 4D ultrasound technology for the 
acquisition of adjacent, partially uncorrelated cardiac slices compounding them to an improved 
2D B-Mode frame sequence. We then examine the effect of 3D-to-2D Compounding on routine 
clinical measurements performed during cardiac ultrasound examinations.  
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2 Data acquisition  
2.1 Scanning setup 
B-Mode frame sequences over adjacent slices (along the elevation plane) were acquired using a 
mechanically displaced 2D phased array cardiac probe (Figure 1). The 2D probe was attached 
to a unipolar geared stepper motor which was driven by an arbitrary function generator. Each 
slice was offset slightly from the previous with a small angular displacement . The collection 
of adjacent slices formed a thin angular 3D sector of a volumetric pyramid scan (Figure 1). The 
combined B-Mode frame sequences acquired over each adjacent slice formed a 4D sector of 
the scanned cardiac structure. In a clinical setup, a 4D matrix transducer can be used for the 
real-time, simultaneous acquisition of the adjacent slices. However, a manually controlled 
displacement of a 2D probe enabled us to investigate for optimal acquisition parameters such as 
inter-slice angular displacement and 3D sector angular width. Such parameters have direct 
effect on SNR as well as the tissue boundary blurring introduced by compounding. Using a left 
ventricle (LV) phantom we found that sectors with angular range of 5° and angular inter-slice 
distance of 0.36° provide a good trade-off between SNR increase and tissue boundary blurring.  

  
Figure 1: Close up of the motor-arm attached to the 2D phased array probe (left and middle) 
that accommodates acquisition of adjacent slices by angular displacement of the probe (right). 

2.2 Data acquisition process 
Twenty-five multi-cycle cardiac datasets from five healthy volunteers (all male, mean age: 36) 
were acquired by an experienced echocardiographer during November of 2009. B-Mode data 
of the Parasternal Long-Axis view were acquired according to the standards set by the British 
and American Society of Echocardiography (BSE and ASE) [3]. Each cardiac cycle was 
acquired with an angular displacement relative to the previous acquisition resulting in a 4D 
sector as described in Section 2.1. During the multi-cycle acquisition the volunteers were 
requested to breathe as smoothly as possible to avoid large displacements along the scan plane.  

For the data acquisition we used an Ultrasonix Sonix-RP ultrasound scanner and a 2-4 MHz 
phased array probe at 32 frames-per-second (FPS). Acquisition parameters such as scanning 
frequency, depth, beam focus, sector width and gain were optimally set by the operator for each 
volunteer. The captured B-Mode data were exported as DICOM image sequences of 640 x 480 
pixels with no compression applied to them. Following data acquisition, each dataset was 
manually labeled as good (14), average (6) or bad (5) according to the visually observed 
quality and diagnostic value of the B-Mode data. Five datasets were discarded due to repeated 
loss of contact between the probe and the patient possibly as a result of heavy breathing.  

3 Data processing 
There are three steps to 3D-to-2D Compounding (see Figure 2): (i) the identification of all End 
Diastolic (ED) and End Systolic (ES) frames, (ii) the non-linear alignment amongst frames of 
consecutive cardiac cycles, and (iii) the spatial compounding of temporally aligned data.  
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Figure 2: Three steps for 3D-to-2D Compounding. 

3.1 Identification of ED and ES frames and non-linear temporal alignment  
The temporal behaviour of a heart may vary over consecutive cardiac cycles. When the 
adjacent 2D slices are acquired in succession their B-Mode frame sequences need to be 
temporally aligned prior to any spatial compounding. This step is not required if the adjacent 
slices are acquired using a 4D matrix transducer. However, with our acquisition setup, 
insufficient temporal alignment would result in the compounding of frames from two different 
cardiac phases and lead to severe blurring of anatomic structures. We utilised the non-linear 
method introduced by Perperidis et al. [4] for the temporal alignment of our datasets. Initially, 
an inter-frame similarity coefficient was used to semi-automatically identify all ED and ES 
frames within a B-Mode frame sequence. Then a 1D relaxed uniform interpolating cubic B-
Spline was used to temporally align all corresponding frames within the cardiac cycle acquired 
for each adjacent slice. 

3.2 Spatial compounding 
Temporally aligned frames from adjacent slices were spatially compounded to a single B-Mode 
frame sequence. Intensity averaging was utilised as the spatial compounding method since it is 
a well established and effective method for noise suppression in ultrasound data. The intensity 
of each pixel within the resulting frame was therefore set as the average intensity value of the 
corresponding pixels from all the temporally aligned frames. 

4 Clinical measurements 
Two experienced echocardiographers performed routine clinical measurements on both the 
original and compound data. We presented each echocardiographer a set of ED frames on 
which they measured the Inter-ventricular Septal Thickness (IVSd), Left Ventricular Internal 
Dimension (LVIDd) and Left Ventricular Posterior Wall (LVPWd). Similarly, they measured 
the Left Atrium Dimension (LADs) and Left Ventricular Internal Dimension (LVIDs) on a 
sequence of ES frames.  Each image set contained one original and one averaged frame for 
each of the datasets (40 frames in total). The order of the frames was randomised to ensure no 
bias in the results. All clinical measurements were taken according to the BSE standards and 
performed twice to enable the examination of measurement agreement and repeatability. 
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5 Results and discussion 
Figure 3 illustrates the effect of 3D-to-2D Compounding on cardiac ultrasound data. 3D-to-2D 
Compounding suppresses speckle/noise and can improve the appearance of anatomic structures 
such as the IVS. The mean SNR increase introduced over tissue around the IVS is 36%. 

   

   
Figure 3: Original (top) and compound (bottom) ED frames of low (left), average (middle) and
high (right) data quality. 

Bland Altman plots [5] were used for the quantitative assessment of the effect of 3D-to-2D 
Compounding on clinical measurements (Figure 4). The plots indicate the repeatability of 
measurements performed on the original data and the compounded data as well as the 
agreement between the measurements on the original and the compounded data. Table 1 
summarises the bias, similarity and agreement measures and coefficients derived from the plots. 

 

 
Figure 4: Bland Altman plots for measurements performed by Echocardiographer 1 (Top) and 
Echocardiographer 2 (Bottom). Bias as well as upper/lower limits of agreement included. 

The Coefficients of Repeatability [6] (CR) in Table 1 indicate that measurements on 
compound data demonstrate improvement in repeatability level of up to 49% when compared to 
measurements on original unprocessed images. The effect of 3D-to-2D Compounding varies 
depending on the echocardiographer and the clinical measurement performed. Nevertheless, 
3D-to-2D Compounding predominantly induces improvement in the repeatability of clinical 
measurements. In addition, measurements on original and compound data demonstrate good 
agreement with no systematic bias observed. Compounding 4D datasets acquired in real-time 
using a matrix transducer will remove some of the tissue boundary blurring introduced due to 
movements during the multi-cycle acquisition of our 3D datasets. Moreover, measurement 
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repeatability on the compounded data is expected to increase as the familiarity of the 
echocardiographers with them increases. Therefore, we believe that 3D-to-2D Compounding 
can provide a good alternative to B-Mode for improving cardiac measurements. 

Measure Original Compound Agreement 
(mm) Mean Diff +2sd -2sd CR Mean Diff +2sd -2sd CR Mean Diff +2sd - 2sd CR 

Echocardiographer 1 
IVSd 0.21 2.27 -1.85 2.06 -0.47 1.64 -2.57 2.10 -0.47 1.48 -2.43 1.96
LVIDd 0.81 3.84 -2.22 3.03 0.86 3.60 -1.88 2.74 1.16 5.60 -3.28 4.44
LVPWd -0.76 2.60 -4.13 3.37 -0.31 1.40 -2.03 1.71 -0.16 2.09 -2.41 2.25
LADs 1.06 5.01 -2.89 3.95 -0.03 3.67 -3.72 3.70 0.08 3.69 -3.54 3.62
LVIDs -2.98 0.90 -6.86 3.88 -1.97 2.60 -6.55 4.58 -0.15 4.50 -4.80 4.65
Combined -0.33 4.12 -4.77 4.45 -0.39 3.25 -4.04 3.64 0.08 3.80 -3.64 3.72

Echocardiographer 2 
IVSd 0.08 2.92 -2.77 2.85 0.42 2.79 -1.94 2.37 -0.09 1.54 -1.71 1.62
LVIDd 0.09 3.11 -2.93 3.02 0.12 3.85 -3.62 3.74 0.93 4.28 -2.43 3.36
LVPWd -0.43 1.47 -2.32 1.89 -0.54 1.79 -2.88 2.34 0.21 1.50 -1.09 1.29
LADs -1.01 2.86 -4.88 3.87 -0.92 1.81 -3.65 2.73 0.47 2.76 -1.82 2.29
LVIDs -0.70 2.13 -3.53 2.83 0.48 3.48 -2.52 3.00 0.14 3.16 -2.88 3.02
Combined -0.40 2.71 -3.50 3.11 -0.15 2.93 -3.23 3.08 0.35 2.85 -2.15 2.50

Table 1. Measurement repeatability and agreement coefficients for clinical measurements. 

6 Conclusions 
3D-to-2D Compounding provides a simple and effective technique for suppressing 
speckle/noise, enhancing anatomic structures within cardiac ultrasound data as well as 
improving clinical measurements. Due to its simple nature, 3D-to-2D Compounding can act as 
a first step to post-processing techniques such as segmentation and registration, whose 
effectiveness is limited and sometimes restricted by low image quality (SNR). Our future work 
includes (i) acquiring and compounding real time 4D datasets using a matrix transducer and (ii) 
examining the effect of 3D-to 2D Compounding on a wider range of clinical datasets. 
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Abstract

Many medical image analysis algorithms make assumptions concerning the image
formation process, the structure of the intensity histogram, or other statistical properties
of the input data. Application of such algorithms to image data that do not fit these
assumptions will produce unreliable results. This paper describes a technique for the
automatic identification of images that do not have histogram structure consistent with
that expected. The approach is based upon a component analysis followed by statistical
testing. Experiments validate its use in the identification of quantisation problems and
unexpected image structure. It is intended that this test will form one component of a
quality control assessment, to aid in the use of sophisticated statistical image analysis
software by non-expert users.

1 Introduction
Many complex image processing techniques, such as segmentation, registration and para-
metric image generation, have been shown to have utility in clinical applications. However,
these techniques are always based on specific assumptions about the image formation pro-
cess, the structure of the intensity histogram, or other statistical properties of the images.
Considerable insight on the part of the end users may be required in order to avoid inappro-
priate application of such techniques to input data that do not fit these assumptions. Although
a basic level of training with regard to loading data and executing analysis chains is common,
it is generally not practical to provide adequate levels of training to end-users to enable them
to assess the numerical or statistical stability of an algorithmic process on specific data. This
can lead to inappropriate use of software and invalid research conclusions. Even the most
commonly used packages, used in well funded studies, can be seen to have generated outputs
which are quite clearly suspect [3]. To our knowledge there has been little effort expended
towards solving such problems.

For CT and MR images, the DICOM header file may be used to check acquisition pa-
rameters such as temporal resolution, spatial resolution, weighting factors, and the presence
or absence of contrast enhancements. We can also perform automatic data quality assess-
ment prior to the main analysis (such as signal-to-noise checks [5]). However, such simple
checks may not suffice to identify all possible image quality issues. In addition, the goal of
automatic quality assessment software should be to provide end users with useful feedback
and possible solutions when an input dataset fails a quality check.

c� 2010. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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Here, we use a histogram-based model of the data to ensure the valid use of statistical
approaches. Specifically, we train the algorithm using a variety of compatible images. Our
approach is based on fitting a combination of density functions to multiple independent sub-
samples of data. This model includes components for both pure tissue and partial volume
voxels. Fitting parameters are updated using Bayes theory [1] which is used to estimate the
components for an independent components analysis (ICA).

2 Algorithm
Training phase: The input image used for training (e.g. that shown in Fig. 1) is divided
into J non-overlapping windows of equal size. This gives J different data histograms f j
( j = 1,2, ...,J) to which a unique histogram model is fitted. The model consists of I com-
ponents (i = 1,2, ..., I) where each component is a density function p(g|vi) defined based
on knowledge of the corresponding tissues. While the tissue parameters are identical for all
histograms and are learnt through the optimisation of a global cost function, each histogram
has specific weighting parameters αi j which are updated using Bayes theory.

Figure 1: An example partial volume model for two pure tissues. Pure tissues have Gaussian
distributions (dashed), while mixtures of tissues take form of triangular distributions con-
volved with a Gaussian (dotted). These are summed to give the overall distribution (solid).

The histograms are modelled using the approach equivalent to that described by Santago
and Gage [6]. Their model consists of a delta function representing each pure tissue, and a
uniform distribution between each pair of pure tissues that share a common boundary (see
Fig. 1). Both types of distributions are convolved with a noise distribution which is assumed
to be Gaussian. Therefore, pure tissues are represented by (1/

√
2πσ)exp [−(g−µ)2/2σ2].

We further refine the Santago-Gage model by splitting partial volume distributions into com-
plementary pairs of triangular distributions, representing the volumetric contribution of each
pure tissue to the partial volume voxel. If the triangular distribution is defined using the
line equation y = kx + c, then its convolution with the Gaussian distribution is given by� b

a (kt + c)(1/
√

2πσ)exp [−(g− t)2/2σ2]dt. Note that the mean parameter has no effect on
the convolution process [3], and, the integral gives

− (kg+ c)
2

{er f [
g−b√

2σ
]− er f [

g−a√
2σ

]}− kσ√
2π

{exp[− (g−b)2

2σ2 ]− exp[− (g−a)2

2σ2 ]} (1)

The parameters a and b represent the non-zero range of the distribution. It is straightfor-
ward to find the intercept c and the slope k parameters of the line that defines the triangle.
Absolute normalisation is not necessary at this stage and it is sufficient to assume that the
maximum height of the distribution function is constant, or simply is equal to unity. Our
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density functions which are represented by p(g|vi) are equivalent to ICA components. An
example model consists of five Gaussians and eight corresponding triangular density func-
tions between them. This makes four pairs of (a,b) together with an identical σ for all
components. However, as parameter b for each range is identical to parameter a for the
neighbouring range, six parameters are sufficient to account for all the model components.
These are the five mean parameters of the five Gaussians plus the σ parameter. It is sufficient
to set initial values to five equal partitions of the widest existing histogram range.

The next step is to determine all weighting parameters αi j for histograms f j and com-
ponents p(g|vi) from the EM algorithm. We approximate our data histogram as a linear
combination of all density f functions defined so that f j ≈ ∑i{αi j p(g|vi)}. The process of
estimating the weighting parameters is iterative with α �

i j = ∑g{ fg jP(vi|g)}. Probabilities are
computed using the density functions and current weighting parameters αi j. Specifically

P(vi|g) = αi j p(g|vi)/∑
i
{αi j p(g|vi)} (2)

The initial values used are αi j = 1. The equations are iterated until the parameters converge,
when α �

i j ≈ αi j. Given αi j it is straightforward to compute the cost function L j for the
histogram f j. The appropriate cost function can be derived from the probability of getting
the observed sample using Poisson assumptions. This results in the conventional likelihood
function L j = −∑g{ fg j log f j}. This equation is correct subject to a fixed normalisation of
the model f j = ∑i{αi j p(g|vi)} (in accordance with use of Extended Maximum Likelihood).
We therefore perform normalisation on each model histogram so that the area under each
model becomes equal to the number of corresponding data points. As this expression is
proportional to the joint probability, the optimisation of this function is valid for parameter
estimation. However, the unknown scale factor makes the measure unsuitable as an absolute
estimate of fit quality (see below). The total cost function when summed over all image
regions is Mv = ∑ j{L j}. This expression is optimised using the downhill simplex method of
Nealder and Meade [4], with restarts in order to avoid local minima.

Test phase: Once an approximate model is obtained, the optimisation process does not
need to be executed again for the test data and estimated model parameters can be stored in
a database. Then, for each new test image, we build J data histograms with specifications
similar to those used in the training phase. Since grey levels stored in image files from
different imaging equipment may have different scales, we apply a scale factor that is varied
in the range [0.5, 2.0] to find the best fit of the input data to the model. Obviously, using the
model histogram specifications some scales may result in overflow or underflow in the data
histograms. These cannot correspond to the best fit and are ignored. A 10% tolerance on the
model histogram range is used during the training phase. To obtain an absolute measure of
similarity, the out-of-fit measure is then computed using the Matusita measure [7, 8] so that

Mv = (1/4JH)∑
j,g

{[∑
i

αi j p(g|vi)]1/2− ( fg j)1/2}2 (3)

where H is the number of bins for each histogram. This can be considered as a χ2 test, (i.e.
the

�
fg j values will closely approximate a Gaussian distribution with a σ of 1/2).

As the search for the best corresponding scale is an optimisation with one parameter it is
amenable to direct search. We set the scale step to 0.02 and compute the out-of-fit measure
at 76 scales in the range [0.5, 2.0] (this involves no more evaluations than would be expected
if using a conventional optimisation). One may proceed further by interpolating the minima
from a quadratic equation to three points for increased accuracy.
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3 Experiments

The aim is to gain parameter stability by obtaining multiple linearly independent examples
of image histograms [2]. When sub-dividing an image into regions there is clearly a possible
trade off between the number of regions and the resulting number of samples in each. We
set the number of bins to 108 and divide each image into 4 by 4 windows which makes 16
corresponding histograms. We trained the model using a single slice from a 3D MR image
of the normal human brain, shown in Fig. 2 (also shown larger in Fig. 1). The algorithm was
converged with an out-of-fit measure at 0.6172.

To study how the out-of-fit measure behaves, we have also set the number of windows
at 4, 6, 9, 12, 16, 20, 25 and 100. As expected, the larger the number of histograms the
smaller the out-of-fit measure, and so more accurate fits are obtained. Of course, increasing
the number of histograms to some extent is advantageous but having too many histograms
lowers the ability of the model to differentiate between valid and invalid test images.

Valid test data: We tested 9 MR images against the model (see Fig. 2). The results are
listed in Table 1. It is clear from this experiment that the out-of-fit measure in all cases is
close to its value for training data. The deviation from the typical measure value is small for
the whole set. One may also investigate training using several different images and using an
average model. We perform further tests below using different data to evaluate the algorithm.

Figure 2: Valid MR brain image slices with results given in Table 1; slice numbers from
left-to-right: 10, 11, 12, ..., 18 and 19; the model was trained using slice 12.

slice 10 11 12 13 14 15 16 17 18 19
scale 1.14 1.10 1.12 1.24 1.18 1.16 1.20 1.20 1.20 1.22
measure 0.67 0.56 0.51 0.51 0.53 0.55 0.55 0.60 0.68 0.87

Table 1: Test results on original data (trained using slice 12): rows refer to the image slice
number, scale factor giving the best fit, and the corresponding out-of-fit measure.

Re-scaled test data: One issue of data quality that frequently occurs is that data is
under-quantised during acquisition or following an image conversion for file storage. This
often has negative effects on sophisticated analysis processes, particularly those that involve
data density modelling or require spatial derivatives. Such a process directly modifies the
structure of the image histogram and should be detectable via our quality checking process.
A second experiment was performed in which the images from Fig. 2 were quantised at 32
grey levels, producing gaps in the histograms. Results are shown in Table 2. In comparison
to table 1, the out-of-fit measure is significantly higher, confirming the ability of the proposed
technique to detect this type of artefact.

Invalid test data: To test using some MR images of different imaging parameters or
different tissues, we processed a variety of MR images so that their histograms ranges corre-
spond to the range used during the training (Fig. 3). The results are shown in Table 3. Again,
the out-of-fit measures are significantly higher than those found in Table 1, confirming the
ability of the technique to detect application of an algorithm to invalid image type.

56



RAGHEB ET. AL.: IMAGE QUALITY CHECKING 5

4 Conclusions
We have identified the problem of use of algorithms on data that is not suitable for such
processing when analysis software is used as a measurement tool. Conventional approaches
to the issue of quality control involve checking imaging parameters or signal to noise. Such
tests are unlikely to identify more subtle problems, particularly when obtaining data from
alternative imaging equipment. Unfortunately, such problems are often difficult to identify
without significant technical knowledge and access to appropriate investigative tools. In
order to deal with this problem we have suggested a supplementary statistical test based
upon the construction of a component model, trained on sub-regions of images known to be
suitable for analysis. We have shown how this technique will identify not only quantisation
effects, but also novel histogram structure arising from different biological structures. 1

slice 10 11 12 13 14 15 16 17 18 19
scale 1.005 1.01 1.008 1.01 1.007 1.01 1.01 1.011 1.005 1.24
measure 1.42 1.33 1.31 1.36 1.35 1.38 1.42 1.47 1.57 1.79

Table 2: Test results on re-scaled data (trained using slice 12): rows as Table 1.

Figure 3: Invalid MR images (coil) with results given in Table 3; from left-to-right: eye,
foot0, foot1, hip1, hip2, hip3, shoulder, skin, spine and brain-pd.

image eye foot0 foot1 hip1 hip2 leg shoulder skin spine brain
scale 0.52 0.76 0.54 0.55 0.52 0.52 0.59 0.54 0.52 0.68
measure 12.5 6.4 8.3 9.6 6.9 13.8 11.1 11.6 13.3 9.9

Table 3: Test results on re-scaled invalid data (trained using slice 12): rows as Table 1.
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Abstract
A fully automatic segmentation and morphological analysis algorithm for the analy-

sis of microvessels from CD31 immunostained histological tumour sections is presented.
The algorithm exploited the distinctive hues of stained vascular endothelial cells, cell
nuclei and background, which provided the seeds for a region-growing algorithm in the
3D Hue, Saturation, Value (HSV ) colour model. The segmented objects, identified as
microvessels by CD31 immunostaining, were post-processed with three morphological
tasks: joining separate objects that were likely to belong to a single vessel, closing ob-
jects that had a narrow gap around their periphery, and splitting objects with multiple
lumina into individual vessels. Keywords: vessel segmentation and morphology, IHC.

1 Introduction
The immunohistochemistry (IHC) for staining of tissue sections for different proteins is a
standard method for diagnostic and research purposes. Staining for platelet endothelial cell
(EC) adhesion molecule (PECAM-1 / CD31) with tagged antibodies is an effective method
for identifying and localising the ECs that line blood vessels, as CD31 is expressed consti-
tutively on the surface of adult, embryonic and tumour ECs. In oncology, the expression
of CD31 by endothelial cells in angiogenic vessels has gained considerable attention as the
tumour vasculature is emerging as an important therapeutic target for cancer. Despite the
popularity of the use of IHC to stain for different proteins and the growth and power of com-
puter and image analysis algorithms, manual procedures are still the most common method
for assessing the presence, absence, distribution or intensity of staining[1, 2].

Numerous algorithms for IHC image analysis have been developed for different specific
tasks: counting objects such as nuclei, cells or microvessels, quantifying optical density,
measuring the abundance of a stain, or extracting morphometric measurements such as area,
perimeter, ratio or perimeter and area and angle of microvessels [3, 4, 5]. Many of these
algorithms are semi-automated, but most require a certain degree of user interaction, either
for (a) pre-processing tasks such as adjustments of brightness and contrast or selection of
window sizes, counting of vessels or demarcation of regions of interest or vessels, (b) post-
processing tasks such as delineation of lumina for segmented objects, inclusion/exclusion of
regions of interest, elimination of artefacts or (c) training of classifiers with supervised data.

c� 2010. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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Most of these algorithms use either the Red, Green and Blue (RGB) channels, a subset
of these or the grey level intesity equivalent from the colour images, and few exploit the
higher discrimination that can be achieved when the RGB channels are transformed to the
Hue, Saturation and Value (HSV ) channels. Post-processing of the segmented objects, as
presented in this paper, is desirable to introduce a higher reliability of any morphometric
measurements and therefore all the statistical measurements derived from these.

2 Segmentation Algorithm
The segmentation algorithm was based on a transformation from the RGB to the HSV colour
model. HSV describes perceptual colour relationships related to the artistic ideas of hue, tint
and shade [7] enabling a 3D chromatic histogram to be constructed from the HSV images.

In this work, we considered that a colour image Irgb had dimensions Nr ×Nc × 3 for
rows, columns and three colour channels that were quantised to Ni levels, which are usually
256. Let Lr = {1,2, ...,r, ...,Nr}, Lc = {1,2, ...,c, ...,Nc} be the spatial domains of the data,
x ∈ (Lr×Lc) be a pixel of the image, and [R,G,B] =[{1,2, ...,r, ...,Ni} ,{1,2, ...,g, ...,Ni}
,{1,2, ...,b, ...,Ni}] a triplet of RGB values. An image was represented then as a function that
assigned a colour to each pair of co-ordinates: Lr×Lc; Irgb : Lr×Lc → [R,G,B].

The shading of an original unbiased image U , which was corrupted by a slowly-varying
shading S so that I = U +S, was corrected by estimating S as the envelope of the signal [6]
and removing it from the biased image Ĩrgb ≈U = I−S. Then, the mean value of the three
RGB unbiased channels was equalised to obtain a background with minimum saturation.

The unshaded and equalised image RGB was converted to an HSV colour model: Ihsv =
T

�
Ĩrgb

�
, Ihsv = [Ihue, Isat , Ival ]. The hue-saturation-value histogram mHSV (h,s,v) is a tri-

variate measurement of the occurrence of [H,S,V ] on Ihsv and it was defined as:

mHSV (h,s,v) =
#{x ∈ (Lr×Lc) : Ihue(x) = h, Isat(x) = s, Ival(x) = v}

#{Lr×Lc}
,

where # denoted the number of elements and h ∈ H, s ∈ S, v ∈ V . The 2D hue-value
mHV (h,v), hue-saturation mHS (h,s) or saturation-value mSV (s,v) histograms are marginal
distributions of mHSV (h,s,v). For this work, we introduced the maximum saturation pro-
file as measurement of the distribution of the highest value of saturation for every value of
hue, mathematically: pmaxS ={y ∈ (h× S) : max(s) so that mHS(y) > 0}, h ∈ H. While
the marginal distributions revealed the frequency of pixels within a certain hue or saturation,
pmaxS revealed the distribution of saturated regions. Fig. 1 shows a representative IHC image
and its final segmentation, mHSV as a cloud of coloured points and an RGB cloud to compare
the separability of the HSV model, mHS as a mesh overlaid on the 2D loci of constant value
and pmaxS together with the histogram mH .

Three criteria defined the brown colour of the endothelial cells, low value (v < Īval),
high saturation (s > 0.25) and an adaptive hue range. The colour variations inherent to
IHC [8] resulted in images where the colour of stained nuclei was either blue or light purple
and the ECs were brown to light beige. To compensate for this variation, the amount of
brown (0◦,67◦) was measured and used to determine the range of hues that were selected as
brown. For those images with a strong component of brown, ranges of brown, background
and blue were approximately (10◦,50◦), (60◦,200◦), (220◦,310◦) while for those with a low
component it was (350◦,90◦), (90◦,190◦), (200◦,290◦) respectively.

The segmented ECs were used as seeds in a region growing algorithm, with the following
criteria of similarity: (a) a combination of the s and v, distances in (b) position and (c)

60



IMMUNOSTAINED MICROVESSEL SEGMENTATION: MIUA 2010 3

hues from the pixels to the seeds. Stop criterion was minimal change (10 pixels) between
iterations. Small (1 or 2 pixels) and isolated regions were discarded. Unassigned pixels were
considered as background.

Three morphological conditions were used to assign objects as vessels: (a) join objects
which could form part of a single vessel (Fig. 2a). Solid objects close to each other were
considered to be joined. A skeleton of the individual objects was compared with one of the
joined ones and only when the combined had lower number of branching points the objects
were joined. (b) Close the open objects (Fig. 2b), Small gaps were closed by using the
combination of the external edge of the object with the watersheds of a distance map of
the background. (c) Split joined objects, e.g. a single vessel that turned in the up-down
dimension (Fig. 2c). The larger holes of the lumina were used to generate a distance map
that was split with the watershed transform to partition the original object into smaller ones.

3 Morphological Analysis
The segmentation algorithm described above provided a series of objects that described the
endothelial cells of a tumour that were stained for CD31 and as such the objects described
closely the shape of the microvessels of the tumour, as they appear in 2-dimensions. The last
stage of the segmentation algorithm was to obtain a series of measurements that provided
morphological information about the vasculature of the tumour. The following measure-
ments were extracted from each individual vessel (segmented objects):

(1) SA - Area of segmented object excluding lumen (Stained Area [µm2]) (2) VA - Area
of segmented object including lumen (Vascular Area [µm2]), (3) lu/VA - Ratio of lumen to

vascular area, (4) e - Eccentricity of the vessel: e =
�

1− ma2

MA2 where (MA, ma) are the major
and minor axes of an equivalent ellipse, (5) ro -Roundness of the external boundary of the
vessel: ro = P/

√
4πVA where P is the actual perimeter of the object and VA is the vessel

area, (6) rVA - relative Vascular Area as the ratio of the total Vascular Area (sum of the areas
of all objects in the image) relative to the total area of the image. This metric indicates the
extent of vascularisation of the tumour.

4 Results and Discussion
The robustness of the segmentation algorithm lies with the chromatic characteristics of the
immunostained vessels of the tumours and the intrinsic difference with the haematoxylin-
stained nuclei of tumour cells. Although there are differences in the shades obtained from
the IHC process, the endothelial cells can be better discriminated in the HSV channels than
in the traditional RGB channels.

Fig. 4 shows the histograms of the following morphometric measurements: (a) VA, (b)
lu/VA, (c) e, (d) ro, and (e) rVA. Forty-four images were acquired from the three different
tumours and 6,163 vessels were segmented in total. The data for each tumour are shown
separately, as indicated in the legend. Some differences in the vascular morphology of the
three tumours are apparent in the histograms. For instance, a higher proportion of larger-
sized vessels (as measured by VA) are shown in tumour 2 compared with tumours 1 and 3
(Fig. 4a). The larger vessels in tumour 2 were also associated with larger lumina relative
to VA (Fig 4b) and combined with the density of the vessels, the rVA i.e. the extent of
vascularisation was also larger in tumour 2 than in tumours 1 and 3 (Fig 4e). In the future
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we expect to use this algorithm to compare the measurements in different populations, for
instance, tumours treated with a certain drug against a control or regional variation according
to the position within the tumour.

The strength of the algorithm resides with the large number of microvessels that can be
analysed by a fully automatic segmentation. The automatic segmentation also ensures con-
sistent criteria for object identification and allows the process to be run on a set of images in
the background. In addition, the algorithm provides morphometric analysis of microvessels
from which general population statistics can be calculated and has general applicability for
a range of different tissues and therapeutic interventions.

This work was funded by Cancer Research UK.

(a)

(d)

(c)(b)

(e) (f)

Figure 1: (a) Immunostained tumour section, nuclei appear blue-purple, ECs brown-beige
and background in white-grey (bar = 80 µm). (b) A cloud of coloured points describes the
chromatic distribution of (a) in the RGB domain. (c) A cloud describing mHSV within the
HSV domain. Notice the discrimination between hues in (c) that is not visible in (b).(d) Final
segmentation of (a). (e) mHS overlaid on the loci of constant value. (f) pmaxS and mH .

(a)

(c)

(b)

Figure 2: Morphological analysis: (a) joining 2 separate objects, skeleton (yellow) and
branching points (brown) of individual objects (blue). (b) Closing of open objects, watershed
transformation (blue lines), external boundaries of the original object (white) and the new
object (blue) (c) Splitting of objects that may correspond to more than one vessel.
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(a) (c)(b)

Figure 3: (a) IHC image with the boundaries of the segmented vessels overlaid with a green
line. (b) Segmented objects. The region of interest denoted by the white box is shown in
detail in (c).
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Figure 4: Histograms for the morphometric measurements of microvessels from 3 tumours.
(a) VA, (b) lu/VA, (c) e, (d) ro, and (e) rVA. Solid blue, dashed red line and dash-dot black
lines correspond to tumours 1-3 respectively. Parameters in (a-d) are acquired per object
from 12-17 images per tumour, whereas a single value per image is acquired for rVA in (e).
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Abstract
Image-based catheter tip tracking has the potential to support electro-physiological

interventions by additional information such as the three-dimensional position and ori-
entation of the catheters. However, curve deformation algorithms commonly used to
reconstruct elongated objects from biplane X-ray fluoroscopy images do not guarantee
a correct detection of the tip position. The proposed approach combines a curve defor-
mation algorithm and a biplane template matching technique which is based on virtual
reconstructions of the catheter tip projection. It allows for an accurate and robust three-
dimensional tracking of the catheter tip and orientation with a mean position error of
0.80±0.61 mm and a mean tip distance of 0.72±0.52 mm for 94 % of all frames. This
is demonstrated on patient data sets by a comparison to previously published approaches.

1 Introduction
In electro-physiological (EP) interventions several catheters are navigated inside the heart
chambers. The main purpose of this procedure is to locate sources of arrhythmia and suc-
cessively destroy the involved tissue. Therefore an ablation catheter is led to these positions
under guidance of X-ray fluoroscopy images. The knowledge of the three-dimensional (3D)
position and orientation of the ablation catheter tip is of immense importance to the physi-
cian. It must be ensured that ablation sites are created without gaps by placing concatenated
lesions or by pulling the catheter along involved structures without interruption. However,
in standard EP interventions, the positions of the catheters are only inferred from their pro-
jections onto the X-ray fluoroscopy images. For support, biplane X-ray systems provide a
stereoscopic setting. Still, mentally reconstructing the 3D catheters, as it is common practice
for physicians, remains a difficult task. Image-based reconstruction from the standard X-ray
fluoroscopy images, present in every intervention, has the potential to support the physician
with additional information such as 3D position and orientation of the catheters. Catheter tip
tracking may also be used in combination with cardiac augmented reality systems like the
work presented by Ector et al. [3].

Image-based 3D tracking of the catheter tip or its whole body represents a continuous
reconstruction from the two-dimensional (2D) biplane images. Recent work in this field has

c� 2010. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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φ

c(0)
c

(a) (b) (c)
Figure 1: (a) The stereoscopic biplane X-ray image acquisition geometry. The image inten-
sifier planes are depicted in dark gray and the X-ray sources as black squares. (b) Result of
a missing explicit tip tracking. The catheter (dotted: previous, dark gray: current) moves to
the upper right corner in these three consecutive image frames. The curve (dashed: previous,
dash-dotted: current) is deformed in order to align with the catheter centerline but the tip
position is not taken into account. (c) Idealized geometry with curve c and its projections
onto the images (dash-dotted red lines). The 2D catheter tips are reconstructed to the point
φ . The green arrow depicts the deformation force created by the distance of the curve tip
c(0) to φ .

been published on 3D tracking of vascular structures [2], guide-wires [1] and EP catheters
[5]. In [2] the tip of a vessel is tracked implicitly by tracking the whole vessel shape based
on curve optimization methods. However, optimal curves may also be found at positions,
where it is not guaranteed, that one of their end points is located exactly at the catheter tip.
A separate tip detection stage, composed of finding the most likely tip position by finding
the intensity edge along the curve and a short extrapolated path, was used in [1] and [5].
This approach, however, is handicapped in the presence of high foreshortening, background
clutter and converged curves not pointing exactly in the direction of the catheter tip.

In order to overcome these limitations, we propose a biplane template matching tech-
nique based on virtual reconstructions of the catheter tip projection. Our goal is to enhance
the accuracy of the tip localization and the tracking rate for the aforementioned applications.

2 Methods
In our two-stage approach, the catheter tip is tracked in 3D space by reconstructing the front
centerline of the catheter from biplane X-ray fluoroscopy images using a curve deformation
algorithm. After its convergence, in the second stage, the catheter tip position is estimated
by biplane template matching and an enhanced curve deformation.

2.1 Data acquisition

The image data is acquired on a Philips Integris BH5000 biplane X-ray image intensifier
system (Philips Medical Systems, Best, Netherlands) which consists of two X-ray sources
and image intensifiers (see 1(a)). It provides two image sequences at 12.5 fps showing the
volume of interest from right anterior oblique (RAO) 30◦ and left anterior oblique (LAO) 40◦.
The systems geometry was calibrated using a calibration phantom before the intervention.

As in our previous work [5] the image sequences are acquired in interlaced mode. How-
ever, in the following explanation synchronous sequences are assumed for brevity.
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(a) (b) (c) (d)
Figure 2: (a) Part of the original X-ray image with template search window (green rectangle).
(b) Corresponding result of the line-enhancing filter. (c) Generated tip template. Note, that
because of perspective foreshortening, the catheter tip (green cross) is not located at the
object edge. (d) Corresponding 2D correlation result for the template search window with
white color indicating high correlation.

2.2 Curve deformation
The first stage for the catheter tip tracking is the 3D reconstruction of the frontal part of the
catheter path. For this purpose we find the optimal 3D curve c(s) = (x(s),y(s),z(s)), with s
being the normalized arc length, which minimizes the energy functional

E(c(s)) =
�

s
(Eint(c(s))+Eimage(c(s))+Ecurv(c(s)))ds, (1)

where Eint = β · |css(s)|2 is the internal energy, which restricts the curvature and Eimage de-
picts the image energy, which guides the deformation towards the image features (details
below). Ecurv = ω · ||cs(s)|2 − d2|2 represents the curvilinear reparametrization energy [4],
which keeps the sampling points along the curve at equal distance d and thus keeps a con-
stant total length of the curve. The parameters β and ω describe the influence of the single
energies on the total energy. The image energy Eimage for the 3D curve is a linear combina-
tion of the 2D image energies extracted at each curve projection in both of the images. The
image feature is the result of a line-enhancing filter based on eigenvalue evaluation of each
pixels Hessian (see fig. 2(a) and 2(b)).

As a result of this stage, the 3D curve is deformed in a way that its projections onto the
two views match with the catheter path. However, an optimal curve position may be found
everywhere along the catheter path. It is not guaranteed that the curve tip projections align
with the catheter tips in the images (see fig. 1(b)). This is most prominent if the catheter was
moved along its tangential direction between two image frames. In order to counteract this
effect, a second stage performs an explicit catheter tip detection.

2.3 Catheter tip detection
We assume, that when the curve deformation has converged, the curve tip is positioned in the
vicinity of the true catheter tip and the orientation of the curve is close to the true catheter
orientation. Meeting these requirements, we are able to produce expected projections of the
catheter tip onto the image planes by a catheter model ray-casting method (see fig. 2(c)).
These virtual tip templates are then matched with a search window of their respective X-ray
fluoroscopy images by normalized 2D cross-correlation (see fig. 2(d)). From the two 2D
positions of the maximum peaks of each correlation in the image planes, an estimated 3D tip
position φ is reconstructed (see fig. 1(c)). The distance between φ and the curve tip position
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leads to an external constraint energy [4] with weighting parameter ψ:

Ec = ψ · |φ − c(0)|2. (2)

Subsequently, the curve deformation algorithm is run again until convergence, but now in-
cluding Ec added to the sum of energies. This acts like a spring on the tip of the curve at
s = 0 and pulls it towards the correct catheter tip.

2.4 Catheter tip tracking
When the two stages have converged, the curve is saved at the current time step and a new
image pair is acquired. Again, the two outlined stages are carried out until convergence. By
looping this process, the algorithm continuously reconstructs and tracks the catheter tip.

3 Results
We evaluate the accuracy of our algorithm during the tracking of the front part of the ablation
catheter (fig. 2(a)). The curve ranges from the tip to the last electrode at a length of 18 mm.
Three sequences of three different patients comprising a total of 588 frames are processed.
All sequences include an active motion applied by the physician of either pulling or pushing
the catheter additional to the anatomic motion. The methods we compare are: (a) a curve de-
formation without tip detection as in [2], (b) a curve deformation with tip detection based on
edge finding as in [5], and (c) our proposed approach. Further, we compare three variations
of our approach: (d) with continuous template update for each iteration, (e) only using stage
two, and (f) only using stage two with continuous template update.

Each catheter reconstruction result is compared to a ground truth position, created by a
3D reconstruction of manually labeled 2D positions. The interlaced acquisition of the image
sequences was taken into account by reconstructing the points similar to the image force
reconstruction in [5]. For evaluation, the mean 3D euclidean distance in normal direction of
overlapping curve segments ecur and a separate 3D euclidean tip distance etip is computed
for each curve. Furthermore a rate r is specified, which embodies the amount of frames on
which the algorithms did perform well enough. We call r the tracking rate. It is measured
as the ratio of reconstructions having ecur and etip below 4 mm to the total number of recon-
structions. This threshold is motivated by a compromise between high accuracy and high
tracking rate. Only the reconstructions which meet these requirements are included in the
position error evaluations. The results for each sequence are displayed in figure 3 as the mean
ecur, the mean etip and the tracking rate. These results clearly indicate the gain in tip local-
ization accuracy and tracking rate of the proposed approach. The variations (d), (e), and (f)
do not improve the overall results. The total mean 3D curve position error over all sequences
for the proposed approach is 0.80±0.61 mm with a mean tip distance of 0.72±0.52 mm
for 94 % of all frames. Considering all frames the accuracy is ēcur = 1.07±1.41 mm and
ētip = 1.07±1.96 mm. The evaluation is performed retrospectively, since the methods are
implemented in MATLAB (The MathWorks, Inc.) without real-time considerations.

4 Conclusion
We outlined an approach which addresses the explicit EP catheter tip tracking, which we
evaluated on three sequences of the ablation catheter. The results indicate a superior per-
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Figure 3: (left) The mean curve position error ēcur [mm]. (middle) The mean tip distance
ētip [mm]. (right) The tracking rate r. The diamond indicates algorithms not recovering from
temporary errors in particular sequences. The different methods (see sec. 3) are indicated
from the left to the right bar in each bar group as method (a) in red, (b) in blue, the proposed
method (c) in hatched green-white, (d) in dark green, (e) in orange and (f) in dark orange.

formance compared to previous approaches. We also compared different variations of our
method and the proposed one had the highest overall performance. The evaluations showed
that an explicit detection of the catheter tip which accounts for the special shape of the tip is
necessary in order to achieve good tracking results with high accuracy. Our approach meets
the clinical accuracy requirements and thus it has the potential to be an essential component
in an image-based augmented reality system for cardiac ablation therapies to support quick,
safe and easy ablation procedures. Nevertheless there are still situations in which the algo-
rithm temporarily fails, so in our future work, we want to further enhance the tracking rate by
using this technique at all electrode positions as well as introducing a re-initialization stage.
We also plan to implement the algorithm in C++ and if feasible use the GPU in order to run
it in a clinical real-time framework.
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Abstract

Breast region segmentation is an essential prerequisite in computerised analysis of
mammograms. It aims at separating the breast tissue from the background of the mam-
mogram and it includes two independent segmentations. The first segments the back-
ground region which usually contains annotations, labels and frames from the whole
breast region, while the second removes the pectoral muscle portion (present in Medio-
Lateral Oblique (MLO) views) from the rest of the breast tissue. In this paper we propose
a fully automated breast region segmentation method based on histogram thresholding,
edge detection in scale space, contour growing and polynomial fitting. Subsequently,
pectoral muscle removal using region growing is presented. To demonstrate the validity
of our segmentation algorithm, it is extensively tested using over 240 mammographic
images from the EPIC database. The qualitative evaluation of experimental results in-
dicates that the method can accurately segment the breast region in a large range of
digitised mammograms, covering all density classes.

1 Introduction
Breast region segmentation is an important prerequisite in computerised analysis of mam-
mograms. It aims at excluding the background from further processing. The precise segmen-
tation of the breast region with a minimum loss of breast tissue facilitates the search for ab-
normalities, the modelling of parenchymal tissue and accurate registration. There have been
various approaches to segmentation of the breast region in mammograms [1-6]. The method-
ologies described in these approaches are summarised in [7], which provides a breakdown
into histogram, gradient, polynomial modelling, active contours, and classification based
methods. The developed methodology, which is presented in this paper, takes a number of
these approaches and combines them into a robust methodology.

2 Breast Region Segmentation
The proposed segmentation incorporates histogram thresholding, edge detection, active con-
tour and polynomial fitting. The original images (Figure 1(a)) to be segmented contain left
and right MLO mammograms and need to be split into individual mammograms.

c� 2010. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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A global threshold, after Gaussian smoothing the histogram, is determined using the min-
imum between the peaks of the background and the breast tissue (Figure 1(b)). The resulting
binary image contains a number of objects. We use a Connected Component Labelling (8-
connected) algorithm [7] to remove the labels in the background region and the annotations
in the frame from the whole image. Subsequently, we isolate the frame (near the edges of the
image) and smooth the remaining region applying a Gaussian low-pass filter. We then split
the union region into two separate breast regions to form two binary masks (Figure 1(c)).

(a) original mammographic image (b) binary mammographic image (c) binary masks

Figure 1: Global thresholding. Labels and annotations removal.

The approximate segmentation (Figure 2(a)) is refined using scale-space based edge de-
tection. Firstly, we evenly place 40 points on the mask boundary (Figure 2(a)). For each point
a corresponding orthogonal line is obtained (Figure 2(b)). The length of one orthogonal line
is 500 pixels (100 pixels inside the mask, 400 pixels outside the mask). One orthogonal line
profile (Figure 2(c)) is illustrated to show the lack of a distinct edge. We then perform edge
detection to search probable breast boundary points by convolving the pixels on orthogonal
lines with a derivative of Gaussian kernel at multiple scales [8]. We use a range of small
scales to increase sensitivity to the low contrast breast boundary. Edge detection starts at a
relatively coarse scale within the range to suppress noise, and ends at a fine scale to improve
accuracy. Probable breast boundary points are achieved by detecting minima (Figure 2(d)).

(a) mask boundary (b) orthogonal lines (c) one profile (d) probable points

Figure 2: Overview of edge detection in scale space.

The first step of contour growing is finding the starting orthogonal line and selecting the
seed point from all the probable breast boundary points on this line. The contour will be
grown in either direction from the seed point. We give priority to choosing the orthogonal
line close to the x axis direction as the starting line. Subsequently, we use an edge strength
measure to search the seed point along the orthogonal line in the direction from outside
to inside the breast. Ideally, the seed point could be found at the boundary point whose
edge strength is the first local maximum. If no such a seed exists on this starting line,
other alternatives close to this line will be used to search the seed point dynamically. After
the seed point is obtained a contour growing process starts based on a contour growing
measure combining different criteria. For a seed point, probable breast boundary points
obtained using edge detection in scale space on the neighbour orthogonal line along the
contour growing direction are regarded as a set of candidate growing points for searching a
new seed point. The contour growing measure is calculated for all candidate points to decide
the new seed point with the minimum measure value.
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The contour growing measure is defined by a weighted function, following the typi-
cal snake additive model formulation [9]. This measure includes intensity, edge strength
and angle information. Once 40 seed points have been obtained from all the probable breast
boundary points on 40 orthogonal lines, contour growing is finished, and these 40 seed points
comprise an initial breast boundary (Figure 3(a)). After we obtain an initial breast boundary
comprising 40 points, we first order them to solve the misordering due to the intersection of
orthogonal lines, and we combine close points into one point. Subsequently, a cubic poly-
nomial fitting is used to yield a smooth and continuous contour as the final breast boundary
(Figure 3(b),(c)).

(a) (b) (c) (d) (e) (f)

Figure 3: (a) The first seed point (red star) and the initial breast boundary (white circles). (b)
Cubic polynomial fitting. (c) Breast region. (d) Seed point (red star). (e) Grown region. (f)
Pectoral muscle removal.

The breast region obtained above is the union region of the breast and the pectoral mus-
cle. We use a region growing method to remove the pectoral muscle. Firstly, we place a
seed point close to the border between the pectoral muscle and the breast instead of placing
a seed point inside the pectoral muscle region [7]. Specifically, we draw a line (slope equal
to 1) from the first pixel of the non-curved side into the breast, and then we detect edges
on this line in scale space using the method mentioned earlier. The seed point is then cho-
sen from these detected edge points using a measure incorporating aspects of edge strength
and edge position (Figure 3(d)). After that, a region is grown from the seed point based on
similarity with the region’s mean intensity. In traditional region growing, the region is itera-
tively grown until the intensity difference between the region’s mean and new neighbouring
pixel is larger than a specific threshold. In this paper, we use a new termination criterion to
efficiently avoid undersegmention of inhomogeneous regions. Region growing starts with a
critical initial threshold of intensity difference, the threshold increases in the growing pro-
cess. This process stops when the region is very close to the edges of the image (Figure 3(e)).
We use linear smoothing to refine the pectoral muscle boundary, which accurately preserves
the boundary feature (Figure 3(f)).

3 Experimental Results
Our method has been tested on over 240 mammograms from the EPIC (European Prospec-
tive Investigation on Cancer) mammogram database instead of the commonly used MIAS
database, because it contains a large collection of sequential mammographic images. All
mammograms were digitised at 8-bit resolution and the size is equal to 5671×3788 pixels.

To demonstrate the validity of our algorithm it has been tested on mammograms with dif-
ferent breast tissue densities: SCC (Six Class Categories) 1 to 6, a quantitative classification
of mammographic densities introduced by Boyd et al. [10]. For evaluation the segmentation
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results were visually rated as four categories: accurate, nearly accurate, acceptable and un-
acceptable for application in CAD (Computer-Aided Diagnosis) systems. Accurate or nearly
accurate was rated according to whether the segmentation result was matched to the real bor-
der exactly or nearly exactly. Otherwise, the result was rated as acceptable if minor pixels
near the breast border were mis-segmented, because those pixels are not relevant and do not
provide significant information for CAD purposes. Larger deviations were rated as unaccept-
able. For the breast background segmentation 66.5% are accurate, 25% are nearly accurate,
6.9% are acceptable, and 1.6% are unacceptable. For the pectoral muscle removal, we have
obtained 62.5% accurate, 25.4% nearly accurate, 5.6% acceptable, and 6.5% unacceptable
segmentations. Figure 4 shows representative segmentation results of mammograms with
6 different densities ranging from SCC 1 to 6, indicating that the methodology performs
robustly with respect to density types.

(a) SCC1 (b) SCC2 (c) SCC3 (d) SCC4 (e) SCC5 (f) SCC6

Figure 4: Mammogram segmentation results covering SCC1 to SCC6.

In some cases (1.6% of the breast background segmentations and 6.5% of the pectoral
muscle segmentations are classified as unacceptable) the method does not obtain what could
be considered an acceptable segmentation. For the breast region segmentation, those are
mainly related to the extremely low contrast between the breast tissue near the boundary and
the background region resulting in an inaccurate binary mask. Furthermore, a significant
amount of noise in the image leading to a poor placement of the initial seed point of contour
growing and the non-uniform breast intensity distribution yield under-segmented results.
For the removal of pectoral muscle, a layered pectoral muscle formed in the mammogram
acquisition process or an underexposed area inside the pectoral muscle could produce strong
edges which penalise the accurate selection of seed point of region growing and cause under-
segmented results. Moreover fuzzy contrast between the muscle and the breast tissue leads
to over-segmented results.

We compared the results with previous studies where similar visual evaluation criteria
were used. Bick et al. [1] tested their algorithm on 740 digitised mammograms, and 97%
of the segmentation results were visually rated as acceptable. Méndez et al. [2] tested
their algorithm on 156 digitised mammograms, and segmentation results were deemed to be
accurate or nearly accurate in 89% of the mammograms. The method presented by Chan-
drasekhar and Attikiouzel [3] was tested on all the images from the MIAS database, and it
provided about 94% acceptable segmentation results. In the work presented by Ojala et al.
[4] the percentages of acceptable and accurate or nearly accurate cases for the 20 test images
were 90% and 55% respectively. Raba et al. [7] tested more than 320 images and obtained
98% nearly accurate segmentation results, and the muscle subtraction results were nearly
accurate in 86% of all the extractions. The experimental results obtained by our method are
98.4% acceptable results and 91.5% nearly accurate results which include accurate results
for the breast background segmentation. For the pectoral muscle segmentation, we obtain
93.5% acceptable results and 87.9% nearly accurate results.
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Future work will focus on further evaluating our method using a larger number of mam-
mograms from the EPIC database and additional databases, including full field digital mam-
mograms and improving our method to resolve unacceptable segmentation cases. The ex-
isting problems we have considered are as follows: the binary mask plays an important role
in later segmentation steps. However, it is obtained as an approximate segmentation step
with reliance upon a simple global histogram thresholding. The weighting factors of contour
growing measure are established empirically, further experiments should be carried out in
order to estimate the influence of each factor. Some constraints such as size, direction and
shape should be involved in region growing measure to regularise resulting regions.

4 Conclusions
An approach to segmentation of the breast region with pectoral muscle removal in mam-
mograms has been proposed based on histogram thresholding, edge detection in scale space,
contour growing, polynomial fitting and region growing. Initial segmentation results on more
than 240 mammograms have been qualitatively evaluated and have shown that our method
can robustly obtain an acceptable segmentation in 98.4% and 93.5% for breast-boundary
and pectoral muscle separation in mammograms with different density types and preserve
the tissue close to the breast skin line effectively.
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Abstract

Corneal Confocal Microscopy (CCM) image analysis is a new non-invasive and iter-
ative surrogate endpoint to detect, monitor and quantify Diabetic Peripheral Neuropathy
(DPN). This paper presents an automated system that analyses CCM images and assesses
their quality for further analysis and quantification. The method is based on a dual-model
nerve-fibre detection technique followed by an SVM linear classifier, which uses the area
distribution of the response image. A Monte-Carlo analysis has shown a correct recogni-
tion rate of 92% on a database of images captured randomly from the cornea at different
confocal depths.

1 Introduction
The accurate detection, quantification and monitoring of Diabetic Peripheral Neuropathy
(DPN) are important to define at-risk patients, anticipate deterioration, and assess new thera-
pies. DPN is one of the commonest long-term complications of diabetes and current methods
of detecting and quantifying it lack sensitivity, require expert assessment and focus only on
large fibres (neurophysiology) or are invasive (skin/nerve biopsy).

Corneal Confocal Microscopy (CCM) allows nerve-fibres to be visualised in the Bow-
man’s membrane near the surface of the cornea. Recent research [4, 5, 7] has shown that us-
ing CCM, DPN can be accurately quantified through corneal nerve-fibre morphology. CCM
is a non-invasive and a reiterative test that might be an ideal surrogate endpoint for DPN.
The measurements reflect the severity of DPN and relate to the extent of intra-epidermal
nerve-fibre loss seen in skin biopsy.

One of the major advances of CCM is the rapid (≈ 2min) acquisition of images of small
nerve-fibres in patients. However, analysis of CCM images using interactive manual im-
age analysis tools is highly labour-intensive and requires considerable expertise to quantify
nerve-fibre pathology. Therefore, in order to extend this technique to a wider clinical prac-
tice and to be clinically useful as a diagnostic tool, it is essential that the measurements are
extracted automatically.

c� 2010. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 1: Samples of CCM images captured by the HRT-III microscope at different depths.
The images in the top row are considered to be valid for nerve-fibre detection while the
images in the bottom row are not.

An important stage in the analysis of CCM images (sample images are shown in Fig-
ure 1) is the detection of nerve-fibres. A heuristic approach [8], using a method previously
applied to detecting blood-vessels in retinal images, has been used for detecting nerve-fibres
in CCM images. A comparison of methods for enhancing contrast of nerve-fibres in analysis
of CCM images showed that the use of a Gabor wavelet that is oriented along the locally
prominent nerve-fibre direction gave superior performance to a well-established linear struc-
ture detector [1].

Figure 1 shows a number of CCM images, some of which show nerve-fibres, having
been collected from the Bowman’s membrane. In others, the plane of focus is in the stroma,
where no nerve-fibres are present. Fully automated analysis requires a method for identifying
images that are valid for analysis. In this paper we present a method to validate the quality
and the usability of CCM images. In Section (2) we briefly introduce our dual-model nerve-
fibre detection algorithm [2]. The validity assessment of CCM images is described and
discussed in Section (3). Finally, Section (4) concludes the findings.

2 The Dual-Model Nerve-fibre Detection Algorithm
In this section we briefly describe a dual-model detection algorithm [2], which we have de-
signed to automatically enhance contrast and detect nerve-fibres. The nerve fibres in CCM
images often appear with low contrast against a sometimes noisy background (Figure 1).
The algorithm comprises two separate models, one for the background and another for the
foreground (nerve-fibres), which work interactively. Using a 2D Gabor wavelet and a Gaus-
sian envelope, the dual-model of foreground (nerve-fibres) and background are constructed
and applied to the original CCM image. Since the images exhibit local directionality over a
range of scales, the detection relies on estimating the correct local and dominant orientation
of the nerve-fibres.

Identifying low-contrast fibrous structures is a commonly encountered problem in a num-
ber of applications. Our dual-model was evaluated in comparison with some established
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(a) (b) (c) (d)

Figure 2: Illustration of area distribution dissimilarity. (a) and (b) detection responses of the
images in Figure 1(a) and 1(f) respectively. (c) and (d) are their area distributions.

methods used to address this problem and the results showed an improved performance, sug-
gesting that the dual-model may be an appropriate contrast enhancement method in other
application domains. In [2] we show that automatic detection of nerve-fibres using this
method gives equivalent results to manual analysis. Unlike other, more general feature de-
tection approaches, such as the Dual-Tree Complex Wavelet Transform (DTCWT) [6] or the
Monogenic signal [3], this algorithm [2] does not assume uniform error on the input im-
ages, therefore it tries to estimate local error distribution for each processed image. We have
shown this to have a significant effect on the final performance of the system [2].

3 CCM Validity Assessment

3.1 Experimental Settings and Database
The evaluation is conducted on a database of 415 CCM images captured using the HRT-
III microscope1 from 59 subjects (5 controls and 54 diabetic patients). The images have a
size of 384× 384 pixels, 8-bit grey levels and are stored in BMP format. The resolution is
1.0417µm and the field of view is 400×400µm2 of the cornea. For each individual, several
fields of view are selected manually from the cornea at different depths and locations. Images
from near the centre of the cornea that show recognisable nerve-fibres are considered to be
valid (Figure 1). The validity ground-truth of images is assigned manually and then used to
evaluate the performance of the system. There are 255 valid CCM images i.e. 61.45% of the
database.

3.2 Classification using Detected Nerve-fibre Area Distributions
In order to assess the validity of each CCM image, the dual-model detection algorithm is
applied to the images. Then, in the response images, genuine nerve-fibres exhibit longer and
better connected linear structures whereas noise and other cells are usually represented as
disoriented and smaller fragments as shown in Figure 2. Therefore, each response image is
quantified as a histogram that represents the area distribution of the detected features in the
response image. For example, Figure 2(c) shows the histogram of the area distribution of the
detected nerve-fibres in a valid CCM image, while Figure 2(d) corresponds to a invalid CCM
image. It is clear that for a valid image there are smaller number of fragments and there are

1The Heidelberg Retina Tomograph (HRT-III) confocal scanning laser ophthalmoscope developed by Heidelberg
Engineering Inc. The instrument can be converted into a confocal corneal microscope using a microscope lens which
is attached to the standard lens.
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Figure 3: The dual-model detection response images in the bottom row correspond to the
original images in the top row. The first image from the top-left is an example of false
positive misclassifications; the rest are examples of false negative misclassifications.

(a) (b) (c)

Figure 4: Monte-Carlo simulation. (a) the flow chart of the Monte-Carlo simulation, (b) the
pmf of the correct recognition rate and (c) its cdf.

several large connected linear structures, which do not usually exist in invalid images. Hence
we use these histograms as input vectors to a linear SVM classifier in order to distinguish
valid and invalid images.

3.3 Monte-Carlo Simulation
The validity assessment experiment was conducted on the same database described in Sec-
tion 3.1. In order to generalise the outcome, a Monte-Carlo simulation is carried out using
hold-out cross-validation as shown in Figure 4(a).

We used a linear SVM classifier, although clearly other classifiers can be considered. As
illustrated in Figure 4(b), the pmf of the correct recognition rate in splitting the two groups
has the mean µ = 0.9196, the median µ1/2 = 0.9179 and the standard deviation σ = 0.0155.
Figure 4(b) shows that the pmf of the correct recognition rate can be approximated to a
normal distribution. However the pmf is slightly narrower than the normal distribution as
indicated by the steeper cdf in Figure 4(c). According to the cdf, 73% of the classifications
lie within the first confidence interval, cd f (µ +σ)−cd f (µ−σ) = 0.73, which is higher than
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the normal distribution’s error function er f
�

n√
2

�
= 0.682 when n = 1, which demonstrates

stability and robustness. The full analysis takes about 5 seconds in order to classify a single
CCM image.

Figure 3 shows examples of the misclassification error. Most of these images are con-
sidered valid; however, they do not contain much information to extract. On the other hand,
some linear structures appear in invalid images, which causes a misclassification.

4 Conclusion
CCM imaging is a promising alternative modality with the potential to radically change the
diagnosis and assessment of DPN. This paper address the quality and validity assessment
of CCM images before they are considered for further analysis or diagnosis. The paper has
shown the robustness of the dual-model detection algorithm with respect to the dynamic
input image set. Using the Monte-Carlo simulation of a linear SVM classifier on the features
extracted by the detection algorithm, we have demonstrated that the system is robust and can
correctly classify 92% of valid and invalid images.
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Abstract

Recent studies have demonstrated that diagnostics of schizophrenia based on image
data is a difficult task because of extensive overlaps of brain regions distinguishing pa-
tients with schizophrenia from healthy controls and also because of the small sample
size problem. An algorithm for the automatic classification of first-episode schizophre-
nia patients and healthy controls based on deformations and gray matter (GM) density
images extracted from their MRI intensity data is introduced here. The deformations and
GM density images are reduced by principal component analysis, which is here based on
the covariance matrix of persons (pPCA). The reduced image data is then classified with
the use of modified maximum uncertainty linear discriminant analysis (MLDA), which
gives better sensitivity than original MLDA. The classification efficiency of the proposed
algorithm is comparable with other state-of-art studies in the schizophrenia research.

1 Introduction
Development of medical imaging methods, such as magnetic resonance imaging (MRI),
functional MRI or positron emission tomography, has enabled searching for morphological
areas in the brain where patients with schizophrenia differ from healthy people [9]. Re-
cently, there is also an effort to use medical imaging methods for diagnostics of schizophre-
nia [3, 6, 7]. Diagnostics is a very demanding task because there are usually broad overlaps
of regions which differentiate schizophrenia patients from healthy control subjects. Another
common problem in classification of 3-D medical image data is the so-called small sample
size: the number of subjects is considerably smaller than the number of features, what often
leads to instable classification results.

Thomaz et al. [10] proposed maximum uncertainty linear discriminant analysis (MLDA)
to overcome the mentioned problems in the classification based on brain images of patients
with Alzheimer disease. Here, the concept of MLDA is followed and further modified to
solve classification of 3-D MRI brain data sets in the schizophrenia research.

c� 2010. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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2 Methods
2.1 Data Sets
Unlike in [10], gray matter density images and deformations of images are used here instead
of original MRI intensity data.

The gray matter density images are by-products of voxel-based morphometry [1], where
original intensity images are spatially normalized and segmented into the gray matter (GM),
the white matter and the cerebrospinal fluid. The GM density images are appropriate for
classification of schizophrenia patients because many anatomical areas which differentiate
patients from healthy controls lie in GM [9].

The deformations are results of deformation-based morphometry in which high-dimen-
sional nonlinear registration of MR images with a digital brain atlas is performed [8]. The
deformations represented by displacement fields or their Jacobians clearly show how the
brain anatomy of a diagnosed subject differs from the normal template anatomy in the terms
of local volume expansions and contractions.

2.2 Data Reduction
Both the GM density images and the deformations are 3-D data which contain more than one
million voxels even after removing extracerebral voxels. Such large image data leads to the
small sample size problem. Therefore, principal component analysis (PCA) is used here for
reducing the huge data. However, the GM density images and the deformations are too large
even for computation of covariance matrix of voxels which is one of the steps in PCA [5].

Thomaz et al. [10] and Demirci et al. [3] used PCA based on covariance matrix of per-
sons (pPCA) to overcome the small sample size problem in an analysis of brain images of
patients with Alzheimer disease and an analysis of functional magnetic resonance images of
patients with schizophrenia respectively. Let X be N× n matrix composed of N input im-
ages with n voxels. According to linear algebra rules, nonzero eigenvalues of the covariance
matrix of voxels XT X and the covariance matrix of persons XXT are the same and eigen-
vectors corresponding to the higher dimensional covariance matrix can be derived from the
eigenvectors of the smaller one by:

V j =
XT φ j�

λ j
, (1)

where V j is the jth eigenvector of the covariance matrix of voxels, XT is the transposed
image data matrix, φ j and λ j are the jth eigenvector and the jth eigenvalue of the covariance
matrix of persons respectively.

The original data matrix X is then multiplied by a matrix with column-wise computed
eigenvectors V j, j = 1, ...,N−1 to obtain the reduced data matrix Xr. Unlike in commonly
used PCA, which leads to decrease of the data variance, pPCA allows using all m = N− 1
eigenvectors with non-zero eigenvalues for data reduction which enables preservation of all
sample variance and thus maintenance of the whole information important for classification.

2.3 Data Classification
The reduced data matrix Xr is the input into the classification. MLDA, first described by
Thomaz et al. [10], is used here for its good performance even in data with small sample
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sizes and this method is further modified here to improve its classification results. MLDA
enables reduction of the matrix Xr with the size N×m into a classification vector with the
size N× 1 in the two-class classification. It means that every input image is reduced into
one number with the use of pPCA and MLDA. Steps of data reduction by MLDA are fully
described in [4] or [10] and can be shortly summarized in this way:

1. Let a within-class scatter matrix Sw be defined as Sw = ∑g
i=1 ∑Ni

j=1 (xi, j− xi)(xi, j− xi)T

and a between-class scatter matrix Sb be defined as Sb = ∑g
i=1 Ni (xi− x)(xi− x)T ,

where g is the total number of groups (here g = 2), the vector xi, j is the m-dimensional
pattern j from group πi (here π1 is the class of schizophrenia patients and π2 is the
class of healthy control subjects), Ni is the number of training patterns from group πi,
the vector xi is the unbiased sample mean of group πi and x is overall mean vector.

2. Find the eigenvectors φ and the eigenvalues λ of Sp, where Sp = Sw/ [N−g].

3. Calculate average eigenvalue λ of matrix Sp by λ = trace(Sp)
m .

4. Construct a new matrix of eigenvalues based on the following largest dispersion crite-
rion Λ∗ = diag[max(λi,λ ), ...,max(λm,λ )].

5. Form the modified within-class scatter matrix S∗w by S∗w = (φΛ∗φ T )(N−g).

6. Finally, calculate the projection matrix φMLDA which maximizes the ratio of the de-
terminant of the between-class scatter matrix to the determinant of the within-class
scatter matrix (Fisher’s criterion) by φMLDA = eigenvector(S∗−1

w Sb).

Afterwards, the reduced data matrix Xr is multiplied by φMLDA to compute the MLDA
classification vector. Every input image is now represented by one classification score. Each
of the two groups (patients and healthy controls) can be now represented by the average clas-
sification score of subjects from the group. A boundary between the two groups is computed
using an arithmetic mean in Thomaz et al. [10]. Here, the following formula for the weighted
mean is used to calculate the boundary:

z1SD2 + z2SD1

SD1 +SD2
, (2)

where z1 is the mean classification score for the group 1, z2 is the mean classification score
for the group 2 and SD1 and SD2 are the group standard deviations [2].

A new image, which is supposed to be classified is reduced by the matrix of eigenvectors
V j of pPCA and eigenvectors φMLDA of MLDA and then classified into one of the groups
depending on whether its classification score falls above or below the boundary.

3 Experiment and Results
The classification algorithm built up from the pPCA and the modified MLDA was tested in
an experiment with 49 MRI brain data of first-episode schizophrenia patients and 49 brain
images of sex- and age-matched healthy control subjects. The classification efficiency is
evaluated with the leave-one-out cross-validation technique while using various input image
data and MLDA designed by Thomaz et al. [10] versus the modified MLDA.
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Table 1: Efficiency of classification with various input images and classification methods.
Image data Classification Accuracy Sensitivity Specificity

method (in %) (in %) (in %)
GM density images MLDA 77.6 79.6 75.5
GM density images Modified MLDA 78.6 81.6 75.5
Deformations MLDA 75.5 71.4 79.6
Deformations Modified MLDA 77.6 87.8 67.3
Intensity images MLDA 62.2 57.1 67.3
Intensity images Modified MLDA 72.4 93.9 51.0

Figure 1: MLDA classification. Red dots stand for classification scores of first-episode
schizophrenia patient (FES) images and blue dots stand for classification scores of healthy
control (NC) images. The dashed line represents the classification boundary of the original
MLDA and the dotted line represents the classification boundary of the modified MLDA.
Images left of the boundary will be classified as NC and images right of the boundary as
FES. It is obvious that the modified MLDA enables classification with higher sensitivity (it
means more FES are classified correctly using the modified MLDA) and lower specificity (it
means fewer NC are classified correctly using the modified MLDA) than the original MLDA.

According to the Tab.1, the modified MLDA improves accuracy and sensitivity in the
classification of all image data, when compared to MLDA designed by Thomaz et al. [10].
The table also shows that the highest accuracy was achieved in the classification based on
the GM density images. The second best accuracy was obtained in the classification based
on the deformations and the worst accuracy in the case of the original MRI intensity images.

The results of classification based on deformations using MLDA designed by Thomaz
et al. [10] and the modified MLDA are showed in Fig.1 for illustration. The figure demon-
strates that the modified MLDA leads to the classification with higher sensitivity and lower
specificity than the original MLDA. The increase of sensitivity is more important than the
decrease of specificity here because the proportion of correctly classified patients is more
crucial than the proportion of correctly classified controls in diagnostics.

4 Conclusions
Classification of 3-D MRI deformation data and gray matter density images into a group of
first-episode schizophrenia patients and a group of healthy controls is described here. The
first part of the classification algorithm performs data reduction with the use of pPCA, which
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is based on the covariance matrix of persons and enables reduction with no loss of infor-
mation important for classification. The second part is represented by modified maximum
uncertainty linear discriminant analysis (MLDA). The presented modification of MLDA en-
ables classification with higher sensitivity and accuracy than the original MLDA. The highest
accuracy was achieved in classification based on GM density images. The accuracy of clas-
sification based on GM density images and deformations was higher than the accuracy of
classification based on intensity images. The efficiency of the proposed classification algo-
rithm is comparable with other recent studies which deal with classification of schizophrenia
patients and is significantly better than the efficiency of the classification by chance.
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Abstract. Although the quality of 3D and 4D ultrasound imaging continues to improve, it does not 
compare with CT or MRI in terms of anatomical definition. In the case of obstetrics however, 
ultrasound is the main imaging modality that can be used throughout pregnancy. For automatic 
volumetric quantification and diagnosis there is a clear need for novel methodology which 
maximizes the anatomical definition obtained from one or more ultrasound scans. In this paper, we 
propose an automatic 3D image fusion technique to combine multiple ultrasound images taken from 
different angles of the fetal femur. The material properties of the femoral tissues result in high 
attenuation of parts of the femur in a single scan. The main goal of this paper is to propose a method 
to enhance femur boundary definition and provide a complete anatomical image of the femur. 
Qualitative results on 8 patient scans show that the fused view is always ranked better or equal to the 
single view scans case. Quantitative analysis on the 8 datasets and a fetal phantom show a mean 
increase of contrast and signal to noise of about 16±18% and 8±4% respectively. In addition, 
comparisons of manual segmentation of two femurs in 4 single views and a fused view show that the 
percentage volume increase in the fused view is about 15%. 

1 Introduction 

Fetal Ultrasound (US) imaging is used widely in clinical practice across the world to assess fetal 
growth and abnormalities. 2D quantification and measurements of different structures (e.g., fetal 
head circumference, femur length, etc.) are widely used. However, 3D quantification and 
volumetric measurements of structures have unique challenges. Although US is a safe, inexpensive 
and real time imaging tool, the enhancement of US image quality is still limited. Furthermore, US 
acquisition has particular problems when imaging bony fetal structures because of the significant 
acoustic shadowing and signal drop out. Therefore, we hypothesize that post-processing 3D US 
images is important to improve quantification, measurement and diagnosis. 

Previous clinical studies, for example [2-4], have quantified volumetric fetal structures such as 
the brain, femur, etc. Volumetric quantification of the semi-calcified fetal bone using US is 
inaccurate because of acoustic shadowing and hence part of the femoral volume may be missed [2]. 
The amount of missing bone depends on several factors including the degree of bone calcification, 
angle of acquisition and maternal tissue characteristics. In addition, the boundaries of the structures 
are often unclear. Therefore, volumetric quantification for such structures can be erroneous.  

We propose a method to align and fuse multiple single view US images of the fetal femur 
acquired from different angles. Image fusion is the process of combining two or more aligned 
images. In other studies, 3D image fusion has provided good improvement in adult and fetal 
echocardiography. It has been used, for instance, to enhance boundary definition for adult heart 
chambers especially the left ventricle [1, 5-7]. A technique to align and fuse multiple 4D fetal 
echocardiography images to improve image quality was also presented in [8]. In addition, fusion 
can be used to extend the field of view by stitching multiple images with some overlap [1]. Our 
work is the first attempt in image fusion for 3D fetal bony structures in US. We have proposed a 
novel strategy for the fusion step which is validated on a fetal phantom and real data. 

2 M ethod 

2.1. Datasets 

8 women with healthy pregnancies in the 2nd and 3rd trimester (20 to 30 weeks of gestation) 
participated in the study and gave their informed consent. In each case, 6 scans of the femur were 
taken from different angles of the longitudinal view. Scans were acquired using the same US 
machine (Philips HD9, Philips Healthcare, Bothell, Washington, USA). Scans for the same femur 
were taken in a consistent protocol. In each case, 6 scans were acquired such that the US beam was 
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approximately perpendicular to the mid shaft (2 scans), perpendicular to the distal epiphysis (2 
scans) and perpendicular to the proximal epiphysis (2 scans). The first scan was the reference scan 
to which the remaining scans were aligned. The femur was imaged in a straight position for the first 
scan as shown in Figure 2 (a) and in any orientation for the remaining scans. Unfortunately, not all 6 
scans could be used in the 8 cases because of misalignment of some images in the registration step. 
2-5 scans were successfully aligned in each case. Scan dimensions were roughly 120 × 230 × 120 
voxels. We have also used a fetal phantom (CIRS Model 068 Fetal Ultrasound Biometrics Phantom, 
CIRS, Norfolk, Virginia, USA). The simulated gestational age of the phantom is based on 21 weeks 
of gestation [7]. Ten scans for the fetal femur of the phantom were acquired from different angles.  

2.2. Image Registration 

During fetal scanning, the main transformations for the femur are translation and rotation since it is 
a rigid body. Therefore, we have adopted an automatic 3D rigid image registration algorithm to 
align fetal femur scans for the same fetus [1]. The optimization problem is formulated as follows 

)(,)(maxarg i
frT

ITISTS  ( 1 ) 

where S is the similarity measure, Ir is the reference image, i
fI  is the ith floating image and T is the 

transformation function that is used to map i
fI  into Ir coordinate space. 

We used the Normalized Cross Correlation (NCC) as a similarity measure as in [1]. We have 
also utilized a multi-resolution approach with multiple initializations to find the global maxima of 
the similarity measure.  The Powell optimizer was used to maximize the similarity criteria. This 
process was performed between Ir (the first US image in every case) and i

fI (the remaining US 
images in each case) and for every case. This process is time consuming but can be performed 
simultaneously. 

It is always hard to judge the accuracy of a registration algorithm unless a ground truth 
deformation exists. We visually show registration results to show that the femur is correctly aligned 
and also other structures, e.g., thigh skin, knee tissues, etc, are correctly aligned. See green 
rectangles and the skin tissue in Figure 7 (a-c). 

2.3. Wavelet-based Image Fusion 

After image alignment in one coordinate space, image fusion can be performed in different ways 
[1]. US images contain a high amount of speckle and can have weak boundary definition. Therefore, 
we have developed a wavelet-based fusion that enhances the fetal femur US images. We have 
chosen to use the 3D Discrete Wavelet Transform (3D-DWT) in order to manipulate low and high 
frequency sub-bands. The process of the wavelet-based fusion is illustrated in Figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 1. Framework of the wavelet-based image fusion. 
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The 3D-DWT is applied to every 3D US volume to get 8 frequency components from each 
volume. Figure 2 shows an example of wavelet decomposition. The low frequency component is a 
down-sampled intensity component of the original image. The remaining seven are the high 
frequency components in different orientations. The first high frequency component captures the 
horizontal intensity variations in the image. In this image, larger values are assigned to horizontal 
edges. In particular, this suggested to maximize the low and the horizontal high frequency 
components; e.g., MAX(lowr, low1

f
N

f) and MAX(high(1)r, high(1)1
f

N
f) where r 

is the reference image and i
f is the ith floating image. On the other hand, we need to suppress other 

high frequency components because they are mainly speckle noise and/or other non-horizontal 
tissue artifacts. Therefore, we average the remaining 6 non-horizontal high frequencies. 

After finding MAXlow, MAXhigh1 and AVGhigh2-7, we apply the inverse 3D-DWT to get the 
fused 3D image. See Figure 7 for a visual example. 

 
 

 

  

  
(a) The femur (b) 4 components of the 3D wavelet decomposition of (a) 

Figure 2. Example of 3D wavelet decomposition of the fetal femur. Only 2D slice (a) is shown with the 4 
out of 8 3D wavelet decomposition components. (b) Top left is the low frequency (approximation), top right 
is the first high frequency component (horizontal details), bottom left is the second high frequency 
component and bottom right is the seventh high frequency component (vertical details).We binarize the high 
frequency components for visualization purpose.   

2.4. Validation 

We performed qualitative and quantitative validation. In the qualitative validation, an experienced 
clinician ranked all single view scans and fused views for all femurs. A score from 1 to 10 was 
given to each scan such that 10 means good femur definition and 1 means poor femur definition. 
The ranking took into account the contrast at the edge of the femur with a focus on the distal 
margins. Patient information was anonymized and images were randomly presented. 

In the quantitative analysis, two intensity-based enhancement measures were estimated [1]. 
The measures are the percentage change of contrast and the percentage change of Signal to Noise 
Ratio (SNR), and they are defined as follows 

100*1
1

1

M

i

ba ckground
i

femur
i

ba ckground
fused

femur
fused

M

Contrast

 

(2) 100*1
log*201

log*20

1

M

i
femur

i

femur
i

femur
fused

femur
fused

femur

M

SNR

 

(3) 

where µ and  are the mean and standard deviation within a region R, respectively; M is the 
number of images used in the fusion process (according to Figure 1, M=N+1). R is a 2D 
representative region from the object of interest (the femur and background) of size 10×10 pixels. 
The background region is selected from the thigh tissue directly above the femur. Since the region is 
2D and can hardly capture the 3D structure, 20 different regions, 10 from the background and 10 
from the femur were used in every image. T femur were calculated for 
these regions. 

For 2 of the real femurs, the single views and the fused image were manually segmented. The 
union and intersection of the segmented single views with the segmented fused femur were 
compared. In addition, a visual comparisons between our method and the Max, Mean methods [1] 
are shown in Figure 4. Notice that the wavelet-based method preserves more meaningful 
information than the other two techniques. 
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3 Results 
3.1. Qualitative Analysis 

Figure 3 shows the scores from an experienced clinician. For all cases, the score for the fused view 
is 8 or higher and is always better than the maximum score given for any of the single view images 
except in one case where one of the single views has equal score with fused view (but also given a 
high score). 
 

 

 

 

 

 

3.2. Quantitative Analysis 

The percentage change of contrast and the percentage change of SNR are shown in Table 1. Better 
contrast and SNR means that the percentage change should be positive, which is the case in all 
datasets. Fusion has enhanced the contrast and SNR by about 16±18% and 8±4% respectively. We 
also show the effect of fusion on the femur of the fetal phantom (Figure 6). Although the contrast of 
the whole image (the femur and its surrounding tissues) has increased, one can clearly see that the 
fused view has better boundary definition of the femur. 

Two datasets (21 and 29 weeks gestation) were manually segmented. Each one has four single 
views. The percentage intersection with the fused view for the 4 aligned single views was 47% and 
59% respectively. Although the four single views were aligned, each one highlights a different part 
of the femur. This clearly shows how the fused image provides better femur anatomical definition. 
For both patients the fused view has about 15% more volume than the mean volume of the 4 single 
views. On the other hand, the volume of union between the four single views is larger than the 
volume of the fused view for both datasets. The union volume was respectively 26% and 16% larger 
than the fused volume. This is mainly because of the unclear boundaries of the distal and proximal 
epiphysis which in turn lead to an inaccurate manual segmentation. Figure 7 (d-f) shows manual 
segmentation results and Figure 5 shows volume comparisons for both cases. 

The registration on average takes three to four minutes to register two 3D volumes. On the 
other hand, fusion requires around five seconds to fusing four aligned images. The code runs on a 
2.8 GHz quad core PC with 8GB of RAM. The registration time is high but this is because it is a 
multi-resolution, multi-initialization algorithm. In general, registration between the views is 
independent and can be performed simultaneously. 

4 Discussion and Conclusions 

In this paper we describe the development of an automatic technique to register and fuse multiple 
3D US images of the fetal femur. We present a novel processing in the wavelet domain to improve 
the femur boundary definition. Interestingly, we showed that the intersected femur volume between 
four aligned single view 3D US images is roughly 50% of the fused femur volume. In addition, the 
fused femur volume is about 15% more than the mean of 4 single views. This implies that 3D 
quantification from single views may be inaccurate. Future work will evaluate how the extra level 
of anatomical definition provided by 3D fusion can be used to quantify fetal bone development and 
the effect of fusion on automatic fetal femur segmentation [9].  

 
Figure 3. Scores from an 
experienced clinician. Fused is the 
score given to the fused images 
while Max is the maximum score 
given to any of the single view 
images used in fusion. 

 

 

 
Figure 5. Comparing the femur 
volumes on four single views, 
fused view, union and 
intersection of the single views.  

 

 

 

 

 
Figure 4. Visual comparisons 
between different fusion 
methods. Top: wavelet-based. 
Middle: Max. Bottom: Mean [1]. 
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(a) Aligned single view 1 

 
 

  
(b) Aligned single view 2 

 
 

  
(c) Fused view 

 
(d) Segmentation from four 

single views over the fused 
image 

 
(e) 3D Surface: 4 single 

views segmentation over 
the fused image 

 
(f) The segmentation on the 

fused image. Fused (green), 
union (red) and intersection 
(yellow)  

Figure 7. Detailed comparisons using the manual segmentation on 
aligned and fused view. The green rectangle shows the correct 
alignment of another structure (partial tibia bone).  
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(a) Single view 

 
(b) Fused view 

Figure 6. The femur of a fetal 
phantom. (a) 2D slice of one single 
view out of 10 is shown with (b) 
the corresponding 2D fused slice. 
 

Table 1. Percentage improvement 
of Contrast & SNR between single 
views and fused images. 
 % Contrast % SNR 
Patient 1 16 11 

Patient 2 55 13 

Patient 3 9 10 

Patient 4 5 4 

Patient 5 5 1 

Patient 6 15 8 

Patient 7 5 4 

Patient 8 19 3 

Phantom 6 13 
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Abstract
Abnormal vascular structure has been identified as a major characteristic of tumours.

In this paper, we compare the vascular radii change due to the treatment of inhibitors in
the RAS-PI3K AKT pathway. We contend that the distribution of vessel radii is more
suitably be modelled as a gamma distribution than the log-normal distribution proposed
in previous research. Based on this assumption, we conclude that all the inhibitors tested
increased tumour vessel radius at the 0.05 significance level.

1 Introduction
Tumour vasculature is often substantially less efficient in delivering oxygen and other nutri-
ents. The malformation of tumour vasculature is believed to be one of the causes that lead to
tumour hypoxia and necrosis. Some drugs have been developed to re-normalize the tumour
vasculature in order to improve the oxgygenation in tumours and to yield optimal responses
for chemotherapies and/or radiotherapies. RAS-PI3K-AKT is an important tumour angio-
genesis signal pathway, and drugs have been developed specifically to inhibit this pathway.
In this paper, we compare tumour vessel radii against those treated with FTI,IRessa,NFV and
PI103. We conclude that these drugs can increase tumour vessel radii, so improving tumour
vessel capacity in oxygen and nutrient delivery.

2 Method
Mice bearing human tumour xenografts were treated with four drugs, FTI (a farnesyl trans-
ferase inhibitor), IRessa, NFV (nelfinavir) and PI103 for 5 days. Microscopy images were
obtained by Dr.Naseer Qayum following the protocol presented in [2]. Microscopic im-
ages were segmented using hysteresis thresholding and the vessel skeletons obtained through
modified thinning operations. At each skeleton voxel, we sample the local vessel volume in
either the XY, XZ or YZ plane. One projected image is shown in Fig.1.

We extracted the connected region containing the centre pixel of the projected image.
(Because this is the projected region of the local vessel volume at the skeleton voxel) We

c� 2010. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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(a) Sample projected image (b) Radius is calculated in the
center connected region, assum-
ing it as a circle

Figure 1: Sample projected image and illustration of radius calculation

measured the projected image area and calculated the orthogonal projection area using the
projection angle. As observed from the projected image, the vessel’s shape can be far from
being circular. We assume that the ex vivo environment and imperfectness in histochemical
staining could be the cause of the non-cylindrical vessel appearance. However, we contend
that the blood vessel should be approximately cylindrical since in vivo vascular pumping
and pressure would lead naturally to this shape. To simulate the in vivo environment, we
assumed circular shape and calculated the vessel radius as Eq.1

r =
�

S
π

(1)

where S is the vessel orthogonal section area at each skeleton voxel.

3 Result

3.1 Data description
We processed 3 to 5 microscopic images for each drug group. Fig.2 shows the average and
spread descriptor of vessel radii in drug treated and untreated tumour vasculature.

From the average radius values shown in Fig.2, we hypothesize that the radii of drug
treated vessels are larger than for untreated tumour vessels. To test this hypothesis, we have
first to determine the distribution of vessel radii.

3.2 Distribution assumption
Several researchers have modelled the radius distribution as log-normal [1]. However, we
have found that the logarithms of vessel radii fail to pass the standard normality test (Lillil-
ifors,p<0.05). We summarize the skewness and kurtosis of the radii logarithms’ distribution
in Tab.1.

We contend that the distribution of vessel radii might more suitably be modelled as a
gamma distribution. Fig.3 compares the shape of best fitting lognormal distribution (red)
and the best fitting gamma distribution (blue) and the data distribution. The parameters of
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(a) Average of each drug group (b) Average of each image
Figure 2: Comparison of average vessel radius of each vessel structure. In the group average (left), we
used the mean value as a measure of the average vessel radius of each drug treated sample; in the image
average (right), we used the median value (2nd quartile) as a measure of the average vessel radius of
each vessel image and used the first and third quartile values as a measure of spread.

skewness kurtosis
Control -1.3992 7.1228

FTI treated -1.9553 9.4393
IRessa treated -1.1537 5.5151
NFV treated -1.0197 5.2441
PI103 treated -1.2013 5.3625

Table 1: skewness and kurtosis of the logarithms of radii as compared to the normal distribution.

best fitting lognormal and gamma distributions were determined using maximum likelihood
estimation.

To compare quantitatively the fits of the log-normal and gamma distributions to the ob-
served data, we first calculated the Kaplan-Meier estimate of the cumulative distribution
function (cdf) of the observed data. Since this cumulative distribution is derived directly
from the observed data, it is also called the empirical cdf. This cdf serves as ground-truth of
observed data’s distribution characteristics. Fig.4 summarizes the data cumulative distribu-
tion function plots and the best fitted gamma and lognormal cumulated distribution function
plots.

To evaluate the discrepancy between the fitting distribution and the ground truth, we
calculated the sum of squared errors (RSS) of the log-normal and gamma fits respectively;
they are listed in Tab.2

Sample Size RSSlogn RSSgamma
Control 886 1.4894 0.3510

FTI treated 691 4.7723 2.3878
IRessa treated 2030 2.51 0.2936
NFV treated 3848 5.0204 0.8878
PI103 treated 2361 4.8343 0.7218

Table 2: Total RSS of log-normal fitting cdf and gamma fitting cdf compared with the data’s empirical
cdf.
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(a) Control (b) FTI treated (c) IRessa treated

(d) NFV treated (e) PI103 treated

Figure 3: Comparison of the log-normal fitting (red) and gamma fitting (blue) of the radius distribu-
tion.

(a) Control (b) FTI treated (c) IRessa treated

(d) NFV treated (e) PI103 treated

Figure 4: Comparison of empirical cdf (black) and log-normal fitting distribution cdf (red) and gamma
fitting distribution cdf (blue).

From Tab.2, the total RSS of the gamma fit is considerably smaller than for the log-
normal fit. However, since the total RSS is related to the sample size, the total RSSs between
different samples are not directly comparable. Because the gamma fit distribution cdf has
smaller total RSS than the corresponding cdf of log-normal fitting, we contend that the vessel
radius is better modeled as a gamma distribution.
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3.3 Statistical inference
We followed the inference procedure proposed by [3]. Essentially, suppose µ1 and µ2 are
the population mean values of two gamma distributed samples; then the approximate α-level
test of H0: µ1 = µ2 against Ha: µ2 > µ1 is provided by rejecting H0 if the inequality (Eq.2)
holds:

S̄1

S̄2
< Fβ (2n1E(k1),2n2E(k2)) (2)

where β is the adjusted significance level, E(k1),E(k2) are the gamma distribution scale
parameter expectations, which were determined by the formula provided by [3]. We esti-
mated the corresponding β values for each α using Monte Carlo simulations for different
combinations of n1,n2,k1,k2 and α which can be found in [3].

We conducted the statistical inference and found that all drug treated tumour vessels
have larger average radius than the untreated tumour vessels (p<0.05). We further analyzed
the relationship between each drug treated vessels and found RFT I > RPI103,RIRessa > RNFV
(p<0.05).

4 Conclusion
The statistical analysis shows that each of the RAS-PI3K pathway inhibitors have significant
effects in increasing the tumour vessel radii. The distribution assumption may provide some
insights into the angiogenesis process. Since gamma distribution is the sum distribution of
exponential distributions, it is primarily used to model the time elapsed for an upcoming
event. In the angiogenesis scenario, the growth of blood vessels is affected by concentration
of various signal molecules. The waiting time can be modelled as the distance of vessel
loci to the source of these signal molecules. Indeed, tumour angiogenesis is essentially a
dynamic process, whereby destruction and assembly processes reach dynamic equilibrium.
The vessel radii can then be viewed as an indicator of the equilibrium states. Inhibition of
the destruction process will lead to larger vessel radii.

To research further quantitatively tumour vessel formation and drug inhibition processes,
it would be intriguing to develop a mathematical model. Validating this model by observed
vessel structural change would yield insights into the mechanism of signal regulation in
tumour angiogenesis.
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Abstract

Having ground truth is critical for evaluating segmentation algorithms and finding
the ground truth remains a hard problem. In this paper, three methods to estimate the
ground truth for skin lesion segmentation using multiple manual results collected from
different experts are proposed and compared. We also analyze the manual segmentations
and discuss how to use them more effectively. We conclude that a voting policy produces
a slightly better ground truth than the other two optimization based approaches. We pro-
pose that a better ground truth should take into account different styles of segmentations.

1 Introduction

Segmentation evaluation can be categorized into two groups: supervised and unsupervised
evaluation, depending on whether the method utilizes a priori knowledge[3, 7]. Here we are
only concerned with supervised evaluation which is widely used in medical image research.
It computes the difference between the ground truth and a segmentation result using a given
evaluation metric. Much effort is spent on the design of the metrics[1, 7]. However, there
is the interesting question of how to obtain the ground truth against which the metrics are
calculated. This is always a difficult issue to tackle and there have been few investigations
of it. The most common method is to use an expert’s manual segmentation and declare
that as the ground truth [5]. A single expert’s segmentation is likely to be subject to that
expert’s bias, hence it is proposed to make several manual segmentations for one image by
different people[7] and the ground truth is derived from these results. For example, Yuan et
al.[8] used the average contour of three dermatologists as the ground truth; we previously [2]
considered the ground truth as that agreed by at least half of the experts. However, it is
worth questioning whether these simple ways of combining multiple segmentations produce
a good quality ground truth; are there more appropriate ways to provide the ground truth?

c� 2010. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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This article is the first 1) to propose and compare three different ways to derive the ground
truth and 2) to categorize the manual segmentations into different groups.

2 Methods for ground truth estimation

Some notations used in the paper are as following:
Manuali j(x): the manual segmentation of the i

th image drawn by the j
th of J experts at pixel x

GTi(x): the estimated ground truth of the i
th image at pixel x

I: the number of images; J: the number of manual results
P(Ω): the partition of the image Ω into N regions: {Ωn}N

n=1,
�

N

n=1 Ωn ≡Ω, Ω denotes the image domain, N is the
number of regions (N = 2 for binary-value images).
Both the manual results and the ground truth are represented as binary-valued image. The
foreground has value 1 and the background has value 0. We propose the three methods:

Voting policy

Finding the ground truth based on multiple reference segmentations can be considered as a
labeling problem. The most intuitive way of solving such problems is to use a voting policy
(or label voting [4] ). A voting threshold k is used to determine the classification of each
pixel. The threshold is normally defined as k = J+1

2 and a pixel belongs to the foreground if
and only if at least k people vote for it as the foreground. The binary-valued ground truth is
defined as:
GTi(x) =

�
1 if ∑J

j=1 Manuali j(x)≥ k;
0 otherwise.

Variation Based Method
The second approach minimizes the average variation between the GT and manual results.
This is equivalent to minimizing the average area of the non-overlap region between GTi and
Manuali j. Hence, the energy function is, Ei = ∑J

j=1 ∑N

n=1{∑x
k
∈Ωn

[GTi(xk)−Manuali j(xk)]2}.

Maximal a posteriori probability based method

The third method is based on statistical theory. The probabilistic formulation estimates the
ground truth as a process of finding an optimal partition P(Ω) of the image domain. It
maximizes the a posteriori probability p(P(Ω)) based on a set of manual results. Simply
speaking, the ground truth should be the segmentation that makes all the manual results most
probable. As a result, the a posteriori probability function has the form:

p(Mi{1,...,J}|P) = p(Manuali{1,...,J}|Ω1,Ω2, . . . ,ΩN) =
N

∏
n=1

pin(Manuali{1,...,J}|Ωn) =
N

∏
n=1

∏
x∈Ωn

pin(x). (1)

Here, pin is defined as the probability of a pixel selected as region n by J manual results for
the i

th image: pin(x) = 1
J

∑J

j=1 Manuali j(x). This model assumes that 1) the medical experts
derive their segmentations of the same image independently from one another and 2) the
segmentation at each pixel is independent. The same assumption appears in STAPLE [6].

3 Experiments on ground truth estimation

Our goal is to estimate and compare the ground truth using the 3 criteria different approaches
described in the section 2. The 50 test images we used are randomly selected from our lesion
data-base. Their manual segmentations are obtained by 8 dermatologists from the Dermatol-
ogy department of the University of Edinburgh who directly draw the lesion boundary on the
colour image displayed in Adobe Photoshop CS3 using a Wacom Clintiq 12WX Interactive
pen tablet.

To evaluate and compare the ground truth derived from different approaches, a quanti-
tative metric XOR that measures the difference between the ground truth and the manual
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results is used. For the i
th lesion data (i = 1, . . .,50), the corresponding average XORi mea-

sure is: XORi = 1
J

∑J

j=1
Area(GTi

�
Manuali j )

Area(GTi+Manuali j )
, ranging from 0 (best) to 1 (worst).

�
denotes exclusive-OR

and gives the pixels for which GTi and Manuali j disagree; + means union. The smaller the
XOR, the closer the ground truth is to the manual results.

3.1 The best voting threshold

For the voting method, it is interesting to find out whether the voting threshold k = J+1
2 is

the best option. Hence, we compute the GT using different threshold values k for different
numbers of manual results (J). The XOR measure (mean±standard deviation) comparing
the GT against its corresponding manual results is shown in the left of Table 1 (the smallest
XOR measures are highlighted in red). It shows that the best estimation of the ground truth
is determined when using the voting method with k = J+1

2 . Also, the XOR decreases when
the reducing number of the manual results, which reflects the reduced variation among the
dermatologists.

XOR measure (×100)

Voting Threshold (k) Methods

Manual(J) 3 4 5 6 Voting Prob Diff STAPLE [6]
8 6.70±3.90 6.17±3.62 6.24±3.80 6.92±4.29 6.17±3.62 6.20±3.59 6.20±3.57 6.38±3.76
7 5.46±4.13 5.19±3.87 5.59±4.16 6.82±4.96 5.19±3.87 5.20±3.85 5.21±3.87 6.23±3.69
6 4.59±4.27 4.66±4.39 5.56±5.17 4.59±4.27 4.59±4.26 4.60±4.23 6.39±3.95
5 3.52±3.89 4.03±4.48 3.52±3.89 3.52±3.89 3.52±3.89 6.18±3.61

Table 1: Left: Average segmentation error rates and their standard deviations; Right: Com-
parison between different methods

3.2 The best ground truth estimation method

We compare the ground truth computed by different approaches using the same evaluation
metric XOR. The results are shown in Table 1 (right). According to the XOR measure, the
voting method gives the smallest XOR compared to the other two estimation methods. How-
ever, considering the range of values in the table, there is no fundamental difference between
the three methods. We also compare STAPLE [6] to our 3 algorithms and conclude that
its ground truth is worse under the XOR criterion. However, STAPLE optimizes a different
criterion so this comparison is not quite fair. We also implemented another dissimilarity
measure called Pratt’s Figure Of Merit (FOM) which stood out in comparison with five other
supervised evaluation criteria for segmentation results and proved to be most effective in a
comparison study conducted by Chabrier et al. [1]. It corresponds to an empirical contour
distance between the ground truth and the manual results. The additional test results confirm
the conclusion obtained by XOR measure.

There are big variations between the manual results given by different people for the
same data. This can be explained by both a difference in the segmentation policies, as
well as randomness. Take the lesion segmentation problem for example: some dermatol-
ogists only draw the boundary along the lesion edge, while others extend the lesion region
a little bit more onto the adjacent skin region. This can be considered as a segmentation
policy difference. In addition, there are different opinions on the importance of finding the
exact lesion boundary. This leads to different attitudes when people perform the manual
segmentation. For some of them, locating a general lesion region is necessary for a good
diagnosis. Hence, they pay less effort to the exact edge details; while others might pay a

103



4 AUTHORS: X LI et al.

great deal of attention to drawing a very precise pixel-by-pixel boundary. Given the aim of
comparing computer-based segmentations against the ground truth, it is more reasonable to
use the ground truth which has the more accurate boundary. Therefore, we question if it is
appropriate to treat all manual segmentation results equally rather than, for example, using
a weighting policy according to their performances. For instance, STAPLE [6] treats each
manual segmentation differently according to their performance parameters estimated using
EM algorithm. But first, we need to prove that there does exist different segmentation styles.
We hypothesize that there are two patterns of manual results. Segmentations that have finer
details along the boundary should be comparatively more detailed, while less careful seg-
mentations tend to have a more compact lesion region. In this context, we categorize the
manual results into two patterns (detailed vs compact) based on the compactness measure-
ment defined as the ratio of the area of a circle (the most compact shape) having the same

perimeter to the area of the shape, compactness j =
perimeter

2
j

4π×area j
. For each manual segmenta-

tion, a compactness value is assigned. There are J manual results from different humans as
Compactness(Manuali j), i = 1, . . . ,N, j = 1, . . . ,J. Based on this value, J manual resources
could be categorized into two patterns by kmeans(k = 2).

3.3 Experiments

For 30 randomly selected test images, one dermatologist repeated the manual segmentation
for 5 times on the images of the same lesion. Two trials were on the original orientation,
while the other three are rotated clockwise by 90, 180, 270 degrees, respectively. As a
result, we obtain 5 manual segmentations for each lesion image. The comparison results are
shown in Table 2. The first row demonstrates the comparison result between the 2 non-

Measures (×100) XOR FOM [1]

Intra
No rotation (2 samples) 6.33 15.66

Rotation (4 samples) 5.80 16.67

Inter Other dermatologist (7 samples) 8.07 12.39

Table 2: Intra and Inter comparison

rotated segmentations from the same person. The second row compares the results drawn
by the same person but on 4 images rotated every 90 degrees. They can be considered as
the intra-person comparison since they are given by the same person and they reflect the
randomness measure. The third row is the comparison results between different people. As
it can be seen, the intra-differences are relatively small compared to the inter-difference.
Hence, we hypothesize that the segmentation policy is the main factor that influences the
segmentation rather than the randomness and slightly different segmentation policies lead to
slightly different segmentations.

We find the pattern of the manual results by analyzing the compactness values of all the
manual segmentations (50×8). For each image, the compactness of the 8 manual segmen-
tations is calculated and categorized into two groups by kmeans and assigned with a class
label (e.g., 1 for compact, 2 for detailed). Each dermatologist has a corresponding class vec-
tor recording how compactly they draw the lesion boundary over the 50 lesions. The mean
and the standard deviation of the class label over the 50 lesions are shown in Table 3 (left),
as well as the counts of the compact segmentation for each dermatologist.

The table shows 1) the dermatologists are reasonably consistent according to the stan-
dard deviation value. This means each dermatologist obeys the same rule when doing the
manual segmentation. 2) There exist two patterns of segmentations according to the obvious
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Compactness Performance(STAPLE [6])

Doctor counts for compact (out of 50) mean group label std groups precision specificity
1 26 1.48 0.50 detailed 0.9379 small 0.9890 big
2 37 1.26 0.44 compact 0.9578 big 0.9647 small
3 10 1.80 0.40 detailed 0.8417 small 0.9904 big
4 24 1.52 0.50 detailed 0.9095 small 0.9924 big
5 47 1.06 0.24 compact 0.9466 big 0.9794 small
6 35 1.32 0.47 compact 0.9437 big 0.9597 small
7 43 1.16 0.37 compact 0.9620 big 0.9821 small
8 41 1.18 0.39 compact 0.9220 small 0.9828 small

Table 3: Patterns of detailed versus compact segmentations

difference of the mean compactness. To get an idea of how well-separated the resulting clus-
ters are, the silhouette values for each person using the cluster indices output from kmeans

are calculated. The silhouette is a measure showing how close each point in one cluster is to
points in the neighboring clusters. This measure ranges from +1, indicating points that are
very distant from neighboring clusters, through 0, indicating points that are not distinctly in
one cluster or another, to -1, indicating points that are probably assigned to the wrong clus-
ter. The average value for the detailed group is 0.69 and 0.86 for the compact group. As can
be seen, both clusters ’detailed’ and ’compact’ have measures significantly above 0, so the
hypothesis of two segmentation patterns is confirmed. The above results are echoed by the
performance parameter of each doctor from the STAPLE algorithm [6], as shown in Table 3
(right). The ones giving ’compact’ segmentations normally have bigger precision (percent-
age of unhealthy skin area that is identified as lesion) and smaller specificity(percentage of
healthy skin that is identified as skin) as they tend to include more tissue into the lesion area.
The performance parameters (precision and specificity) are categorized into ’big’ and ’small’
groups using kmeans.

4 Conclusion

Based on the experiments with the manual segmentation results for lesion images, we con-
clude:
1 - computing the ground truth with the voting policy method is simple and effective and
produces slightly better results compared to two other approaches based on optimization,
although there is no significant difference between the three methods.
2 - It is reasonable to use k = (J +1)/2 as the voting threshold.
3 - There are generally two clusters of manual segmentations due to different segmentation
policies. Hence, it would be reasonable to treat each cluster differently when computing the
ground truth. In the future, we plan to investigate how to exploit this observation to produce
better ground truth.
4 - We have also compared STAPLE [6] to our 3 algorithms and concluded that its ground
truth is worse under the XOR criterion. However, STAPLE optimizes a different criterion and
weights segmentations depending on the estimated performance level, so this comparison is
not quite fair. In another paper, we will present results that demonstrate an improvement on
STAPLE on a common criterion.
5 - The independence assumption of individual experts of method 2 needs further verifica-
tion. Pixel label independence should be reconsidered in eqn 1, e.g., by introducing Markov
random field modeling the relationship between each pixel and its neighbors.
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Abstract
Digital breast tomosynthesis (DBT) has the potential to enhance breast cancer detec-

tion by reducing the confounding effect of superimposed tissue associated with conven-
tional mammography. In addition the increased volumetric information should enable
temporal datasets to be more accurately compared, a task that radiologists routinely ap-
ply to conventional mammograms to detect the changes associated with malignancy. In
this paper we address the problem of comparing DBT data by combining reconstruction
of a pair of temporal volumes with their registration. Using a simple test object, and DBT
simulations from in vivo breast compressions imaged using MRI, we demonstrate that
this combined reconstruction and registration approach produces improvements in both
the reconstructed volumes and the estimated transformation parameters when compared
to performing the tasks sequentially.

1 Introduction
Digital breast tomosynthesis (DBT) is an X-ray modality in which a small number of low
dose X-ray images (typically between 10 and 50) are acquired over a limited angle and re-
constructed into a 3D volume[1]. The resulting images, which have high in-plane resolution
but low out-of-plane resolution, exhibit reduced superposition of overlying tissue structures
as compared to conventional X-ray mammography. Whilst the added depth information of-
fered by DBT has the potential to enhance detection and diagnosis of breast cancer [2]; the
greater volume of data, relative to X-ray mammography, increases the need for automated
tools to aid the reading process. This is of particular importance if DBT is to be adopted in
the high workload screening context.

†Contact Email: {g.yang, j.hipwell, s.arridge}@cs.ucl.ac.uk. This work has been funded by DTI Project Digital Breast To-
mosynthesis TP/7/SEN/6/1/M1577G. The authors would like to thank the UK MR Breast Screening Study (MARIBS) for providing
the data for this study.
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In this paper we address the problem of comparison of temporal DBT volumes via reg-
istration. This is a challenging task due to the significant artefacts associated with DBT
reconstructions. These are generated by the limited field of view of the acquired images
and the correspondingly large null-space in the frequency domain. Rather than registering
the images after reconstruction therefore, we investigate the benefits of combining both re-
construction and registration, and the hypothesis that the performance of each task will be
enhanced as a result. In recent research on SPECT imaging [3] the authors present a method
to combine reconstruction with motion correction using a rigid transformation. We have
developed an iterative algorithm [4] which alternates between optimising the reconstructed
intensities at each time point and the affine transformation parameters between time points.

2 Method
Two sets of limited angle X-ray acquisitions, y1

N2 and y2
N2 , obtained at different

times, can be expressed in terms of a 3D volume, x N3 , in two positions related by the
transformation, R, with parameters, ζp , and the system matrix A : N3 N2 via

y1 Ax (1)

y2 Ax† ARζp
x (2)

We solve equations 1 and 2 with respect to estimates x1 and x2 of x and the registration pa-
rameters ζp, by alternating an incomplete optimisation (i.e. n iterations) of the reconstructed
volumes x1 and x2:

x1 argmin
x1

ΦRec1
1
2
��Ax1 y1

��2
2 (3)

x2 argmin
x2

ΦRec2
1
2
��Ax2 y2

��2
2 (4)

with the registration of the current estimates x1 and x2 with respect to the registration param-
eters ζp:

ζp argmin
ζp

ΦReg
1
2
��Rζp

x2 x1
��2

2 (5)

After each registration iteration (Eq. 5), and prior to the next iteration of the reconstructions
(Eqs. 3 and 4), the reconstruction estimates are updated as follows (Eqs. 6 and 7). The last
iteration outputs x1 x1, x2 x2 and Rζp

x2.

x1 Rζp
x2 (6)

x2 x2 (7)

This “outer loop” of reconstruction followed by registration is repeated m times.
The reconstruction is performed via a nonlinear conjugate gradient search engine and

the registration currently via a simple hill-climbing optimisation method. The following
analytical gradients are used for x1 and x2

Ψx1 AT Ax1 y1 (8)

Ψx2 AT Ax2 y2 (9)
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3 Results
In the following two experiments we compare the performance of (a) sequential reconstruc-
tion and registration, in which n 100 iterations of the reconstruction of projection images,
y1 and y2, are followed by a single registration of the reconstructed volumes x1 and x2 (m 1)
and (b) our iterative approach in which n 10 iterations of the reconstruction are followed
by a registration and the process is repeated m 10 times. In both cases the total number
of reconstruction iterations is the same (m n 100). However, there are 10 registrations
in our iterative method rather than one registration used in the sequential method. For each
pair of test volumes, x and x†, 11 projections covering 25 degrees are created to simulate
the pair of temporal DBT acquisitions y1 and y2.

In the first experiment a 3D toroidal phantom image was created and a rigidly trans-
formed one with Rζp

equal to a translation of Tx y z 10 0 20 mm and a rotation about
the y axis of 30 degrees (Fig. 1). As seen in Fig. 1. (f) and (h), the iterative results are more
compact and accurate than the sequential results Fig. 1. (b) and (d), and the out of plane
blurring is reduced (coloured squares). The sum of squared differences (SSD) x1 x 2

2 is
decreased from 1011 to 109 in order of magnitude; however, for the iterative method this
value of 4 32 109 is superior to the sequential result of 6 89 109.

Figure 1: (a) Original test volume x; (e) Transformed test volume x†; Sequential results (b)-(d): (b)
reconstruction x1, (c) reconstruction x2, and (d) transformed reconstruction Rζ px2; Iterative results
(f)-(h): (f) reconstruction x1, (g) reconstruction x2, and (h) transformed reconstruction Rζ px2.

Initial Sequential Method Combined Method
Toroid SSD 4 51 1011 6 89 109 4 32 109

Compressed MRI SSD 6 91 1011 7 60 109 5 90 109

Registration Error (mm) 23 6 8 6 4 6

Table 1: Numerical results of the two experiments.

In the second experiment we tested the methods using two MRI acquisitions obtained before
and after application of a lateral-to-medial plate compression of the breast (Fig. 2). The SSD
between reconstruction, x1, and the original volume, x, indicates that the iterative method
produces a more accurate reconstruction of the data (iterative 5 9 109 vs sequential 7 6
109 decreased from 6 91 1011). In addition, measurement of the target registration error for
a set of 12 user defined landmarks, indicates that the iterative method also produces a more
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accurate registration result (4.6mm vs 8.6mm, given an initial misregistration of 23.6mm).
All the numerical results of the two experiments above are shown in the Table 1.

Figure 2: As Fig. 1 but applied to in vivo MRI acquisition of a breast before and after plate compres-
sion (Images have been segmented and mapped to effective X-ray attenuation).

Plots of the cost function ΦRec1 Ax1 y1
2
2 represented in equation 3 for both sequen-

tial and combined methods are shown in Figures 3 and 4 following:
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Figure 3: Plot of the cost function ΦRec1 Ax1 y1
2
2 for the 3D toroid experiment.

4 Discussion and Conclusion
We have presented a method to iteratively reconstruct and register temporal DBT data sets
and compared this approach with performing the two tasks sequentially.

Our iterative method was found to produce superior results in optimised cost function
value, registration accuracy and reconstructed image appearance as seen in Fig. 5. We at-
tribute this to the fact that the iterative approach uses all the X-ray acquisition data from both
time points (y1 and y2) to reconstruct volume x1.This leads to an improvement in the recon-
struction of x1 which in turn enables a more accurate registration to reconstructed volume x2
to be achieved.

The iterative method updates reconstructed volume x1 with the transformation of x2
(Rζp

x2) following each registration iteration. This results in the 10 cost function peaks shown
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in Fig. 3, rather than smoothly decreasing sequential graph. In addition, SSD has been used
to take advantage of both mathematical simplicity and computational efficiency over other
metrics such as the correlation coefficient and mutual information. Future work aims to test
using real DBT data, non-rigid transformations, and alternative similarity metrics.
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Figure 4: As Fig. 3 but for the in vivo compressed MR experiment.

Figure 5: Zoomed in results of the two tests above; (a), (b) and (f) of Figures 1 and 2. Left: Original
fixed image x; Middle: Results of the sequential method x1; Right: Results of the iterative method x1.
Only one view of each volume has been shown accordingly.
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Abstract

The structural organisation at various levels of the tendon hierarchy is important for
determining its biomechanical, functional, properties. The intricacies of this organi-
sation, however, are not yet well defined. Developing tendon imaging and concurrent
analysis methods are essential for exploring the clinical potential of image-based tendon
assessment. This paper demonstrates a multimodal imaging approach for characteris-
ing tendon tissue at multiple spatial scales; high field magnetic resonance imaging and
microscopy both distinguish between normal and damaged tendon, at different spatial
scales. A multiple cylindrical helix model, which accounts for a range of observed crimp
architectures, is proposed for interpreting images of normal and damaged tendon mi-
crostructure. Image-derived parameters, helix radius and pitch, are fitted to a mechanical
helix model to predict changes in material property from tendon structure. Biomechani-
cal insight suggests that abnormal fibre organisation increases tendon stiffness.

1 Introduction
Tendon injuries and disorders are becoming a major concern associated with daily activi-
ties, recreational and competitive sports. Estimated as accounting for 30-50% of all sports
injuries, over-use injuries such as tendinitis are the most frequent cause of enforced breaks
from activity [4]. As such, there is a growing demand for methods which can determine
tendon tissue quality in vivo, such as magnetic resonance imaging (MRI) and endoscopic
microscopy [5], for diagnostic and/or monitoring repair purposes. However, relatively little
is known about the imaging correlates of healthy and abnormal tendon tissue, thus highlight-
ing the current limitations associated with image-based tendon tissue quality assessment. In
order to develop in vivo imaging methods, pre-clinical ex vivo investigation is required to
determine the physiological source of signals in tendon MR and microscopy images, the
physiological relationships between image-derived microstructure and function.

Tendon is a musculoskeletal tissue which transfers the forces generated by muscles to
bones, by distributing loads between its multicomposite structure across multiple scales.
From tropocollagen through to the macroscopic tendon via fibrils, fibres and fascicles, the
cylindrical subunits are aligned predominantly along the longitudinal tendon axis (i.e. the

c� 2010. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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Figure 1: Tendon hierarchy and appropriate methods for investigating tendon tissue. Within
fascicles, crimp is defined by crimp amplitude (A), wavelength (λ ), and angle (θ ).

primary loading direction) within a distinct hierarchy (Figure 1). The extracellular matrix
(ECM) composition, organisation and interactions at different levels of the hierarchy govern
the tendon material properties [7], and account for its nonlinear viscoelastic behaviours [1].
This paper demonstrates that the ECM organisation, captured by multimodal imaging, can
reveal tendon properties related to tissue function.

Appropriate imaging methods are required to investigate the ECM organisation at differ-
ent levels of the tendon hierarchy (Figure 1). Signal intensity relating to fascicular banding is
captured by high field MRI, with ∼0.5 mm2 resolution [6]. Within fascicles, higher resolu-
tion (∼ 1 µm2) microscopy methods reveal the ECM organisation underlying the tissue mor-
phology. In particular, near infrared multiphoton laser scanning microscopy (NIR-MPLSM)
exploits the abundance of collagen in tendon fibrils to generate images, via second harmonic
generation (SHG), of intrinsic fibre organisation. SHG images reveal crimp (Figure 1), a
characteristic microscopic feature of tendon, linked to tendon nonlinear viscoelastic low
strain behaviour (<4%) via the straightening-out of crimped fibres [2, 7]. Although crimp
architecture has not yet been resolved as 2D planar (zig-zag or sinusoidal) or 3D helical [2],
crimp is typically defined (Figure 1) by the crimp angle (ψ = 5◦-30◦), or the crimp ampli-
tude (A = 1 µm-10 µm) and crimp wavelength (λ = 10 µm-100 µm) [2]. Deviation from
the expected values for a particular tendon and species is considered abnormal.

Tendon images are difficult to interpret because they are noisy, contain information at
multiple scales, and inherently represent a 3D microstructure. From qualitative SHG image
analysis, we observed viewpoint invariance over an angular range of tendon microstructure,
more specifically crimp. Based on these observations, we propose a 3D helical model to
facilitate tendon image analysis and interpretation, by adopting prior knowledge of tendon
microstructure, and enabling biomechanical insight. This paper applies a multimodal imag-
ing approach for characterising normal and damaged (experimentally-induced by enzyme-
digestion) bovine tendon ex vivo. It offers image interpretation at multiple scales, relating to
the underlying physiological subunits. Section 2 proposes a multiple cylindrical helix model
that accounts for the observed crimp viewpoint invariance. Section 3 compares MR images,
SHG images, and extracted crimp parameters, of normal and digested tendon. Section 4
shows that a mechanical model [2] of the helix (Section 2) can predict changes in material
property from crimp microstructure (Section 3), thus providing biomechanical insight.
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Figure 2: (a) Cylindrical helix model, (b) focal volume illustrating angle of view, and (c)
multiple helix model. (d)-(f) Image projections across a range of angles reveal planar crimp.

2 Multiple cylindrical helix fibre model
This section proposes a multiple cylindrical helix fibre model which accounts for the exper-
imentally observed rotational invariance, as well as the reported 2D and 3D crimp architec-
tures [2], described in Section 1. Each fibre, f, is defined by a helix:

f(ϕ,k,a) =




acosϕ
asinϕ

kϕ



 , (1)

where a is the radius, and k is the pitch of the helix (Figure 2 (a)).
Our multiple helix model assumes tightly and regularly packed fibres, with fibre separa-

tions, si and s j (Figure 2 (a)). To investigate crimp architecture, simulated image projections
over focal volume slice thickness, Vz, revealed that a 2D sinusoidal crimp waveform is ob-
tained for a range of angles of view, θ , orthogonal to the tendon longitudinal axis (Figures
2 (d)-(f)). Parameters k and a determine fibre geometry and thus govern the crimp wave-
form; the focal volume defines the tissue section being imaged. Future work will investigate
variable focal volume, fibre separation and fibre radius, r (e.g. 50-500 nm [2]).

3 Model-fitting to tendon microstructure
This section demonstrates that the model presented in Section 2 can be used to characterise
and interpret images of normal and damaged tendon. To experimentally induce tendon dam-
age, bovine flexor tendon samples were incubated in papain enzyme (500 µg/ml, overnight
at 37◦C). Control (normal) samples were incubated in phosphate buffered saline. Tendon
samples were imaged along the longitudinal axis, using high field (7 T) T1-weighted MRI
(TR 0.1 s; TE 0.0125 s) and NIR-MPLSM (800 nm excitation; 400 nm SHG emission).
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Figure 3: Imaging reveals normal (top) and damaged (bottom) tendon microstructure. (a)-(b)
High field MRI, (c)-(d) magnified MRI regions, (e)-(f) SHG images, and (g)-(h) crimp.

High field MRI (Figures 3 (a)-(d)) revealed striations, reflecting fascicle-surrounding tissue
(high signal intensity) and intrafascicle regions (low signal intensity). Fascicular integrity
and organisation is disrupted by papain digestion (Figure 3 (d)) compared to the normal sam-
ple (Figure 3 (c)). The limited resolution of MRI, however, precludes crimp characterisation
at this level. For model-fitting, crimp parameters were extracted for SHG images (Figures 3
(e)-(h)), assuming 2D sinusoidal crimp, and using the method provided in [3]. Normal ten-
don crimp parameters (A = 5.12±1.87 µm; λ = 32.9±4.11 µm; ψ = 17.3◦) were altered
by papain digestion (A = 2.77± 0.280 µm; λ = 42.9± 5.68 µm; ψ = 7.4◦). Model helix
radius and pitch are approximated by the crimp wavelength and amplitude, respectively.

4 Biomechanical insight
Deriving material properties from images, in particular static images, is challenging. To
overcome this challenge, structural information contained in the images, such as fascicular
and fibre organisation (e.g. crimp), can inform mechanical models (e.g. elastic spring [2]),
which in turn can be used to obtain material properties. This section shows that the pro-
posed helical model (Section 2) can predict changes in material property from tendon crimp
microstructure (Section 3): and simulates mechanical data in agreement with the protective
role of fibre crimping [1], preventing tissue damage, in response to nonlinear low strains.

In particular, Freed and Doehring (2005) propose a closed form analytical solution to the
mechanical behaviour of a helix [2]. This model predicts increasing stiffness of the nonlinear
section of tendon extension with increasing crimp wavelength (amplitude constant, Figure 4
(a)) and decreasing stiffness with increasing amplitude (wavelength constant, Figure 4 (b)).
Preliminary results of this model with data from normal and damaged tendon (Section 3
crimp parameters) suggest that nonlinear low strain behaviour in damaged tendon is abbre-
viated and stiffer than in normal tendon (Figure 4 (c)). Higher stiffness is consistent with
earlier entry into the linear deformation regime and hence earlier mechanical failure. Graphs
in Figure 4 reflect a realistic nonlinear elastic response of tendon under low strain.

5 Discussion
This paper demonstrated that multimodal imaging, high field MRI and NIR-MPLSM, can
reveal ECM damage at different levels of the tendon hierarchy. It proposed a multiple cylin-
drical helix model for interpreting longitudinal tendon SHG images, by predicting changes
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Figure 4: Predicted behaviour of the nonlinear section of tendon extension. (a) Increasing
stiffness with increasing crimp wavelength, λ . (b) Decreasing stiffness with increasing crimp
amplitude, A. (c) Papain-digested tendon is stiffer than normal tendon.

in material property and behaviour from tendon crimp microstructure. The multiple helix
model is consistent with helical subunits (e.g. tropocollagen) at lower hierarchical levels;
and comparable to the design of steel wire ropes, which transfer multiaxial heavy loads and
adjacent wires compensate for damage via friction. In conclusion, this paper demonstrates
the clinical potential for assessing tendon using high field MRI, and deriving material prop-
erties from intrafascicle regions via microscopic endoscopy [5] or biopsy analysis.
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Abstract 

This paper presents an unsupervised segmentation scheme to isolate pigmented skin lesion 
from surrounding normal skin. An adaptive mean-shift algorithm combined with maximal 
similarity based region merging is applied with a colour-spatial feature space to improve the 
efficiency and robustness of the segmentation approach. Upon comparison, the proposed 
method demonstrates good performance in achieving an automatic segmentation on various 
real skin data collected by ourselves and those downloaded from public dataset. 

 
 
1. Introduction 
Melanoma becomes one of the most common skin cancers in the UK. Most melanoma originates 
from irregular spreading of melanocyte cells which are responsible for producing the pigment 
melanin that colours the skin. As such melanoma usually has unique features of the colour and 
shape. Detection of a malignant tumor in its early stage not only reduces the mortality rate, but is 
helpful in reducing the expense associated with treatment. Measurement of features for diagnosis 
from images initially requires the detection and localization of the pigmented lesion area. 
Therefore image segmentation is considered to be the first step for achieving diagnosis in the skin 
cancers. 

In order to accurately segment the pigmented area, Xu et al. [1] proposed a heuristic method 
using double thresholds to isolate skin from lesion through a few selected border points. Schmid 
[2] introduced a fuzzy c-means based lesion segmentation method which required centres of skin 
and tumor areas as a prior knowledge. In these supervised approaches, segmentation results are 
dependent on the initial selection of normal skin and the suspicious lesion areas. Iyatomi et al. [3] 
automatically extracted a dermatologist-like lesion region by combining pixel-based and region-
based algorithms which rely on the approximation of the colour distributions of normal skin and 
pigmented lesion. However, colour information alone proved insufficient for a reliable automated 
segmentation of lesion [4]. Cluster overlaps in the colour feature space caused by additive noise 
as well as intrinsic artefacts usually results in poor skin-lesion separation.  

In this paper, an adaptive mean-shift and maximal similarity based region merging method is used 
to achieve an automatic skin lesion segmentation. By appending the 2D coordinates to RGB 
colour feature space, a 5D feature space is achieved to improve the segmentation result. The 
experiments validated that the proposed approach can automatically and accurately separate 
pigmented lesion and the surrounding normal skin on the data acquired from various imaging 
devices. 

2. Methodology 
Before proceeding segmentation task, a 2D anisotropic diffusion algorithm [5] is first applied 
with skin image to reduce the noise while preserving the significant features; then a contrast 
limited adaptive histogram equalization [6] is used to deal with the large variation in the natural 
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skin pigmentation across the population; finally the image pixel values in RGB channels are 
normalized and stretched to the same range [0 255] to obtain a similar dynamic range as well as 
to reduce the sensitivity to lighting conditions.  

There are essentially three parts in the entire segmentation framework. An adaptive mean-shift 
algorithm [7] is first applied to a compact of 5D feature vector, which includes colour and spatial 
information of each pixel. This step outputs an initial set of clusters. A further iterative region 
merging stage is followed up to prune the number of clusters by grouping the clusters with 
maximal similarity in the colour histogram [8]. Finally a weighted kernel k-means [9] is 
introduced to assign the remaining clusters to normal skin or pigmented lesion. 

2.1 Adaptive Mean-shift Clustering 

The mean-shift algorithm is a nonparametric clustering technique which does not require prior 
knowledge of the number of clusters, and does not constrain the shape of the clusters [7]. Let 

 be the set of feature vectors in a -dimensional feature space. The 
implication of the mean-shift property is that the iterative procedure 

                            (1) 

is a hill climbing process to the nearest stationary density point, which guarantees the 
convergence to the local maximum after a few iterations. Here function , is the profile of the 
associated kernel ,  is the window size determining the range of influence 
of the kernel located in , and  is the iteration number. 

Constant mean-shift using a fixed window size  instead of for each feature vector might result 
in clusters over splitting due to its small value or unexpected excessive merging from the 
selection of a large window. Therefore an adaptive value of  is required at each feature point . 
This so called adaptive mean-shift (AMS) [10] jointed with colour-spatial feature space forms the 
basis of our segmentation scheme. 

Taking , where  is the  distance between  and its k-nearest-neighbour . 
The window size  is the only numerical parameter in the AMS, thus the choice of  will have a 
significant influence on the initial clustering from the AMS and will further affect the final 
segmentation result. The experimental in section 3.1 will demonstrate that the selection of  can 
be flexible in a large interval without greatly influence in the segmentation accuracy. An example 
of malignant melanoma is shown in Fig.1(a). Fig.1(b) gives the clustering map output from the 
AMS. 
 
2.2 Iterative Cluster Pruning 

After the initial AMS, there are still hundreds or thousands clusters left. Therefore a maximal 
similarity based region merging algorithm (MSRM) is carried out on the analysis of colour 
histogram. This method is adaptive to the content of the input image and avoids the problem of a 
preset threshold in advance [8]. So it is appropriate for a large variation of natural skin pigment 
across various skin tumors.  

We quantize each RGB channel into 16 bins and therefore obtain a colour histogram of 

 bins for each region. Then Bhattacharyya coefficient  

is  used  to  describe  the  similarity  between  regions    and  ,  where   and   are the  
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Fig.1: An example of the segmentation of real skin image. (a) Input Image. (b) 1st segmentation map after AMS. (c) 2nd 
segmentation map after MSRM. (d) Final segmentation map. (e) Segmented borders overlaid on the original image. 

quantized colour histograms, and the superscript  represents the element inside them. Two 
similar regions therefore result in similar colour histograms, and hence have a higher 
Bhattacharyya coefficient  between them. 

Suppose  is a group set of clustering regions output from the AMS step, a set of the adjacent 
regions  (u is the number of adjacent regions of R) is formed for each 

. And for each , another set of adjacent regions  (v is the 
number of adjacent regions of ) is constructed. The similarity between region  and its adjacent 
regions can be calculated according to the following merging rule: 

                           (2) 

which means that the selected region R will be merged with its adjacent region  only if the 
similarity  is the maximal one among all the similarities within . Fig.1(c) shows 
the 2nd segmentation map after the MSRM. 

2.3 Kernel K-means Clustering in Colour Feature Space 

The weighted kernel k-means [8] is introduced as the last step to assign the remaining clusters to 
normal skin or pigmented lesion according to their RGB colour values. The objective function is 
defined as:  

 

                                                                                               (3) 

 

where  and Y are the colour vectors for two different clusters output from MSRM, and these two 
clusters are assigned to the same class  in kernel k-means step.  and  are the weights 
standing for the relative portion of the total number of points inside cluster  and cluster  
respectively. Fig.1(d) shows the final segmentation result after clustering and Fig.1(e) outlines the 
border over the original image. 

3. Experimental Results  
The proposed segmentation framework is validated on 113 sets of real skin data: 74 from our own 
dataset captured at Frenchay hospital and 39 sets of public dataset downloaded from Dermatology 
Image Atlas [9]. Throughout the experiments, manual segmentations given by dermatologists are 
used as ground truth for the performance evaluation. The Tanimoto coefficient 

is  used  to  qualify  the  accuracy,  where    is  the  cluster  index  represents  
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Fig.2: Sensitivity of k. (a) Overlapping Coefficient  of  range from [20 500] for normal skin (blue) and pigmented 

lesion (green). (b) Number of remaining modes (blue) and computation time (green) plot together. Vertical axes in the left 
and right represent mode numbers and seconds. 

 

 
Fig.3: (a) Change of number of clusters with the increase of iteration number. (b) Change of maximum 

colour variation with the increase of iteration number. 

skin/lesion,  denotes the number of pixels assigned to skin/lesion by ground truth and 
automated segmentation simultaneously.  and  are the numbers of pixels of skin/lesion for 
ground truth and computed segmentation respectively. 

3.1 Parameter Selection 

3.1.1 Sensitivity of k-Nearest-Neighbour 

We randomly selected images and change the variable   ranging from 20 to 500 to evaluate the 
algorithm sensitivity to it. Here the image shown in Fig.1(a) is used as an example because the 
colour inside the pigmented lesion greatly varied; and the contrast between skin and part of the 
pigmented lesion areas is low. These properties can be the excellent factors for the evaluation of 
the selection of k. 

Fig.2(a) plots the coefficient  corresponding to each  value for both normal skin and 
pigmented lesions. It can be observed that both  give high values and stay constant when  is 
in the range of . A significant decrease occurs thereafter, especially for  larger 
than . When the large number of -nearest-neighbour is introduced the computed window 
size  in the AMS also increases, which may cause unacceptable smoothing in the low contrast 
region; whereas when  is in the range [20 80], the segmentation results are also not very good 
due to the sensitivity to the tiny artefacts caused by small  in applying the AMS. From Fig.2(b) 
it is evident that the running time greatly decreases with the increase of ,  because  fewer  
remaining  clusters  need  to be merged in the cluster pruning step. The  nearest-neighbour is set 
to  in our work by comprehensively considering the accuracy as well as computation 
efficiency. 

3.1.2 MSRM and Kernel k-means 
In theory, a maximal similarity based region merging and weighted kernel -means algorithm 
could be individually applied after AMS until the desired clustering number is achieved. 
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However, we apply both methods in order to avoid the drawbacks of each technique, and make 
them complement each other. 
The maximal similarity based region merging algorithm utilizes the "max" operator which is 
sensitive to outliers and therefore may result in excessive merging with the increase in the number 
of iteration; whereas kernel -means is unsuitable for the large images, as the kernel matrix 
makes the method inefficient for a standard PC due to the memory limitation. Taking the same 
image in Fig.1 as an example, Fig.3 plots the cluster number and the largest condition number of 
the covariance matrix within the same cluster in MSRM for each iteration. With an increase in 
iterations, the number of remaining clusters decreases while the largest condition number 
increases exponentially. From 7th iteration, the growth of largest condition number starts to 
change at a significant pace between two successive iterations, which means excessive merging 
might take place. In order to prevent the risk of overly merging, region merging stops when the 
number of remaining clusters reaches or is less than 0.25 times the number of clusters obtained 
from the AMS. 

3.2 Performance Evaluation 
In this experiment, we investigate the performance of the proposed approach by comparing it with 
four state-of-art segmentation techniques, including double threshold, fuzzy c-means, N-cut 
algorithm and active contour [1][2][10][11]. The resultant segmentations for eight randomly 
selected images are shown in Fig.4, and the statistics for the whole 113 sets of images are given 
in Table.1. It can be observed that our segmentation scheme gives the highest average coefficient 

 and lowest standard deviation of lesion. This demonstrates that the proposed segmentation 
scheme is more accurate as well as consistent in the segmentation of skin lesions. Moreover, the 
proposed approach performs well on both our own and public datasets. But we also noticed that 
the only image to fail using our method is associated with very strong specular artefacts inside, 
and none of the other methods could provide reliable segmentation either. 
 

 

 
Fig.4: Eight example images: top row shows the images in our dataset, bottom row are the images from public 
dataset. Ground truth (black), double threshold (blue), fuzzy c-means (cyan), N-cut (white), active contour 
(magenta), our method with colour space only (green), and our method with colour-spatial space (red). 

 

Algorithms Ave.  of 
lesion 

STD of  Worst  of 
lesion 

Failed NO. 

Double threshold 0.7426 0.1634 0.3781 5 
Fuzzy C-means  0.8018 0.1117 0.4932 5 

N-Cut  0.7614 0.1574 0.3290 8 
Active contour  0.8216 0.1084 0.5138 3 

Colour space only  0.8112 0.1138 0.4754 4 
Spatial-Colour space 0.8523 0.0513 0.7451 1 

Table 1: Average and standard deviation of skin lesion for 113 test images. 
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4. Conclusions 
This paper presents an automated skin lesion segmentation approach to separate pigmented 
lesions from normal skin. In the comparison with four other state-of-art algorithms, the approach 
proposed gives the highest average overlapping coefficient  with lowest standard deviation. 
Moreover, as the adaptive mean-shift associates the spatial-colour coherence and groups 
neighbouring pixels to the close cluster in spite of the large local colour variations, spatial 
information proves helpful in improving the segmentation by increasing the accuracy from 
81.12% to 85.23% as well as halving the deviation from 11.38% to 5.13%. 
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Abstract

We present a new method for detecting vessels in retinograms. The Dual-tree Com-
plex Wavelet Transform (DT-CWT) [6] is used to provide a rich, multi-scale descrip-
tion of local structure, and a random forest classifier [1] is used to classify pixels as
vessel/non-vessel on the basis of their DT-CWT coefficients. The method is tested on
retinograms obtained from a publicly available database and our results are compared
with previously reported results for the same database. The best method to date achieved
an area under the ROC, Az, of 0.952, using a combination of pixel level and contextual
information. We achieve a comparable Az of 0.944, using only pixel level information.

1 Introduction
Retinograms – optical images of the retina – are an important tool for the early detection
of eye disease and, potentially, other health risks. Diabetic retinopathy, the leading cause
of adult blindness, has received particular attention [2], though other forms of eye disease
are also important, whilst retinal images may, for example, provide a valuable, non-invasive
approach to screening for cardiovascular risk [8]. Many developed countries have now in-
troduced a retinal screening programme, based on digital retinography, creating the oppor-
tunity to detect disease and monitor progress at a population level. Realistically, methods
of quantitative automated analysis will be required to realise this opportunity. An important
problem in the analysis of retinograms is detection of the blood vessels that lie on the surface
of the retina (see Figure 1). Some forms of disease can be detected directly from changes
in the vascular structure [8], whilst the vessel tree always provides an essential anatomical
framework for other forms of analysis. Vessel detection is a challenging problem because
retinograms are intrinsically noisy and many of the vessels have low contrast. The problem
of retinal vessel segmentation has been studied extensively. Staal et al [7] review some of the
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most important approaches, and describe a ridge-based analysis method. Niemeijer et al [5]
describe an evaluation methodology for retinal vessel segmentation and compare some of
the most important approaches to retinal vessel segmentation experimentally, using the pub-
licly available DRIVE database [5]. Other methods have since been evaluated in the same
way, and results published on the DRIVE website. These show Staal’s method to be the best
of those tested. We have used the same database and testing methodology to compare our
approach to the state-of-the-art.

(a) (b) (c) (d)
Figure 1: Example of retinograms. (a) normal retinogram. (b) abnormal retinogram (abnor-
mal region circled). (c) manual segmentation of (a). (d) manual segmentation of (b) [7]

2 Methodology
2.1 Complex Wavelet Transforms
Wavelet analysis provides a powerful basis for capturing local structure. The discrete wavelet
transform (DWT) [3] provides a computationally efficient approach in which the wavelets
are discretely sampled and high-pass and low-pass filters are applied to successively down-
sampled versions of the original image, giving a set of wavelet coefficients at each pixel
which provide a rich, multi-scale description of local structure. A drawback of the DWT is
its shift dependence property [3]; another is that it provides very limited information on the
orientation of image features [3]. To overcome these problems, a complex wavelet transform
can be used [6]. The dual-tree complex wavelet transform (DT-CWT) combines two DWTs,
using even and odd wavelets to provide complex coefficients, whilst retaining the efficiency
of the DWT approach. In practice, the wavelet analysis is applied in 1-D, along rows and
columns, and 6 oriented 2D complex wavelets are constructed from different combinations
of the outputs, as shown in Figure 2. This analysis is performed at a series of scales differing
by a factor of 2, by successively down-sampling the image. For the coarser scales, a set of
responses is obtained for every pixel in the original image by interpolation [4]. The result
of applying the DT-CWT is thus a set of complex wavelet coefficients at each pixel for six
different orientations (sub-bands) and for each of a number of scales.

2.2 Random Forest Classification
We classify retinogram pixels into two classes – vessel or non-vessel – based on their com-
plex wavelet coefficients, using a random forest classifier [1] – an approach that is well-suited
to non-linear classification in a high-dimensional space.

Given a set of training data consisting of N samples each of which is a D-dimensional
feature vector labelled as belonging to one of C classes, a random forest comprises a set
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Figure 2: The oriented filters of the DT-CWT. Top set: real part. Bottom set: imaginary part.

of tree predictors constructed from the training data. Each tree in the forest is built from
a bootstrap sample of the training data (that is, a set of N samples chosen randomly, with
replacement, from the original data). The trees are built using a standard classification and
regression tree (CART) algorithm; however, rather than assessing all D dimensions for the
optimal split at each tree node, only a random subset of d < D dimensions are considered. The
trees are built to full size (i.e. until a leaf is reached containing samples from only one class)
and are not pruned. During classification, unseen feature vectors are classified independently
by each tree in the forest; each tree casts a unit class vote, and the most popular class can be
assigned to the input vector. Alternatively, the proportion of votes assigned to each class can
be used to provide a probabilistic labeling of the input vector.

3 Experimental Evaluation
We applied our approach to the DRIVE database, which contains 20 training retinograms
and 20 test retinograms, each with expert annotated ground truth (see Figure 1). We applied
a DT-CWT at 6 scales to all 40 images, giving a total of 72 (6 scales x 6 sub-bands x 2
complex components) features at each pixel. We found that expressing the complex values
in (magnitude, phase) form gave the best results, so that is the approach we adopted in all
the experiments reported here.

We considered several different approaches to using the information in the feature vec-
tors, and trained a random forest classifier with 100 trees for each, using the 20 training
images and the associated ground truth. In practice, we sampled around 3000 vessel pixels
and 3000 background pixels randomly from each image in the training set – 120000 in to-
tal. We built classifiers using the following approaches (these results are representative, we
tested other combinations that space does not allow us to report).

• Full feature vector: 72 dimensions

• Maximum sub-band – only the complex response with the largest magnitude across
sub-bands at each scale: 12 dimensions.

• Reordered sub-bands – full feature vector, but cyclically reordered so that the maxi-
mum response is always first: 72 dimensions.

• 3x3 neighborhood – concatenation of all the feature vectors in a 3x3 neighborhood
around the pixel: 648 dimensions.
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Method Az MAA Kappa
Human Observer n/a 0.9473(0.0048) 0.7589
Staal 0.9520 0.9442(0.0065) 0.7345
Current Method 0.9440 0.9336(0.0254) 0.6792
Niemeijer 0.9294 0.9416(0.0065) 0.7145
Zana 0.8984 0.9377(0.0077) 0.6971
Al-Diri n/a 0.9258(0.0126) 0.6716
Jiang 0.9114 0.9212(0.0076) 0.6399
Martinez-Perez n/a 0.9181(0.0240) 0.6389
Chaudhuri 0.7878 0.8773(0.0232) 0.3357
All Background n/a 0.8727(0.0123) 0

Table 1: Comparison between methods applied to the DRIVE database [5].

We then applied these classifiers to the complete set of images (training and test), result-
ing in a vessel probability for each pixel. For each method we plotted a receiver operating
characteristic (true positives vs false positives – ROC) for all the images in the test set, by
thresholding at a series of levels and comparing the result to the ground truth. The ROC
data was summarised by measuring Az the area under the curve (an area of 1 indicates per-
fect classification). We also calculated the maximum average accuracy and kappa value for
each method by establishing an optimal threshold using the training set, and applying that
threshold to the test set to give a ‘best’ segmentation.

The best results were obtained using the full feature vector approach, which gave a max-
imum average accuracy of 0.934 and Az of 0.944. These results are compared with others
obtained for the DRIVE database in Table 1. Our results are second only to those obtained
by Staal in terms of area under the ROC. Figure 3 shows typical vessel probability maps.

(a) (b) (c) (d)
Figure 3: Classification result. (a) normal retinogram. (b) probability map of (a). (c) abnor-
mal retinogram. (d) probability map of (c).

4 Discussion
Our results show that the DT-CWT coefficients capture a sufficiently rich representation of
local structure to allow effective vessel/non-vessel classification. The performance of our
method is comparable to the best method tested on the DRIVE database, even though the
competing methods use far more contextual information. We expect to improve our results
further by applying a contextual approach to our vessel probability images. As illustrated
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in Figure 3, a significant proportion of our classification errors occur around the edge of
the field of view, probably because ripples in the wavelet coefficients some distance from
the very strong edge, produce responses similar to those from vessels. This requires further
investigation, and may well be due to the fact that very few pixels will have been sampled
from these regions during training. In practice, these errors could easily have been removed
by shrinking the field of view by a few pixels, but we recognised that it was important to
present results that were directly comparable with those in the literature.

In summary, the approach we have presented is computationally efficient (it takes a few
minutes to train the classifier from scratch and a few seconds to segment each image), and
produces encouraging results. It shows significant promise as a component of a complete
system.
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Abstract
We describe a technique for segmenting embryo blastomeres while simultaneously

determining their 3D positions, by processing a Z-stack of images acquired by means of
an Hoffman Modulation Contrast (HMC) microscope; in particular, the depth at which
each blastomere lies is identified by localizing the focal planes where its contour appears
sharp. The problem is particularly challenging because of the complex image appear-
ance due to HMC, and because images of different blastomeres at different depths often
project to overlapping regions. We discuss experimental results and detail the system
implementation.

1 Introduction
We provide a segmentation technique for performing automated measurements on an human
embryo, for application in In Vitro Fertilization (IVF)1. The embryo is a 3D structure with
a roughly spherical shape, which contains a variable number of cells (blastomeres); in this
work, we are mainly dealing with 4-cell embryos, which is the most common configuration
at day 2 after fertilization. Our technique segments the blastomeres from a set of images
taken at different focus levels (Z-stack), while simultaneously estimating their depth: we can
therefore provide quantitative data on their apparent sizes, shapes, and 3D spatial relation-
ships (see Figure 1).

Observation of embryos plays an important role during IVF procedures, as embryologists
closely follow the embryos’ development in order to determine their viability [5]; such evalu-
ation provides fundamental data for performing critical decisions, such as determining which
and how many embryos should be trasferred to the woman. Observations are routinely per-
formed manually, and embryos are scored by considering the number of blastomeres, their

c� 2010. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

1Research partially supported by CTI (ConfederationâĂŹs innovation promotion agency) grant n. 9707.1 PFSL-
LS. The presented technique is currently subject to a patent application
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Figure 1: Top row: original Z-stack: the 4 embryo cells are visible at a different focus planes.
Bottom row: segmentation of the blastomeres from different focus planes; note that there are
two cells at the top left, at different depths. From the 3D contours, we extrapolate the cell
shapes and their 3D relationships.

relative sizes and several other criteria; in this context, quantitative and objective measure-
ments can provide valuable information for decision-making [4].

Embryos are routinely observed by means of a particular phase contrast microscopy tech-
nique called Hoffman Modulation Contrast (HMC). In the resulting images, the embryos and
their substructures (which are transparent and would not be visible with brightfield imaging)
gain a complex, 3D-like sidelit appearance which eases interpretation by human observers,
but is often considered an hindrance for automated processing; moreover, blastomeres are
grouped in a thick 3D topology: therefore, their images overlap while being affected by
varying defocus, and are often difficult to identify even by human observers.

Due to such complexity, region-based segmentation techniques fail in this context; other
techniques such as active contours [8] and level sets [7] are more suitable, but their applica-
tion is not straightforward due to the large amount of clutter and artifacts in the image stacks;
for example, in [6] level sets are used to model the embryo, after the blastomeres segmenta-
tion is manually provided. A more technical description of the technique is available in [3].

2 Model
Our algorithm operates on a Z-stack of N HMC images. We denote the input images as
I1, I2, ..., IN , and their respective focal planes z = z1,z2..zN . Such focal planes can be consid-
ered horizontal slices at different depths of a 3D space whose cartesian axes are (x,y,z).

The underlying HMC imaging model is extremely complex, especially if the effect of
out-of-focus features is taken into account. Still, several intuitive principles hold, on which
we base our approach: a) structures which lie on or near the current focal plane zi appear
sharp and exhibit strong localized gradients in the image intensity Ii; b) as the focal plane
depth moves farther from the structure’s depth, the structure image becomes blurred. Conse-
quently, the gradients of the structure’s image lose locality and strength, although the global
contrast and visibility of the feature may not be affected, or may even be emphasized in some
situations.

Let S be the surface of the blastomere, which we assume to be smooth, in the 3D space
(x,y,z). The contour generator curve Γ is a curve in 3D space (which we assume single and
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Figure 2: The stack of Ii slices (left) is transformed to Ji slices in polar coordinates around
the candidate center ci, then an energy value Ei (third illustration) is computed for each pixel
and a graph is built for each focal plane (right). A single global graph is then obtained
by linking a single source and sink node to the left and, respectively, right pixels of each
focal plane. The minimum-cost path on such graph symultaneously summarizes contour
information, and identifies the depth of the structure.

closed due to the regularity of the cell shape), identified by the locus of points P on S such
that the tangent plane to S in P contains the z direction.

We are interested in detecting the image of Γ in our input images Ii, i.e. its orthogonal
projection γ on the (x,y) plane. Following the principles introduced previously, a part of γ
is visible and well-focused in an image Ii if the corresponding part of Γ is on or near the
z = zi plane; in this case, such part of γ will exhibit large, localized gradients in image Ii.
The gradient intensity is weaker as Γ gets farther away from the plane z = zi. We account for
the fact that different parts of Γ may lie at different depths, by detecting different parts of γ
on different Ii images.

3 Embryo Segmentation Technique

Initially, the image stack is analyzed in order to detect the approximate embryo area, by
using a simple preprocessing technique [1, 2]. A number B of candidate blastomere centers
ci = (cx,cy,cz) are randomly generated inside said area, from all focal planes.

Given a candidate center, segmentation is performed by using the graph-based approach
described in [2] for segmenting ovocytes, which handles the peculiar HMC lighting and
enforces shape priors – conditions which also hold for blastomeres. Such approach may
be classified as a specialized livewire-like approach, where: a) priors on the blastomere
shape are accounted for by operating on a spatially-transformed image and searching for a
minimum-cost path on a directed acyclic graph; b) priors on the contour appearance due to
HMC lighting are directly integrated in the energy terms; c) information at different focal
planes is represented in a single large graph, which allows us to simultaneously detect the
shape and depth of the cell (the two problems are strictly related). The approach is summa-
rized in Figure 2.

Experimental results show a significant robustness to a displaced candidate center ini-
tialization ci when iterating the algorithm few times, re-initalizing the centroid of the new
iteration to the centroid of the recovered mask in the previous iteration. Therefore, the algo-
rithm is run in parallel on all B candidate blastomere centers, then iterated after redundant
candidates (i.e. candidates with a significant overlap with others) are discarded.

As we show in the following Section, this procedure quickly converges to a small number
of candidate blastomeres which are then either automatically filtered, or presented to the user
for interactive validation.
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4 Experimental Results
We validated the approach on 71 Z-stacks of 4-cell embryos. The Z-stacks are acquired dur-
ing the routine activity of an IVF lab, by means of an Olympus IX51 Microscope equipped
with HMC 40x optics, and a 720x576 video camera attached through a 0.5x video adapter to
the microscope video port. Each stack is composed by N = 24 slices, spaced approximately
5µm. In the resulting images, the embryos have an apparent diameter of about 300 pixels,
whereas the blastomeres have an average apparent diameter of roughly 140 pixels.

The images are processed without any user supervision, and each image stack is seg-
mented in less than a minute. The preprocessing step aimed at detecting the embryo position
in the image returns acceptable results in all of our images, which is expected as the problem
is trivial due to the background uniformity. The segmentation was performed by considering
B = 100 initializations, randomly distributed in the cylinder defined by the embryo circle
and all of the available slices. We perform 3 iterations of the segmentation algorithm in [2].
After each iteration, we remove all candidates which are nearer than 15µm in the 3D space to
a candidate whose segmentation has a lower energy; this boosts performance and leaves on
average 43, 19.9 and 11.9 candidates after the first, second and final iterations, respectively.
This also demonstrates the property of the candidates to converge to the same solutions. The
4 lowest-energy candidates which map to a closed curve and whose centers are spaced at
least 40µm are finally considered as the final candidates.

Figure 3: Examples of successful segmentations (note that each contour is detected at a
different depth).

We manually segmented the 276 blastomeres in all of the input stacks, in order to derive
quantitative results; we consider a candidate as a correct segmentation of a blastomere if
its average depth is within 15µm (3 slices) of the manually-determined depth, and the 2D
Jaccard similarity index is higher than 0.8. Eventually, 90% of the blastomeres are among the
candidates detected after the last iteration. After automatically filtering the 4 best candidates
in each stack, 71% of the stacks have all 4 blastomeres correctly detected; in other cases,
the algorithm detects one or two blastomeres in the wrong position, mostly in instances with
high fragmentation, which causes strong spurious edges.

5 Discussion, Conclusions and Future Directions
Experimental results show that the proposed technique is effective for segmenting and lo-
calizing blastomeres in HMC images of early embryos; however, automatic detection of the
actual number of blastomeres, as well as automatic filtering of the correct candidates, would
not provide the required robustness for practical application.

Therefore, the technique is deployed as follows:

• image stacks are acquired by users during routine observations, using a dedicated soft-
ware connected to the microscope and controlled through a keypad placed near the
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microscope focus knob; this optimizes a time-critical operation, as embryos must be
placed back into the incubator as soon as possible;

• while other embryos are acquired, our system noninteractively computes candidate
blastomeres for each acquired stack;

• later, users review embryo image stacks on the computer and take the necessary time
for evaluation; in this phase, our system allows them to interactively determine the
correct blastomeres from the set of precomputed candidates; as soon as all of the
blastomeres are confirmed, the system immediately outputs size and 3D morphology
measurements. As this is a supervised process and users themselves confirm the seg-
mentation results, the resulting measurements can be trusted.

We are currently experimenting with more sophisticated criteria to filter the final candi-
dates, while also improving the user interface presented to the user for selecting the blas-
tomere contours among the set of candidates; this is a nontrivial Human-Computer Interac-
tion problem, as it requires an useable visualization of 3D features on image stacks.
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Abstract

Optical flow models are widely used for different image registration applications due
to their accuracy and fast computation. Major disadvantages to overcome for medical
image registration are large deformations and inaccurate regularisation at discontinu-
ities, which cannot be modelled accurately with quadratic regularisers, and an intensity
dependent energy term, which does not allow for images of different modalities. In this
work we present a multi-level framework utilising multiple warps, which succeeds in es-
timating larger deformations. We introduce a non-quadratic penalty function, for a better
modelling of discontinuities, that are caused by sliding motion of ribs against the lungs
during respiration. Our algorithm is extended to multimodal image registration tasks by
maximising the local alignment of the image intensity gradient orientation. We demon-
strate the findings on synthetic 3D CT data and clinical CT-CT images as well as on
CT-MRI data. Quantitative evaluation using the Dice coefficient shows improvements of
our new approach for single-modal data for the interface between lungs and ribs com-
pared to a commonly used parametric free form deformations (FFD) method and equally
good results for multimodal data.

1 Introduction
Non-parametric registration methods like elastic, fluid or demons [5] demonstrate attractive
capabilities for non-rigid medical image applications. These models estimate a dense motion
field between two images by minimising a cost function, which usually includes an inten-
sity based data term and a regularisation term to enforce a globally smooth deformation. In
contrast, parametric registration using B-splines and FFDs as presented in [7] use a mesh of
fixed control points and interpolate the deformation between them with 3D cubic B-splines.

c� 2010. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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In this work, we show that a non-quadratic penalty function improves the registration accu-
racy at discontinuities within the motion pattern compared to FFD registration. For images
from different modalities, like CT and MRI, mutual information (MI) was found to be a suit-
able cost measure and is widely used in rigid, affine and parametric non-rigid registration [4].
Variational MI formulations were derived in [3]. However MI is most accurate and robust as
a global measure and non-rigid multimodal registration remains an active area of research.
We propose to use the local gradient orientation as a minimisation term for non-parametric
registration. Boundaries between neighbouring tissues often carry significant information in
medical images. The gradient of tissue boundaries might not have the same magnitude for
images of different modalities, but should have a consistent orientation. In [6] this finding
was used to improve the MI measurement for rigid image registration. We demonstrate that
using only the gradient orientation for non-rigid image registration leads to results similar to
FFD registration, which is using MI.

2 Method
2.1 Optical Flow Constraint and Regularization
Optical flow registration is based on the assumption that in a local neighborhood the in-
tensities of two images do not change over time: f (x + u, t + δ t) = f (x, t). For small dis-
placements a first order Taylor expansion yields the optical flow constraint: ∇ f · u = 0,
where ∇ f = ( fx, fy, fz, ft)T denotes the partial derivatives of the images and u = (u,v,w,1)T

the unknown deformation field between them. To solve this ill-posed problem, an addi-
tional regularization term is introduced. The classical global optical flow method uses the
quadratic term α|∇u|2 to enforce smoothness of the deformation field, where α serves as a
regularisation parameter.

E(u) =
�

Ω
(uT (∇ f ∇ f T )u+α|∇u|2)dΩ (1)

In medical images, a quadratic smoothness term can be too general, as there are naturally
occurring discontinuities in both the intensities of images at tissue boundaries, as well as
within the motion pattern or deformation fields. To address this complex motion problem,
we propose the use of non-quadratic penalisers within the energy functional. Charbonnier
et al. [2] proposed the function Ψ(s2) with its derivative Ψ�(s2), which allows for a convex
penalization and a simple globally convergent solution:

Ψ(s2) = 2β 2

�

1+
s2

β 2 , Ψ�(s2) =
1�

1+ s2

β 2

(2)

where β is set to a sufficiently small value 0.001 to obtain a penaliser similar to the L1 norm.
To minimize the energy E and solve for the unknown deformation field u, Euler-Lagrange
equations are derived and solved iteratively. Details of the implementation for the optical
flow framework can be found in [1].

2.2 Gradient Orientation for Multimodal Image Registration
As stated above, the orientation of gradients can be a useful measure for multimodal image
data. Pluim et al. [6] show that it improves accuracy and robustness in rigid image registra-
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Figure 1: (a) Simulated CT and MRI scans of the NCAT phantom at different respiration
levels (5 % added noise). CT at maximum expiration, MRI at maximum inspiration. (b)
Quantitative evaluation of segmentation overlaps of 5 regions of interest shows equally good
results for IRTK and our new approach, with improvements for lungs and liver.

tion using MI. The angle αi j between two locations i and j in reference and floating image
is defined by:

αi j = arccos
∇ fi · ∇ f j

|∇ fi||∇ f j|
. (3)

Gradients in two images are thought to have either a similar angle or an angle flipped
by π depending on image contrast. To account for both, we use a weighting function
w(α) = (cos(2α) + 1)/2, which favours both small angle differences and angles close to
π . An additional challenge in multimodal image matching lies in the fact that tissue bound-
aries may have gradients in only one of the considered modalities. The angle function is
therefore multiplied with the smaller of both local gradient magnitudes, thus the measure
M to be maximised becomes M = ω(αi j)min(|∇ fi|, |∇ f j|). Derivatives of this measure are
approximated by finite differences.

3 Experiments
To evaluate the accuracy and robustness of our new approach we tested it on synthetic and
real clinical CT and MRI image sets. For quantitative evaluation, we compared the results
for the registration of synthetic multimodal data with a state-of-the-art technique, IRTK1. A
multi-level setting and optimally chosen smoothing parameters were used to recover larger
deformations. We used sums of squared differences (SSD) for single-modal registration,
because this cost term is comparable to our approach, and normalised mutual information
(NMI) for multi-modal registration.

3.1 Synthetic CT and Multimodality Phantoms
To assess the registration accuracy, we tested and compared the algorithms on synthetic CT
data, where a ground truth segmentation is available. We used the NURBS based cardiac

1Image Registration Toolkit, http://www.doc.ic.ac.uk/∼dr/software/
Another efficient approach for parametric registration: "Dense image registration through MRFS and efficient linear
programming" was presented by Glocker et. al. in Medical Image Analysis, 12(6): 731-741, 2008
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Figure 2: Visual results for single- (top row) and multimodal (bottom row) 3D registration.
(a) Axial CT slice with manual segmentation of mesothelioma cancer overlaid in orange (b)
Difference to follow-up scan (c) Difference after applying the proposed method. (d) Axial
slice of MRI scan (e) Affine registered CT scan with MR contours (f) Non-rigid registration
with our approach, showing improved overlap of lungs, bones and body outline.

torso (NCAT) phantom created by Segars [8], which provides a physiologically and physi-
cally realistic model of motion of different respiration states and over the cardiac cycle. In
total, 30 phantom simulations over one breathing cycle with a maximum diaphragm move-
ment of 20 mm were obtained for a range of body weights (80 – 100 kg), for both CT and
MRI intensity labels. The images were additionally distorted by adding normally distributed
noise of up 10 % and translation blurring of 1.25 mm. Figure 1 (a) shows exemplary simula-
tions.Labels for regions of interest are provided by the simulation software and were used to
calculate the segmentation overlap after registration. The resulting Dice coefficient for both
single-modal and multimodal registration are given in Figure 1 (b). Overall, both approaches
show equally good results, when compared for the same registration task. The single-modal
implementation of our approach outperforms IRTK for all examined labels except for the
spine. The increased accuracy around the lung/rib interface strengthens the justification of
our non-quadratic regularisation term. The multimodal optical flow approach shows better
Dice coefficients than IRTK for liver and lungs and lower results for bones.

3.2 Clinical MRI and CT Registration

To demonstrate the capability of the proposed method, two datasets of clinical images were
studied. Pre- and post-treatment CT volumes of patients diagnosed with mesothelioma, an
aggressive form of lung cancer, and pairs of CT and MRI volumes of subjects suffering from
an empyema. The top row of Figure 2 displays one slice of a post treatment volumetric scan,
along with the difference images before and after registration of the pre-treatment scan to the
post-treatment scan using our proposed method. The results show a very high agreement with
the original slice, in particular for the challenging interface between the rib cage and lung.
To demonstrate the suitability of our multimodal extension, we firstly used affine registration
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to align a CT scan to an MRI of the same patient. Figure 2 (e) shows there is still a large
mismatch between the boundaries of organs. We then applied our non-rigid approach, which
demonstrates a considerably improved alignment with the target image.

4 Discussion
Non-rigid registration of clinical images can be challenging due to the complex motion pat-
tern between scans, or incomparable intensities when using different modalities. We present
a novel fast, robust and accurate technique, which is specifically adapted to align images with
large deformations caused by respiratory motion. An extension for multimodal data is given
based on the alignment of gradient orientation. This new cost term provides a promising al-
ternative to mutual information based measures, allows for rapid computation and preserves
discontinuities in the motion pattern. We show that quantitative evaluation of our extended
approach for multimodal data results in similar accuracy compared to a state-of-the-art al-
gorithm (IRTK). Visual results for the clinical CT/CT and CT/MRI application demonstrate
the good performance and generalisation of our new approach.
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Abstract 

Registering diagnostic lung CT and whole body CT images is a difficult task due 
to their acquisition under different breathing stages. We have implemented a 
novel framework for 3D CT lung image registration which combines elastic 
registration with log-unbiased deformations and a spatially variable constraint to 
reduce image folding and retain the rigidity of the bones. A comparison of the 
proposed method, versus classic elastic registration on 3D phantom data, has 
shown that our algorithm has been successful in keeping the ribs and other bony 
structures rigid while reducing the amount of folding of the deformation field.  

I. Introduction                                                                                

Registering a diagnostic CT image to a whole body CT image used for PET attenuation 
correction is a very complex task for two reasons : (1) the volumes are acquired during 
different breathing stages; the whole body CT is obtained during passive breathing 
without any forced ventilatory movement, and the diagnostic lung CT is taken under 
deep inspiration for an enhanced view of the lung tissue (for better detection of tumours 
and viewing of the airways); (2) the diagnostic lung CT is acquired after the injection of 
a contrast agent whereas the whole body CT is acquired without contrast enhancement. 
Non-rigid image registration of the CT images is therefore necessary to establish spatial 
correspondence between the two volumes. A common problem with non-rigid 
registration techniques is that they treat the entire image as a flexible object and even 
rigid structures, such as the bones and the spine, are treated non-rigidly. The physical 
properties of the underlying structures are generally not taken into consideration while 
registering the images. One-to-one correspondence between the images is also desirable 
to avoid the appearance or disappearance of unwanted structures within the image. 
However, current registration techniques fail to meet both these conditions 
simultaneously leading to physically implausible solutions.      

To date, there have been a few efforts in providing spatially varying or local 
regularization methods for image registration. One of the first inhomogeneous 
registration algorithms was proposed by Davatzikos [1], who used an inhomogeneous 
elastic model for registration of brain images. The method was designed to favour 
deformations in certain structures as specified by the user. However, the method was not 
able to recover very large deformations and was computationally very expensive. Other 
methods developed were a damped spring method [2], an inhomogeneous fluid 
registration [5], a finite element model [3] and a landmark based warp incorporating 
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rigid structures [11]. However, none of these techniques have been applied for CT lung 
image registration. Staring et al. [8] proposed a method based on B-splines registration 
which uses subsequent filtering of the deformation field after a regular number of 
iterations to constrain the deformation of the bones. This method was used for registering 
CT lung images, but the results did not show a sufficient overlap of the rigid structures 
after registration. 

Image registration is an ill-posed problem because multiple solutions exist, and the only 
way to reach to a particular solution is to add suitable constraints to the problem.  The 
purpose of our work is to combine the advantages of different techniques in a new 
integrated framework that provides a physically plausible solution for registering whole 
body CT with diagnostic lung CT volumes.  In this work, we will demonstrate the 
functionality and performance of this framework on a CT lung phantom dataset with 
different breathing stages.   

II. Proposed  Method:  

Our proposed method extends the classic elastic registration model because of its 
suitability to model the physical behaviour of human tissue [6]. Elastic image registration 
is defined in terms of the Navier-Lamé linear partial differential equations where internal 
forces act as the regularizer and the deformation is driven by external forces [10]. The 
behaviour of the model in terms of the displacement vector field u  is represented by the 
following equation:   

   ,divu uF    (1)  

where F    denotes the external forces. The derivation of the external force term is based 
on the similarity measure and optimization is achieved through the gradient descent 
method. The Lamé constants,  and µ , control the material properties of the elastic 
model. Since solving the equation in the above form is computationally expensive, we 
use the method presented by Fischer and Modersitzki [4] which utilizes the fast Fourier 
transform to obtain a fast direct solution for the large system of linear equations and 
avoids the necessity to invert the matrix associated with the system. 

We also incorporate a statistical distribution of the Jacobian maps of the deformation 
field in the logarithmic space to produce unbiased transformations from the external 
force component, as suggested by the work of Yanovsky et al. [9]. This step constrains 
folding of the deformation field and yields a better distribution of the Jacobian maps 
within the image. The new external force component is given as:  

2( , , ( )) ( ) ( ) ( ) ( ( )) ( ( )) 1 log ( ( )) ,F R M x R x M x s x Id x dx J x J x dx| | | |u u u u (2)  

where R  is the reference image, M  is the moving image,  is a weighting parameter, 
s(x)  Id  

composition operator  and J(u) is the determinant of the Jacobian matrix of the 
deformation field which describes the change in the volume (compression or expansion) 
at the particular location.     

To maintain the rigidity of the bones during the registration process and prevent any 
bending, we add the filtering technique of the deformation field as proposed in Staring et 
al.[5] into our framework. The spatially varying filter is applied to the deformation field 
after every iteration or after a specified number of iterations. The objective of the filter is 
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to preserve the linearity of the deformations of the rigid tissue. This is achieved by 
calculating a weighted mean over a small neighbourhood ( x), as shown below:  

  
x xx

x c x x / c x ,m u    (3)  

where c(x) is the stiffness coefficient map with values between 0 (for nonrigid 
structures) and 1 (for rigid structures such as bone) . The current experiment uses a 5 x 5 
x 5 neighbourhood for the filter while the stiffness map for the bones is obtained using 
thresholding of the intensity values. The filtered deformation field is then defined by 
assigning a value close to the mean deformation if the tissue is rigid, and a value close to 
the original deformation otherwise. The estimation for the resultant deformation field is 
shown in Eq (4):  

   (x) 1-c x x +c x xNewu u m    (4)  

III. Experiments  and  Results    

The proposed algorithm was tested on a phantom dataset generated using the 4D 
NURBS-based Cardiac-Torso (NCAT phantom) toolkit developed by Segars [7]. The 4D 
NCAT phantom is a realistic and flexible simulation tool for generating CT volumes and 
modelling cardiac and respiratory motion. Five volumes have been generated 
representing different stages of a breathing cycle having a resolution of   192 x 192 x 192 
voxels. The voxel size in each direction is 0.48 mm. Gaussian noise was added to the 
images to test the robustness of the algorithms.  

The proposed method has been compared with the standard elastic registration technique 
that has the same underlying transformation model as our proposed method. The 
accuracy of the proposed method has been validated by measuring the volume overlap of 
the organs (such as the lungs, liver, ribs and spine) in the reference and the moving 
image after registration. The overlap ratio (also named Dice Coefficient) used is defined 
as:  

   1 2 1 2Overlap ratio 2 V V V V ,+    (5)  

where V1  and  V2  are the volumes representing a particular organ in the reference and the 
moving image. We also compare the percentage of folding that occurs in both methods, 
estimated from the Jacobian determinant values of the deformation field. The different 
stages of the breathing cycles have been registered with one another. A coarse-to-fine 
multi-resolution strategy was used to recover large deformations. Three levels of 
resolution were used for both registration algorithms, and 250 iterations were performed 
for each level. The stiffness coefficient map c(x) was calculated by binary thresholding 
of the CT volume. The Dice  coefficients were calculated for each organ and each 
registration, and were then averaged. The average volume overlap values, displayed in 
Table 1, confirm that the proposed method has a better overlap for the major organs as 
compared to the standard elastic registration, especially in ribs and spine and to a lesser 
degree in the lungs. This can be expected because the lung is compressible/expandable 
organ where the deformations will be largest. Visual inspection of Figure 1 confirms that 
the proposed method has superior performance. Figure 1 also shows that the proposed 
method preserves the rigidity of the bone by restricting the deformation. The average 
percentage of folding of the deformation field that occurs in the general elastic 
registration method is 0.1 % while this percentage is reduced to only 0.007% after 
registering the volumes using our proposed method.   
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Method Ribs Spine Lung Liver Average 
Before Registration 0.7797 0.9355 0.8339 0.7342 0.8208 
Elastic registration 0.9021 0.9214 0.9820 0.9211 0.9316 
Proposed method 0.9638 0.9538 0.9756 0.9423 0.9589 

Table 1. Average overlap (Dice coefficient) of the organs 

 

F igure 1: Example slices of 3D registration results (a) Moving Image, (b) Reference 
Image, (c) Difference Image before registration, (e) Transformed image after elastic 
registration, (f) Difference Image after elastic registration, (h) Transformed image after 
registration with the proposed method, (i) Difference image after registration with the 
proposed method.  Zoomed image of the bone (labelled by red box in the other images) 
with the deformation field (d) Using elastic registration, (g) Using proposed method. 
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IV. Discussion  and  Conclusion    

In traditional non-rigid registration techniques, the entire image is treated with the same 
physical properties, which can result in physically implausible deformation of rigid 
structures. In this paper, we have presented a new framework that successfully combines 
elastic registration with log unbiased deformations and spatial constraints for bone 
rigidity. Our proposed method was quantitatively evaluated on the NCAT phantom and 
its comparison with the standard elastic registration technique shows that our method has 
a superior performance. The organ overlap ratios and the Jacobian values indicate that 
our method has performed well in preserving the rigidity of the bones and in preserving 
image topology. Hence, our method is able to model locally rigid motion and find a 
physically plausible solution for the given registration problem. Our future work focuses 
on extending this framework to accommodate for registration of contrast enhanced 
diagnostic lung CT volumes to whole body CT volumes.    
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Abstract

Ruptured abdominal aortic aneurysms are a relatively common cause of death in the
western world. Endovascular repair can be used to reduce the risk of rupture and is
becoming the preferred method of treatment in lieu of open surgery. However, intraoper-
atively only 2D fluoroscopy imagery is available to the surgeon making complex repair
difficult. We have been investigating the use of a rigid 2D-3D registration system which
enables information from the CT to be overlaid onto the fluoroscopy images during the
procedure. The main limitation of this method is that the rigid interventional instruments
deform the aorta. This paper investigates the use of manually picked landmarks and the
thin plate spline algorithm to deform the CT surface so it more accurately represents the
interventional scene. Experiments are carried out on data from eight patients. Results
show that the mean error in visceral ostia positions can be reduced from 4.7mm± 2.9mm
(mean±standard deviation) to 2.7±1.2mm and 3.2±1.4mm for intra-observer and inter-
observer guided deformation respectively.

1 Introduction
1.1 Motivation
Abdominal aortic aneurysm (AAA) are dilations of the aortic wall exceeding 50% of the
normal aortic diameter, and once it reaches 55mm intervention is considered. Open surgery
carries a significant risk of early and postoperative mortality. Endovascular repair of aortic
aneurysm( EVAR) offers a minimal invasiveness lower risk procedure.

The EVAR procedure is simple in principle. A stent is selected depending on the aneurysm
and access is achieved to the aneurysm via the femoral arteries and is guided via a catheter
down a stiff wire to the location and deployed under fluoroscopy. However, this simple prin-
ciple is complicated by an often tortuous aorta and access vessels. In aneurysms with a short

c� 2010. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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neck below the renal arteries fenestrated endovascular repair is an option that requires ac-
curate deployments of endovascular stents into the visceral vessels. This has the additional
complication that semi-deployed devices can often cover the ostia of vessels, making their in-
traoperative visualisation with contrast media impossible. These clinical requirements have
led us to investigate the potential for using a 2D-3D guidance system to overlay a surface
rendering of the aorta, from the preoperative computed tomography (CT) image, onto the
fluoroscopy during the intervention. The current system matches on a vertebra, and assumes
a rigid body relationship exists between the aorta and vertebra. However, this assumption
can be violated especially with the introduction of stiff endovascular tools. While simple
cases can often be performed even with these discrepancies we believe that complex cases
require that the imagery accurately reflects the intraoperative anatomy. In order to address
these issues the performance of a non-rigid 2D3D image registration is investigated, and its
effectiveness in predicting the location of the renal ostia evaluated and compared to the rigid
algorithm.

1.2 Literature Review
Previously 2D-3D registration has been considered to aid EVAR, however, in its infancy
only simple EVAR cases were attempted and sophisticated image guidance was not deemed
necessary [2]. Only with the recent success of the procedure has interest in complex repair
warranted research into more elaborate image guidance.

Similar rigid registration systems to aid EVAR have been reported [1]. Only a few papers
have addressed non-rigid 2D-3D registration. Fleute and Lavallée [3] aligned a statistical
shape model of a femur to a few x-ray views. Zheng [6] published a method to find point
correspondence between multiple 2D images and a 3D model, again for an orthopaedic appli-
cation. The recent publication by Groher et al. [4] is most relevant to our work as they align
vascular structures to a single view using smoothness and length preservation constraints.

2 Method

2.1 Data
Data is used from eight patients who underwent elective EVAR. Each patient had a preoper-
ative CT scan, and digital subtraction angiography (DSA) sequences obtained at up to three
time points during the intervention: with a stiff wire, with the undeployed stent, and after
stent deployment, see figure 1. The DSA mask images (which are essentially standard fluo-
roscopy “spot-film” images) were used for 2D-3D rigid registration while the DSA images
were used for non-rigid registration and validation as described in the following sections.

2.2 2D-3D Registration Methods
Rigid registration is carried out using the algorithm described in [5]. In brief, this algorithm
registers on a single vertebra, the one closest to the visceral ostia. Digitially reconstructed
radiographs are produced by casting rays through the CT volume, which are compared to
the fluoroscopy image using an intensity based similarity measure, gradient difference. The
position and orientation of the CT volume is iteratively altered, using a downhill search strat-
egy, to optimise the similarity measure. The output is a perspective projection transformation
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(a) (b) (c)
(d) (e)

Figure 1: Selecting a moving point (left renal ostia) in the deformation software as the red
dot in a), blue crosses are fixed points. A typical surgeons view at the various time points
from the fluoroscopy b) with the guide wire only c) showing the undeployed stent d) the
deployed stent. A DSA image e) is used to show vasculature and identify ostia positions.

P that can map 3D positions in the CT scan to 2D fluoroscopy positions, or given a 2D point
on a fluoroscopy image u can define a corresponding 3D line through the CT scan L(u,P).

Our non-rigid registration method assumes that the main cause of deformation is the stiff
interventional instruments, and that once one of these instruments is inserted the deformation
will remain reasonably constant. Our proposal is to refine the rigid registration based on the
first DSA sequence where a stiff instrument is present within the aorta. Our method requires
two sets of 3D points to be identified, points which represent anatomical landmarks on the
preoperative aorta surface x(i), and points which denote corresponding positions during the
intervention x�(i) where i denotes a particular point. These points are picked in the following
two ways: Firstly four points, which we refer to as “fixed points” (FPs) are chosen manually
on a surface rendered view of the segmented aorta. These were picked on the bifurcation of
the common lilacs and the lateral aspects of the aorta 3 cm above the celiac artery, as shown
in figure 1. These positions were chosen as they surround the clinical region of interest, they
are reasonably easy to identify, and they are believed to remain in a reasonably rigid body
relationship with bony anatomy. For the fixed points x�(i) = x(i).

Secondly two points (the clinical targets – the ostia of the renal arteries), which we refer
to as “moving points” (MPs) are chosen by picking the 3D positions as before for x(i). The
corresponding positions which represent the interventional scene are determined by picking
the ostia of the renal arteries on the first 2D DSA image u(i). Their 3D positions are defined
as x�(i) = dmin(x(i),L(u(i),P)) where dmin is a function which calculates the closest point
on line L(u(i),P) to point x(i), see figure 1. These two sets of corresponding points x(i) and
x�(i) are used to define a thin-plate spine deformation (TPS) TTPS which is used to transform
points and to deform the aorta surface segmented from CT.
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(a) (b)
Figure 2: Errors in positions of visceral ostia when rigid registration is used and when
non-rigid registration using a) observer picked points or b) points picked by the surgeon.

2.3 Experiments and Validation
Our experiments are carried out by non-rigidly transforming the aorta based on information
obtained from the first DSA image. Rigid registrations are then carried out to the mask
images from the other time points, to obtain a rigid 2D-3D transformation P. This can be
used to project the deformed aorta surface onto each mask image, and onto the associated
DSA image for visual inspection of accuracy.

Registration errors were calculated in the following way. Sets of “gold-standard” 2D
usu and 3D xsu positions of renal ostia were picked by an experienced surgeon in CT and in
all DSA images (su denotes “surgeon” picked points, compared to ob for points picked by
the independent “observer”). Errors reported are dmin(p,L(usu,P)), where p represents a 3D
point found in one of three ways.

1. Rigid registration error: p = xsu.

2. Observer non-rigid error: p = TTPSob(xsu) 3D ostia “gold-standard” positions are trans-
formed using a non-rigid TPS transformation TTPSob calculated by an independent ob-
server using information in the first DSA image, as described in section 2.2.

3. Surgeon non-rigid error: p = TTPSsu(xsu) as point 2, but using a non-rigid TPS trans-
formation TTPSsu calculated using the surgeon picked points from the first DSA image.

3 Results
Figure 2 shows the rigid registration error plotted against observer non-rigid error (left) and
surgeon non-rigid error (right). Results are separated into those calculated using the first time
point × (i.e. the time point where the DSA was used for alignment) and results to images
acquired at subsequent time points +. Points which lie below the 45◦ line show improved
accuracy due to non-rigid registration. For the surgeon data all the × positions show zero
error as these points were used to both calculate the deformation field and for validation. A
summary of these results is given in table 1.
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Method Max Mean SD

Rigid 10.44 4.70 2.93
Surgeon (excluding first timepoint) 5.68 2.74 1.19
Observer (excluding first timepoint) 5.05 3.16 1.35
Observer (including all timepoints) 8.66 3.11 1.45

Table 1: Overview of results

4 Discussion
We have presented a method to account for non-rigid deformation of the aorta in a system
which aligns a preoperative CT image to interventional fluoroscopy images for use in com-
plex EVAR. Although, the deformation method is reasonably basic, using manually identi-
fied landmarks, it has enabled registration errors to be reduced down from 10mm in some
cases, to almost all errors being below 5mm, which approaches our required clinical accuracy
of 3-4mm (half a typical renal ostia diameter). This is particularly important, as the cases
we believe image guidance will be most useful for are those with very angulated aortas, and
it is in these cases which we have observed the most deformation.

It is interesting that the errors recorded by the observer when matching to the first DSA
image are not noticeably smaller than the errors to the other time points. This suggests that
the main deformation is caused by the insertion of the stiff wire, and after that occurs the
aorta remains in a roughly similar position throughout the rest of the intervention.

We are unsure of the cause of the one noticeable outlier in the observer dataset, × with
8.7mm non-rigid registration error in figure 2a. In our experiments we did not specify any
specific protocol for checking the accuracy of the registration, however, we believe devising
and using such protocols are vital for the system to be used routinely in a clinical setting.
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Abstract
Dynamic contrast-enhanced MRI (DCE-MRI) of the breast is widely used for detec-

tion and quantification purposes of breast cancer. In this paper, we present an evaluation
of three similarity measures for local region of interest registration of small lesions in
DCE-MRI. We evaluate the different registration results using a pharmacokinetic model
function and compare measured perfusion data to the modelled function values. In ad-
dition, we use acquisitions from different time frames (pre- and post-contrast) as fixed
image and observe the influence on the registration quality. The registered images lead
to an improvement between 25.9% and 48.8% in terms of fitting quality to the pharma-
cokinetic model. Improvements could be achieved with all three similarity measures.

1 Introduction
Dynamic medical images like DCE-MRI are used to display active processes within the hu-
man body. Therefore, a series of images showing the exact same scene has to be acquired to
reveal a signal change over time. The blood flow of specific body parts is visualised through
an injected contrast agent (CA). DCE-MRI for breast cancer diagnosis highlights suspicious
lesions inside the female breast, because tumours lead to formation of new vessels (angio-
genesis) which accumulate contrast-enhanced blood. Moreover, the vessel permeability can
be examined, giving relevant information for diagnosis. DCE-MRI is particularly sensitive
for small lesions and spread tumour cells [3].

In dynamic imaging, identical conditions cannot be guaranteed to be achieved for each
snapshot of a time series. Apart from camera system dependent influences like noise arte-
facts, motion of the patient poses a main problem in dynamic image acquisition. This mo-
tion evokes false inter-voxel correspondences between different time acquisitions. This leads
to incorrect assumptions in diagnosis as physicians evaluate perfusion behaviour over time
voxel-wise. DCE-MRI is very sensitive for detecting small enhancing lesions on which we
will concentrate here. Motion influence has a particularly strong impact on enhancing struc-
tures consisting only of a small number (10–100) of voxels.

To compensate for this, registration algorithms try to find a transformation to align im-
ages by optimising a similarity measure indicating best matchings. In general, registration

c� 2010. The copyright of this document resides with its authors.
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approaches try to find the best solution minimising a global criterion on the whole image. If
a region of interest (ROI) – representing a part of the whole dataset – is examined, it cannot
be assumed that the best possible matching in terms of the local observation is obtained.

We employ a two-step registration procedure beginning with the first step registering
the whole dataset with a global non-rigid approach [6]. In the second step only the ROI
is addressed and registered using a rigid approach. For the second step we investigate the
performance of three different similarity measures: Mutual Information (MI) [4], Sum of
Mean-Squared Distances (MSD) and Normalized Cross Correlation (NCC).

The evaluation is performed by the use of a pharmacokinetic model [5] which simulates
the concentration of CA at specific times after the injection. The measured MRI signal
enhancement in tumourous regions before and after the second registration step is compared
to the simulated signal in order to obtain a fitness quality value.

2 Related Work
For DCE-MRI data of the breast a non-rigid registration procedure is required, because the
soft tissue leads to deformation that cannot be described by affine transformations. Guo et al.
[2] give a survey about recent approaches of breast image registration techniques in DCE-
MRI. Some of those techniques already use a two-step strategy by applying a global rigid
and a local non-rigid approach sequentially (e.g. [6]). For two reasons this does not enable
optimal results for ROI with small enhancing lesions. First, the criterion to find the local
transformation must still be globally constrained to prevent arbitrary deformation. Second,
the step finding local transformations aims for a compromise to suit best for all areas in the
image. In contrast, we seek a registration for a ROI only.

Tofts et al. [7] have published the first perfusion model to quantitatively analyse DCE-
MRI data of the breast. They calculate the CA concentration depending on physical pro-
perties, acquisition related parameters and the physiological character of tissue. In general,
the latter is unknown and thus is determined by fitting the function to the concentration
measured in the image data, leaving physiological values as free parameters. Radjenovic et
al. [5] developed a modified model function and performed a practical clinical study to show
the applicability of their model. We use it to evaluate our registration results.

3 Registration
The first step of our registration procedure uses the approach of [6] on the whole image.
Subsequently, there still exist regions where motion is present. Therefore, the second step
performs rigid registration on defined ROI assuming one image out of the series to be fixed
and finding transformations for each of the remaining images to match the fixed image. We
assume transformations in small ROI to be almost limited to translations with a maximum
shift of three voxels and rotations with small angles (up to 10 degrees). ROI are manually
defined such that they have approximately the double size of the lesion to be examined.

We want to investigate the performance of different similarity measures to determine the
capability to compensate for motion in the presence of noise and signal variation due to CA
enhancement in the ROI. We choose the commonly used approaches: MI (as described by
Mattes et al. [4] is used), MSD (Eq. 1) and NCC (Eq. 2).
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MSD(A,B) =
1
N

N

∑
i=1

�
Ai−Bi)2� (1)

NCC(A,B) = ∑N
i=1 (Ai · Bi)�

∑N
i=1 A2

i · ∑N
i=1 B2

i

(2)

Ai and Bi are the ith voxels of an image A and B resp. N is the total number of voxels. We
aim to register a set of dynamic images that focus on regions showing perfusion dynamics.
MI is used to register images acquired with different modalities as it takes into account the
joint entropy of two images. In our case, the images are from the same modality, but are
showing different image intensity levels. The MSD measure aligns voxels showing same
intensities, which cannot be assumed in our case. However, there are parts of the images
showing no dynamics and thus fulfilling the requirement. We expect these parts – the sur-
roundings of enhancing structures – to be sufficiently dominating to guide the registration
process. The NCC metric compensates for multiplicative intensity factors through normal-
ization.

4 Evaluation
For evaluation, no ground truth is available because the true motion shift and the resulting
deformation of tissue are unknown. Thus, we decided to use the properties of the perfusion
and the CA distribution to measure the accuracy of the second registration step. Therefore,
the pharmacokinetic model function from [5] is deployed to produce CA concentration over
time from areas where perfusion is present (at least 60% on enhancement). The signal in-
tensity SI can be calculated at time t with the two free physiologic parameters ve and kep
defining the leakage space and capillary permeability using Eq. 4.

Ct(t,ve,kep) = ve
D(a1 +a2)

T

�
kep

kW
el

�
ekW

el τ −1
�

e−kW
el t − 1

kep− kW
el

�
ekepτ −1

�
e−kept

�
(3)

SI(t,ve,kep) =

�
1+

��
e
−T R
T 1

1− e−
−T R
T 1

�
T R · R1

�
Ct(t,ve,kep)

�
SI0 (4)

The approach uses acquisition related parameters (D, T , T 1 and τ) and physical constants
(kW

el , a1, a2) taken from [5] as well as the camera related parameter T R. SI0 is the pre-
injection signal at t = 0 and R1 = 4,5 mMols−1 is a relaxivity constant1. By varying the two
physiologic parameters and least square fitting the resulting function values of SI(t) to the
signal enhancement of measured data, the best fitting parameters are determined. A fitness
value f characterizing proximity to the model function can be derived by calculating the
squared distances to the true MRI signal M(t) with n time steps measured:

f =
n

∑
t=0

(SI(t,ve,kep)−M(t))2 → min. (5)

1see [5] for more details on parameters
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Two different experiments are performed to determine the fitness value achieved by the
second registration step. Each experiment is performed before and after the second registra-
tion step for each similarity measure. The first experiment calculates a voxel-based fitness
value by applying Eq. 5. The second experiment takes into account that single voxels are
strongly subject to noise. The region merging procedure from [1] grouping voxels with sim-
ilar perfusion characteristics is used to average the time signal of several voxels to reduce
influence from noise. Then the fitness value of each region is obtained.

In addition, these experiments are performed twice, using a pre-contrast (time step 0)
and post-contrast (time step 2) image as fixed image for registration. In pre-contrast phase
enhancing structures are not visible and cannot be used in registration. Similarity between
different time step images is increased using a post-contrast image as fixed image. The hy-
pothesis is that post-contrast images lead to better results than using the pre-contrast image.

5 Results and Discussion
We carried out the described procedure for 20 small lesions from 16 patient datasets. The
datasets have been acquired with a 1.5 T MRI scanner (Philips Medical Systems) using a
Spoiled Gradient Echo Sequence with TR ≈ 11 ms, TE ≈ 6 ms and a flip angle of 25◦.
For each patient 5–6 dynamic scans have been performed with varying temporal resolution
between 62 ms and 110 ms. The first scan is performed without CA. At the end of the
first scan CA is injected. The spatial resolution of the whole examination area is 512 × 512
voxels with 55 to 100 slices acquired. The pixel spacing is 0.6 mm, the slice spacing 1.5 mm.
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Figure 1: The average improvement of fitness and standard deviation of the experiment:
values < 1 indicate improvement, values > 1 indicate deterioration.

We compared three different similarity measures for ROI-based registration of contrast-
enhancing lesions in DCE-MRI of the breast. Consistent to our expectations, improvements
could be achieved by using all similarity measures, independent of the fixed image used
for registration (Fig. 1). In general, the post-contrast image used as fixed image achieves
better results. This may be due to the point, that some enhancing structures are simply not
visible yet in pre-contrast images. Concerning the similarity measures, NCC achieves the
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best improvement overall with 39.4%, followed by MSD with 36,5% and MI with 20.1%
(all values averaged over pre- and post-contrast results).

The MSD measure expects same intensities and is based on the surroundings of perfused
areas in the first place. Other areas are confounding factors. NCC expects linear correlated
scenes, i.e. includes areas which change their intensities in equal measure. On the other
hand MI considers local similar areas taking into account that between time steps there may
be unequal changes of intensity in different perfusion areas.

Hence, we conclude that the performance of each measure depends on the properties of
the ROI, especially the proportion of perfused and non-perfused parts in the image and the
dynamic behaviour of lesion surroundings. Through visual exploration we found out that MI
performs better, when the whole ROI exhibits CA enhancement at various extent. A more
detailed analysis on that is left for further investigation. A general improvement could be to
mask out confounding parts of the image depending on the similarity measure used and not
considering them in similarity calculation.

The evaluation using a pharmacokinetic model shows that the fit in relation to measured
data improves through local registration. This improves the image information relevant for
breast tumour diagnosis. In the future, we plan to use the model to describe the change
of intensity between the images recorded at different time steps. We want to focus on a
combination of the region-based evaluation (segmentation) and a registration process.
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Abstract
In this paper we extend the theory of non-parametric windows estimator to the vec-

tor space, aiming to establish a more generic probability density estimator that can be
used in building an effective automatic image segmentation algorithm. We have veri-
fied our theoretical advancement, through two different experiments in medical imaging,
and demonstrated the superior performance and benefits of this method compare to the
traditional histogram estimator.

1 Introduction
Probability density functions (PDF) are central to many advanced segmentation and registra-
tion techniques. A number of PDF estimation methods have been developed and applied to
image analysis. PDF estimation for medical applications increasingly uses non-parametric
(NP) methods because for most medical applications, it is neither correct nor sufficient to
assume a particular parametric form; because image noise is typically not Gaussian; anatom-
ical structures are complex and variable; and the presence of various imaging artefacts. For
these reasons, only NP methods are feasible for use in the field of medical image analysis.
In this paper, we will focus mainly on the method of PDF estimation by histograms; and
the novel approach by NP windows (NPW) [2], [4]. A third NP method, kernel density
estimator (KDE), has been introduced and discussed more extensively in [3]. Histogram
estimators are conceptually simple and computationally fast but require a large sample size
to produce an accurate estimate. Moreover, they suffer from the binning and choice of ori-
gin problems. The kernel density estimator solves these and gives a better convergence
rate. However, determining the optimal bandwidth remains challenging as even the latest
cross-validation-based algorithms can be computationally demanding [2]. We have previ-
ously demonstrated [1] the advantages and use of NPW for segmenting malignant pleural

c� 2010. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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mesothelioma (MPM)1 based on intensity values on thoracic CT scans. It was found that
scalar NPW outperforms the histogram estimator in its smoothness. This method also offers
advantages over KDE in terms of its computational requirement (103 faster).

(a) Manual Segmentation (b) Initialisation (c) Segmented Tumour

Figure 1: Preliminary level sets-based tumour segmentation using PDF estimates

In [1] we have made observations on PDFs, and showed that PDF-based segmentation for
MPM is feasible, as supported by the semi-automatic segmentation results (given in Fig. 1,
using level sets segmentation based on Battacharya measures). In a follow-up study involv-
ing a group of 35 data samples, the algorithm performed with a good degree of accuracy
in cases where tumour was surrounded by effusion or aerated lung, with a mean difference
in aerated lung of 6% (+/- 2% std.dev.) compared to radiologist derived areas. However,
the algorithm was less successful at segmenting tumour (25% mean difference and +/- 15%
std.dev.) from atelectatic lung or diaphragm. In fact, we note that for most complex medical
segmentation problems, image intensity alone is not sufficient to give accurate and reliable
results. This necessitates the need to further investigate the application of the NPW estimator
in automatic image segmentation. A good starting point is to examine ways in which clinical
manual segmentations are typically accomplished. We note that in addition to image pixel
intensities, texture; tissue heterogeneity; and general knowledge on human anatomy are of-
ten used in identifying a tissue’s boundaries in an image scan. These additional measures
may potentially support the development of a better segmentation algorithm. Our goal is to
establish an NPW-based estimator for vector-valued data (n-tuple where n is the size of the
vector) where two or more image properties are associated with each pixel that initially had
only a greyscale intensity measure. As most of these other quantities are derived from hence
dependent on the intensity values, it is not sufficient to simply define the n-tuple joint distri-
bution as the product of their marginal distributions. In order to incorporate these properties
into our algorithm, we will need to extend the founding theories of NP windows onto the
vector domain. In this paper, we present the newly developed theories and their derivations
in Section 2. Experimental validation of our method is described and shown in Section 3,
followed by a discussion of the results and possible future works, which is given in Section 4.

2 Methodology
We begin with a 2-tuple vector Fy1,y2(x) where for each x there are two associated quantities.
This can be a combination of any two arbitrary pieces of information, y1 and y2 given in
an image sample. For instance, in an optic flow map, they can be the u(x,y) and v(x,y)

1a form of lung tumour
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Conditions Case
a1,a2 �= 0 a2

a1
y1 +b2− a2

a1
b1 = y2

a2 = 0,a1 �= 0 y2 = b2
a1 = 0,a2 �= 0 y1 = b1
a1,a2 = 0 a point at (b1,b2)
Table 1: Specifying NPW boundaries

components of the flow. Alternatively, for this project, they could be the intensity and texture
measures in a greyscale CT scan. For simplicity, a linear relation y = ax +b is assumed for
the data contributing to a component NP window. We have y1 = a1x+b1 and y2 = a2x+b2,
giving two sets of parameters (a1,b1) and (a2,b2). In vector notation, which we will use
throughout this section:

�y =�ax+�b (1)

where�y =
�

y1
y2

�
, �a =

�
a1
a2

�
and�b =

�
b1
b2

�
for 0≤ x≤ 1.

Assuming a uniform distribution for x : Fx(x) and use i as the indexer to elements in the
vectors such that i = {1,2}.

x =
yi−bi

ai
: Fx(x) = 1; (2)

The joint distribution Fy1,y2(x) or F�y(�y) is then given by:

Fyi(yi) =
1

|dyi/dx|Fx(x) =
1

|dyi/dx|Fx(
yi−bi

ai
) (3)

such that [ d�y
dx ] =

� dy1
dx
dy2
dx

�
for b1 ≤ y1 ≤ a1 +b1, b2 ≤ y2 ≤ a2 +b2.

The modulus in this case is the diagonal length of a right triangle formed by a1 and a2, so,

Fyi(yi) =
1�

a2
1 +a2

2

Fx(
yi−bi

ai
) =

1�
a2

1 +a2
2

(4)

Therefore the 1-D NPW estimation for a 2-tuple vector can be found as:

F�y(�y) =






1�
a2

1 +a2
2

for region A and �a �= 0 (5a)

1 when �a = 0 (5b)

Note from a histogram estimate of a 2-tuple vector signal, A is simply the diagonal
line crossing the region defined by the component NP window. More specifically NPW
boundaries A can be written analytically, as given in Table 1.
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(a) Histogram Estimation for 2-tuple vector (b) Regional boundaries

Figure 2: b) illustrates NPW estimator for a 2-tuple vector, range A is a diagonal crossing
the region highlighted in grey. Shown here is one of the seven possible cases, i.e a1,a2 > 0
Note this is only the idealised scenario where the diagonal connects the corners of a defined
area, detailed binning operations are necessary in the algorithm implementation

3 Experimental Results
To validate our implementation of the 1-D 2-tuple NPW, we have estimated the averaged
joint distributions (estimating the scanline PDFs followed by computing their algebraic
mean) in two notable medical applications. The first is an estimation of the two colour chan-
nels (red and green) of a coloured CT scan of the lung (used for diagnosing emphysema, a
lung disease characterised by abnormal enlargement airspaces distal to terminal bronchioles,
shown in Fig. 3). The purpose is to assess the functionality of our implementation and com-
pare results to ground truth, which in this case, is the 1-D 2-tuple histogram estimator. We
then applied the algorithm to estimate the joint distribution of scanline pairs in a thoracic CT
image (Fig. 4). We first considered a pair of two adjoining scanlines and then two remotely
separate scanlines, all taken from the same image slice. All PDFs shown in the figures are
normalised.

(a) Original Image (b) Histogram (c) NPW

Figure 3: Exp. I: Lung CT for diagnosing emphysema, performed at the same time as
coronary artery CT, giving values for channels R,G; b) and c) show the peak compositions
in these channels that make up the dominant colours in the scan.

4 Discussion
To evaluate the accuracy of NPW, L-2 norm defined by L2 =

�
Σi(uHis(i, j)−uNPW (i, j))2

is used; where uHis(i, j) and uNPW (i, j) are histogram and NPW estimations, respectively.
The processes are also timed in order to assess the computational efficiency of our method.
(Table 2) It should be noted that the NPW estimator showed a consistent high level of
accuracy and good computational efficiency compared to the histogram estimator for both
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(a) (b) (c) (d) (e)

Figure 4: Exp. II: a) Thoracic CT slice of a MPM patient; Region of interest outlined in
red b),c) Histogram estimate of adjoining and separate scanlines, respectively; d), e)NPW
estimate of the same scanline pairs)

Experiment Time-Hist(s) Time-NPW (s) L-2
1 0.008395 0.008396 7.68e-3
2 0.007440 0.007480 6.61e-3

Table 2: Performance of NPW

experiments. The smoothing effect of NPW over histogram is also clearly observed in both
cases. In the first experiment, we observe two peaks which correspond to the two dominant
colours in the scan. Also note the scattering effect in the distant scanline case in Fig. 4,
which complies with our prediction that attenuation gradually changes across the scanned
region. The reduction of this effect indicates a greater degree of correlation hence giving
light to scanline registration.

In this paper, we have derived and implemented the theories of NPW estimation for 1D
2-tuple vector signals. The immediate next step is the extension and implementation of NPW
for 1D N-tuple vectors followed by the 2D N-tuple case. The latter would enable us to apply
the vector-spaced NPW method to a wider range of applications. This includes a good use of
the theories in the field of multi-modial registration where both image intensity and entropy
are involved. Additionally, it is possible as future work to apply the method to estimate the
joint distributions of image intensities with other key image quantities such as texture and
entropy. Image texture is mostly image technique-dependent and is hard to accurately quan-
tify. Tissue heterogeneity can, for example, be measured by information-theoretic entropy
H =−∑i P(i)logP(i) where P(i) is the probability at value i. Higher entropy values suggest
a more heterogeneous intensity distribution and vice versa.
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Abstract

As the number of subjects in modern fMRI experiments increases, the use of auto-
mated analysis pipelines is becoming more popular, leading to less manual inspection of
the data. Here we promote the use of Shannon entropy distributions to discover those
datasets in large studies suffering from various artefacts. Entropy distributions of 1444
resting state fMRI datasets from the 1000 Functional Connectomes Project are examined
and mean distributions found after each of several different preprocessing steps. Em-
pirically derived envelopes are generated so that significantly outlying datasets may be
identified. This process of outlier detection may be automated such that those datasets
with characteristic shifts in entropy caused by specific artefacts may be flagged for fur-
ther manual examination or removed from further analysis. We conclude this technique
will be a useful quality control method when dealing with data from large studies.

1 Introduction
The number of subjects in modern functional Magnetic Resonance Imaging (fMRI) exper-
iments is increasing as researchers seek to examine effects across larger populations and
more groups pool data. With this increase has come the more common use of automated
analysis pipelines, especially at the preprocessing stage. As such, it becomes difficult for an
individual to manually check for sometimes subtle artefacts which may have a detrimental
effect on further analysis. This is especially true when there may be hundreds of subjects,
and the artefacts transient in nature. Techniques such as Independent Component Analysis
(ICA) are often used to guide these manual checks [4].

The recent public release of more than 1000 resting state fMRI (R-fMRI) datasets as part
of the 1000 Functional Connectomes Project [1] provides the neuroimaging community with
the opportunity to apply and test analysis techniques on a much larger number of subjects
than is usually available locally. With the potential to examine data from many sources
comes the issue of how the characteristics of this data vary between sites, and also between
studies at the same site. It also allows for typical distributions of various summary statistics
to be found, and their dependence on scan parameters determined.

c� 2010. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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Here we explore the use of Shannon entropy [3] distributions in order to automatically
identify outlier datasets. Removal of these is prudent before carrying out further data-driven
methods as are often used in the analysis of R-fMRI. Specifically, we show that shifts in
these distributions can be characteristic of certain types of artefact.

2 Methodology

2.1 Shannon entropy for outlier detection
The entropy, H, of a discrete random variable, X , is the average minimum amount of infor-
mation that is necessary to encode a string of symbols, and may be found as

H(X) =−
n

∑
i=1

p(xi) ln p(xi) (1)

where p(xi) is the probability mass function which may be determined from a histogram
of the original data [3]. In the case of fMRI data, each voxel time course (expressed as
percentage signal change) may be divided into a number of discrete signal levels, and these
levels used as symbols in an entropy calculation [2]. In this paper 20 signal levels are used
for each voxel. As the entropy calculation is carried out at every voxel in each dataset there
will be tens to hundreds of thousands of entropy values for each individual. Distributions of
these values may then be compared to others.

By collating and scaling the entropy distributions of many individual subjects a mean
distribution may be found together with the 10th and 90th empirical percentiles. Those
distributions where more than 25% of their voxels are found to lie outside of this “envelope”
of the empirical percentiles may be deemed to be outliers and flagged for further examination
and possible removal (these values have been found empirically).

2.2 Resting state data
The data explored here is freely available from the 1000 Functional Connectomes Project
(www.nitrc.org/projects/fcon_1000/) and represents 1444 sessions, involving more than 1300
individual subjects, collected independently during 31 studies at 24 sites. Full details of the
geographic distribution and exact parameters for each site may be found on the project web-
site and in [1]. The mean number of volumes for each session is 174, with a mean repetition
time (TR) of 2.14s, with the mean scanning time being just over 6 minutes. The variance
from the slightly differing resting state protocols (e.g., eyes open or closed) does not affect
the summary distributions examined here.

2.2.1 Preprocessing

To explore the effect of various steps in a conventional fMRI preprocessing pipeline on en-
tropy distributions the following were carried out in several combinations. All data was
motion corrected, spatially normalised to the MNI152 template (with only gray matter vox-
els examined further) and smoothed with a Gaussian kernel of full width at half maximum
(FWHM) of 5mm, all using SPM8 (www.fil.ion.ucl.ac.uk/spm/). A detrending was also
carried out, incorporating the global mean and motion parameters to remove the effects of
global signal and residual motion as would be implicit in a conventional general linear model
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approach to analysis (where they would be used as unwanted effects regressors). All values
were converted to percentage change differences from the mean of timepoints 2-25.

3 Results
Figure 1 shows those datasets identified as outlier after only motion correction (the most
important stage to find artefacts before they are smeared throughout the data by the inter-
polation steps of spatial normalisation and further corrections). It should be noted that only
3% of all the datasets shown here are marked as outlier (48 out of the 1444 examined). In
practice one might wish to only examine the furthest outlying distributions manually.

The banding artefact (the alternating light and dark regions) shown in Figure 2 is due to
a possible signal dropout. It was identified as an outlier dataset through its Shannon entropy
distribution being shifted lower and flatter (a peak of 2.2 nats compared to a mean peak of 2.7
nats). Since this is a transient artefact not affecting all scans in a session its presence is easy
to miss in a manual data quality check, but can have a detrimental effect on further analysis.
The severe susceptibility distortion artefact shown in Figure 3 is likely due to microscopic
pieces of metal near the eye. This type of artefact is almost constant for each timepoint but
the effect of slight motion will change the distortion, leading to abnormal signal. In this case
the entropy distribution is shifted higher (with a peak of 2.79 nats). The datasets highlighted
here do not appear as significant outliers when looking at standard deviation distributions
alone.
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Figure 1: The Shannon entropy distributions for all 1444 datasets with those having 25% or
more of their voxels lying outside the 10th and 90th percentile envelope classed as outliers
and highlighted in red. 48 datasets (just over 3%) are flagged here. These could then be
investigated in detail as in Figures 2 and 3.

175



4 MCGONIGLE et al.: SHANNON ENTROPY FOR FMRI ARTEFACT DETECTION

Figure 2: Banding artefact due to possible signal dropout from dataset New Haven (a): sub-
ject 13647b. Its Shannon entropy distribution was flagged as an outlier having a peak shifted
to lower entropy. Image resolution is typical for whole brain fMRI.

It would appear that many of the distributions with lower shifted peaks are due to suscep-
tibility artefact around the skull, higher shifted peaks caused by frontal lobe susceptibility
distortions, with flattened distributions caused by signal dropout.

The mean entropy distributions after several combinations of preprocessing steps can be
seen in Figure 4(a). It is interesting to note that only performing a spatial normalisation to a
standard space does not have a significant effect on the entropy distribution. As one might
expect there is an overall decrease in the amount of information necessary to represent the
data, on average, when the contributions from drift and residual motion have been removed.

For comparison, the effects of the preprocessing steps on standard deviation distributions
are shown in Figure 4(b), where it is evident their relationships do not follow directly from
the entropy distributions.

4 Discussion
With the growing availability of large numbers of datasets for analysis there is the poten-
tial for including many containing artefacts which would ideally be excluded from further
processing. Individually checking all datasets in detail is often not practical and is prone to
human error due to the subtlety and transient nature of many artefacts. Thus, finding ways to
exclude these before the mass scripted analysis which is common in large studies will be im-
portant, especially those which might not be apparent without detailed study. Furthermore,
R-fMRI is commonly analysed using either ICA or a seed-region based analysis strategy.
These are affected by data-quality issues more than the hypothesis based approaches used in
conventional fMRI.

Figure 3: Susceptibility distortion artefact from dataset Taipei (a): subject 03537. Its Shan-
non entropy distribution was flagged as an outlier having a peak shifted to higher entropy.
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(a) The mean Shannon entropy distributions for 1444
datasets after combinations of motion correction (r),
spatial normalisation to a standard space (w), smooth-
ing with FWHM of 5mm (s) and motion aware detrend-
ing (d). Note that spatial normaisation alone does not
significantly change the entropy distributions.
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(b) The mean of standard deviation distributions for
1444 datasets after combinations of motion correc-
tion (r), spatial normalisation to a standard space (w),
smoothing with FWHM of 5mm (s) and motion aware
detrending (d).

Figure 4: Comparing the effect of preprocessing steps on the mean distributions

We have proposed that fMRI datasets containing certain forms of artefact may initially be
recognised through distributions of their Shannon entropy and flagged for examination and
possible rejection or correction. Future work will examine how these distributions manifest
themselves both spatially in the brain, and between different scanners and centers.
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Abstract
This paper addresses a 2D+t registration problem in retinal vascular analysis with

specific application to the detection of microemboli. We propose a novel multi-stage
Global-RANSAC registration model to perform intra- and inter-sequence spatial regis-
tration. First, a projective RANSAC algorithm is employed using a quadratic pairwise
homography. This is applied in a local-then-global hierarchical ‘joint’ registration frame-
work. Post-registration, vessel centrelines segmented by a scale space approach are used
to construct a ‘map’ for comparing and monitoring temporal circulatory changes.

Introduction
The accessibility of the retinal vascular system has spawned a huge range of clinical and
pre-clinical research and diagnostic techniques as it provides a unique access point to the
in vivo study of a complete vascular bed in a minimally invasive manner. Fluorescein an-
giography is a well-established technique for clinical access to the retina [1]. The passage
of fluorescein dye through the retinal vessels reveals both the vessel structure and the rate
of retinal blood flow. Measurements have linked changes in the human retinal vasculature
with diseases such as hypertension, diabetes and age-related macular degeneration [2]-[4].
Leakage is associated with the breakdown of the blood–retina barrier; occluded vessels give
rise to areas of impaired perfusion; microaneurysms or neovascularisation is indicated by
the genesis of anomalous vessels [5]. These visible abnormal structural changes indicate
the presence of later-stage diseases. However, for early-stage detection, the focus should be
on capturing subtle changes in the retinal circulation. This requires establishing correspon-
dence between microvasculature measures and retinal blood flow, and subsequent monitoring
of one or more parameters over the course of time. Previously suggested parameters include
blood flow velocity [6]; arteriovenous passage time [7]; difference of arterial and venous
times to maximum intensity [8]; time to maximum image [9]. However, the high resolution
imaging necessary to capture microvascular structures individually also needs registration of
equivalent precision to accurately measure changes over time.

Clinical Significance In this paper, we take a fresh approach to detect subtle microvas-
culature occlusion, in the context of (micro)embolic surges during trauma or surgery, that
could be associated with cognitive impairment or even morbidity [10]. Microemboli may
cause reduced blood perfusion or even the apparent disappearance of vessels and/or vessel
branches (microvascular occlusions). The occurrence of emboli is usually assessed clini-
cally using Transcranial Doppler ultrasound (TCD) [11], but many emboli are smaller than
the detectability threshold of TCD. Blauth et al. [4] therefore suggest that comparison of

c 2010. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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pre- and post- operative retinal fluorescein images might indicate with greater sensitivity the
existence of microemboli and provide a visual indication of the site(s) of occlusion. This
is technically demanding as it requires access to information both at the pixel level and at
the vascular structure level to establish the patient’s vasculature ‘map’ both in pre- and post-
intervention images, and is often complicated by temporal dynamics of blood flow. We there-
fore have two technical problems to solve: image registration and vessel segmentation. We
need to geometrically align our sequences of angiograms into a common coordinate system
(the reference), then to distinguish vascular segments from the background in the acquired
images.
Previous Relevant Work Vascular bifurcation points labelled with vessel orientations,
probability weighted by an angle-based invariant, were sorted according to respective like-
lihoods of assumed global affine transformation between frames by Zana et al. [12] using a
Bayesian–Hough transform. Chanwimaluang et al. [13] extracted the medial axes of vessels
as features. The similarity matrix for correspondence based on the centreline orientations
was then converted to a prior probability that the extracted landmark locations were correct.
Hierarchical estimation of the transformation model was performed, refining upwards from
zeroth (translation), to first (affine), and finally the second (quadratic) order. Both of these
approaches could be easily handicapped by inaccurate feature detection, resulting in false
transformation estimation with a non-negligible a posteriori probability. Stewart et al. [14]
put forward the dual-bootstrap iterative closest point (DB-ICP) algorithm. Small bootstrap
regions are generated from hypothesized landmark correspondences and their surrounding
vasculature, then progressively iterated upon to refine the transformation estimate. This ap-
proach requires accurate initialization of matching point correspondence.

Methods
Pairwise Registration Arbitrary between-image distortion or degradation may arise due
to geometric distortion, radiometric degradation, corruption by additive noise, and other
changes in the scans to be described below. It is necessary to distinguish between image
deformation (geometric ‘noise’) and the real change of the scene (‘signal’). Furthermore,
during clinical photography, the patient’s head and eye can move relative to the camera dur-
ing image capture. Many existing registration techniques do not deal with large geometric
distortion other than perspective distortion (computer vision) and relative weak field distor-
tion (MR imaging). Distortion in retinal scans was tackled by introducing spherical models
[15]. While the retinal surface may be crudely approximated by a sphere, departures from
this assumption induce some degree of error. This is further complicated by pixel intensity
shifts due to the temporal diffusion of injected fluorescein dye confounded with uneven and
unsteady global illumination.
At the pairwise level (registration applied to each pair of images in the set), we combine
a projective RANSAC (iterative outlier rejection scheme) algorithm with a quadratic “pair-
wise” homography transformation, Figure 1(a). To ensure robustness and reliability regard-
less of geometric rotation and scaling, the bifurcation points or vessel crossings of a vascular
tree (blood vessels) are generically regarded as a good source of landmark points (features).
The Harris corner detector [16] enhanced by adaptive histogram equalization is relatively ro-
bust in feature extraction even when fluorescein dye concentration is rather low, commonly
in the beginning (arterial phase) and the end (late venous and recirculation phase) of the
angiogram sequence [1]. We putatively match these ‘corners’ by maximizing the normal-
ized cross-correlation between the features from the sensed frame (the image that requires
registration) with those from the reference frame, within windows surrounding each feature.
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This comparison process filters out implausible correspondence pairs. The quadratic trans-
formation model, with 12 degrees of freedom (see Equation 1), counteracts warping and is
sufficiently flexible to reflect the spherical distortion introduced by retinal imaging geome-
try. Model parameter estimation benefits from both ‘false corner’ rejection, near and beyond
the image field-stops (see Section on Joint Registration), and [17]. RANSAC iteratively
detects and rejects gross errors due to inaccurate local feature characterisation. Combined
with a quadratic homography, the algorithm yields a high degree of accuracy even when
a significant proportion of ‘outliers’ is present in the data set. Figure 1(b) & (c) compare
between-frame pixel intensity differences without and with our pairwise registration model.

Let p px
py

, q qx
qy

denote the feature-point coordinates from images P and Q, while

M m0 m1 m2 m3 m4 m5
m6 m7 m8 m9 m10 m11

denotes transformation model parameters, for

x q qx qy 1 q2
x q2

y qx qy
T , the transformation can be represented as: p Mx q (1)

(a) (b) (c)
Figure 1: (a) Flow chart illustrating pairwise registration; (b) Intensity difference between two frames
half a sequence apart without pairwise registration (SD = 32.48); (c) Intensity difference between the
two frames after pairwise registration (SD = 19.54).

Joint Registration To compound temporal information both within a consecutive sequence
of retinal angiograms (intra-sequence) and across sequences taken before and after the oper-
ation, separated by at least a few hours (inter-sequence), we need a systematic framework.
This should first align corresponding pixels intra-sequentially, then align the pixels inter-
sequentially. Multi-temporal registration is demanding as it is vital to maximize the point
correspondence between similar structural features while still being able to differentiate or
detect pathological changes of clinical interest. Temporal diffusion of injected dye and natu-
ral variability of blood vessels further complicate the 2D+t joint-level registration problem.
The centreline locations of the segmented vessels [18] have subpixel resolution and are less
resilient to noise from misclassification. In clinical practice, capillaries may ‘appear’ then
‘disappear’ from sequential frames due to changes in dye concentration or acquisition noise.
Images at the start and the end of the angiogram sequences reveal significantly less informa-
tion about vascular structure than images obtained during the peak of dye concentration. We
thus implement a scheme that takes into account centreline information at all times during the
map construction. After initial segmentation of each frame, we impose a further constraint
on the calculated centreline locations: for an extracted centreline to be valid, there must exist
at least two frames in the sequence with similar location within a predefined city-block pixel
distance. Each ‘true’ centreline location is stored to construct our compound maps.
Let us consider two time sequences of retinal data, acquired from unknown spatial locations,
at unknown times relative to the cardiac cycle; we denote these unregistered time sequence
images, by

S A f A
n xA

n yA
n ; tA

n n 1 2 3 NA
and S B f B

n xB
n yB

n ; tB
n n 1 2 3 NB

(2)
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The goal of our registration task is to spatially register the intra-sequence images of S A to a
reference spatial coordinate system for that sequence, and to align images of S B with their
own reference coordinate system. We then register the two reference coordinate systems
for SA and SB. Finally, vessel maps vα xA yA and vβ xB yB are created by accumulating
information across time about vessel centrelines, while incorporating consistency checks for
registration and segmentation. Comparisons can then be performed between the maps for
vessel centrelines vα xA yA and vβ xB yB to identify potential sites of vessel occlusion.
During the passage of the bolus of fluorescein, there will be a frame which contains a max-
imum in dye contrast. However, this does not justify it as the optimal choice of global
reference. Instead, we construct a global reference frame for any sequence SA as

f A
GR xA

GR yA
GR; tA

GR argmin
n NA

f A
n xA

n yA
n ; tA

n MA
n xA

n yA
n ; tA

n (3)

where denotes a spatial average, and MA
n xA

n yA
n ; tA

n is an appropriate spatial weighting
function. We use a simple 2D mask containing unity for points xA

n yA
n within the circular

region defined by the field-stop, and 0 outside this region. Other (e.g. centre) weighting func-
tions could also be used. The centre and radius of this region are determined by a circular
Hough Transform. Figure 2 illustrates this selection process. The peak in the plot (Fig-
ure 2(a)) of spatially averaged fluorescein concentration in the pre-op sequence against the
frame number (corresponding to its acquisition time) determines the frame (highlighted in
gray dashed-line in upper left quadrant in Figure 2(c)) as the global reference within the pre-
op sequence. Meanwhile, Figure 2(b) illustrates the global reference of post-op sequence,
framed by a dashed line in the lower right quadrant of Figure 2(c).
The global frame is not used immediately; rather, its location in time is used to establish a
subdivision of the sequence SA into two sub-sequences SA1 and SA2. These subsequences
are repeatedly subdivided until they are of length 3-5 frames. At this point, the mid-point
of each sub-sequence is used as a local reference frame (e.g. f A1

LR xA1
LR yA1

LR; tA1
LR ). Neigh-

bouring frames are then spatially registered to these local reference frames. For example,
for a sequence SA of length 7 frames, two sub-sequences, SA1 and SA2, are obtained, with
corresponding coordinate systems. These two local coordinate systems are co-registered to
the global reference for SA. A similar process is applied to SB, separately. As a final stage,
the two coordinate systems defined by xA

GR yA
GR; tA

GR and xB
GR yB

GR; tB
GR are registered.

Figure 2(c) exhibits a montage (from top-left to bottom-right, row-by-row) of both inter-
and intra- sequentially aligned angiograms. A key feature is that the border of each frame
in the pre-op sequence exhibits a visible rotation with respect to that of the post-op frames.
In contrast, the centre of the fieldstop region from each frame seems nicely aligned with its
neighbours. This demonstrates the success of this registration algorithm.

(a) (b) (c)
Figure 2: (a) Pre-op spatially averaged fluorescein concentration against acquisition time; (b) Post-op
spatially averaged fluorescein concentration against acquisition time; (c) Both global references in
pre- and post- op sequences (framed by a dashed line) determined from the intensity-time course plots.

182



AUTHORS: CAO, BHARATH, PARKER, NG, ARNOLD, MCGREGOR, HILL 5

Conclusion and Further Work
Individual capillaries have been identified and quantified (see Figure 3) in fluorescein an-
giograms taken immediately pre- and post- orthopaedic surgery. The results compare well to
non-quantitative conclusions of ‘expert’ observers who examined the original images.
Due to the difficulties of obtaining the ground truth for our retinal image analysis, we are
hoping to validate our novel registration using a synthesized database, allowing us to justify
our approach and to evaluate its accuracy and robustness. A known distortion, introduced
manually, can be used to evaluate the registration components of the algorithm, while detect-
ing a ‘virtual’ occlusion would validate our entire automation scheme.
Future development of this technique lies in extensive validation and real-time performance
that could be adopted and evaluated in an inter-intervention setting. Notably, we are hoping
to incorporate indicators of the success or failure of the registration process as a safeguard to
prevent improper conclusions drawn on poorly registered images.

(a) (b) (c)
Figure 3: (a) Macular vasculature centreline imposed on pre-operative fluorescein angiogram map;
(b) Macular vasculature centreline imposed on post-operative fluorescein angiogram map; (c) Missing
centreline pixels (in red) identifies sites (dashed circles) of microemboli.
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Abstract
Abrupt motions pose particular problems for Positron Emission Tomography because

any mismatch between the subject’s position during the attenuation correction scan and
the PET acquisition causes the attenuation correction step during reconstruction to intro-
duce artefacts; aquisitions with abrupt motions are often discarded. This paper adaptats
a rigid body registration algorithm from the CT literature, expanding upon the details of
implementation and showing its applicability to PET using realistic simulated data. The
method is of special interest as it operates on the projection (sinogram) data, thus avoid-
ing the need to reconstruct images. Given a scan with a change of position at a known
time the motion can be estimated, and corrected for, before reconstruction.

1 Introduction
PET is an increasingly important imaging modality because it images specific aspects of
physiology and metabolism in vivo. The quality of the images continues to improve with
better hardware and reconstruction methods but, as they do so, the effects of abrupt motion
have become a major limitation on the quality of the information ultimately available. Mo-
tion causes two problems for PET: the first is the blurring of the image, the second follows
from the need to perform attenuation correction. With the advent of hybrid PET-CT machines
attenuation is estimated from the CT scan acquired just before the PET scan. Any motion
after the CT scan means that emissions from some regions will not undergo the estimated
level of attenuation and the correction step will introduce artefacts [3].

This paper presents an adaptation to PET of a rigid body registration method from the
work of Fitchard et al. [1, 2] for CT and expands on the details of implementation. The
method is of interest because it allows for rigid body registration directly from the projection
data (the sinogram), without the need for reconstruction – figure 1 (a). As well as reducing
computational cost, this avoids the need to make choices regarding the reconstruction algo-
rithm that is known to influence the registration. Furthermore, the method naturally allows
for correction before reconstruction, thereby minimising attenuation correction errors once
aligned to the same position as the attenuation scan. It is important to perform any registra-
tion method for PET on non-attenuation corrected data, lest the registration be influenced by
the artefacts.
c� 2010. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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(a) (b)

Figure 1: Illustration of (a) the concept of pre-reconstruction registration and (b) how rigid
body motions impact the projections that make up the sinogram: (i) & (ii) the extremes of
translation, (iii) & (iv) rotation.

2 Method
If an image is rotated relative to its reference position, a rotational cross-correlation of the
template (i.e. rotated) image with the original (reference) image attains a maximum that
corresponds to the angle of rotation. Doing the rotational cross-correlation after performing
a Fourier transform makes this shift invariant, since shifting an image does not change its
frequency content. More precisely: rotating an image changes the distributions of horizontal
and vertical frequency content such that the 2D frequency spectrum is rotated by an angle
equal to the image’s rotation and the rotational cross correlation of two frequency spectra
corresponds to the cross correlation of the two images, ignoring any translation.

The need to reconstruct an image can be avoided through use of the Fourier central slice
theorem. Each row of a sinogram (each projection angle) is Fourier transformed separately
and stacked up in the same order to produce a new array, in which rows correspond to angles
and columns to frequency components. By the Fourier central slice theorem, these columns
correspond to rings in the 2D frequency spectrum of the image that would result from re-
construction; the 2D rotational cross-correlation can be achieved by cross-correlating these
columns made from the reference and template sinograms.

The rotation can be removed by re-indexing the rows of the sinogram, in effect redefining
which row corresponds to the zero-angle projection.

After the rotation is removed the translation can be estimated. This is done by com-
paring the reference sinogram and the rotation-registered template sinogram (the ‘rotated
sinogram’), again by cross-correlation. If an object is translated in a given direction then
– under parallel beam projection, as is the case for PET – the projection in that direction
will not change. The perpendicular projection will be shifted by an amount equal to the dis-
placement and, between the two, the shift will vary sinusoidally with projection angle (figure
1).

If each row of the rotated sinogram is cross-correlated with the corresponding row of
the reference sinogram, the shift that best matches the two rows should vary sinusoidally;
the phase (relative to projection angle) and magnitude are determined by the direction and
magnitude of the translation. As pointed out in the original papers on CT, the frequency
of the sinusoid is the fundamental. Therefore, taking a Fourier transform of the estimates
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allows the phase and amplitude to be recovered easily; doing so also rejects much of noise
and errors in the individual cross-correlation maxima.

Finally, the motion is removed by applying the reverse shifts. These should be from the
sinusoidal pattern so the correction corresponds to a consistent rigid body motion. The result
is a registered sinogram that, once reconstructed, will produce an image in the same position
as that of the reference sinogram. The registered and reference data can be combined and a
single image reconstructed using all the data.

It should be noted that there is no reason why the two segments of data being registered
need to be of the same duration: the location of the maximum of a cross-correlation function
depend only on the pattern of the two input functions, not their relative scale.

3 Implementation Details
While estimating the rotation, all the columns being cross-correlated should, in theory, yield
the same result. In practice, the different frequency components contain different informa-
tion, with the low frequency components being more reliable as they contain the information
about large scale structures. For higher frequency components, the rotation estimated be-
comes unstable (figure 2). For this reason the rotation estimate used is based on an average
of the stable ones (ignoring the DC and fundamental).

The cut-off between the stable and unstable estimates is chosen by considering the vari-
ance of the stable and unstable estimates. As there are two obvious populations characterized
by their consistency (measured by variance−1) and inconsistency (equated to the variance)
the best cut-off will be the one that makes each population most like itself. This is the point
at which the ratio of the variance of estimates based on higher frequency components to
those from lower frequencies is maximal (figure 2). A minimum of 6 estimates are always
averaged; this constraint is usually met by the chosen cut-off frequency anyway.

Should the mean variance of the higher frequency estimates not be higher than the mean
variance of the lower frequency estimates then there is no clearly defined difference between
stable and unstable estimates: this suggests that all the estimates are just noise and so the
rotation estimate is set to zero.

The implementation of the translation step is simpler, the only addition to the method
in [1] has been a validity check, mirroring that for the rotation. As the only frequency
component (ignoring windowing effects) corresponding to the translation is the fundamental,
if its magnitude is not significantly greater than the others it is assumed better to ignore
any estimated motion. ‘Significantly greater’ is taken to be three standard deviations of the
other components above their mean. This assumes a normal distribution – tenuous given the
magnitudes cannot be negative. However, given that this step is only a fail safe it is deemed
to be an acceptable approximation.

4 Demonstration
PET-SORTEO [4], a Monte-Carlo based software simulator was used to create sinograms
with realistic properties, emulating those from an ECAT Exact HR+ scanner (Siemens Med-
ical Solutions, Knoxville, Tennessee, USA), but with known positions. Several in-plane
slices were combined to form a single 2D sinogram with the desired number of counts cor-
responding to a cross section through the centre of the phantoms (chosen to have a constant
cross section). The phantom was approximately 24cm across as figure 3, which shows the
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Figure 2: Top Left: The estimated rotation angle using each frequency component, with the
selected cut-off between stable and unstable estimate. Top Right: The variance of the higher
frequency components - for each point on the x-axis the value is the variance of all estimates
from higher frequencies. Also shown is the cut-off ultimately chosen (vertical line) and the
mean of the lower frequency variances (horizontal line). Bottom Right: Likewise, but for the
variances of frequency lower than the value on the x-axis. Bottom Left: The ratio of variance
for each possible choice of cut-off.

impact of the registration on the reconstruction. The angular resolution of the sinogram was
1.25 degrees and, after reconstruction, the voxel spacing is 2.25mm.

Using 12 motions with translations ranging from 0 to 8 cm in various directions and
rotations between 0 and 45 degrees the average magnitude of errors – of Euclidean position
in mm and of rotation in degrees — of the estimated motions were: 1.22 & 1.54 (with
an average of 56 thousand counts per frame, before attenuation correction), 1.31 & 2.16
(80 Kcounts) , 1.02 & 1.32 (133 Kcounts), 1.09 & 0.74 (241 Kcounts), 1.01 & 0.56 (471
Kcounts).

5 Discussion
The work presented in this paper has been intended as a demonstration of the method with
realistic simulated PET data and it works well, even with low count numbers. Validation and
comparison against other methods, especially those operating post-reconstruction, remains
to be done, but the absence of any parameters to tune illustrates the advantage of performing
analysis pre-reconstruction.

The method’s inherent limitation is that it is only applicable to rigid body motion –
however, for neurological studies this would not be a problem and this has been seen as the
main application of this method during this work. Although a 2D implementation has been
used in this paper, as discussed in [2] it could be straightforwardly extended to 3D. There
is also the assumption that the cross-correlation will produce the correct maximum. It is

188



NORDBERG et al.: PRE-RECONSTRUCTION REGISTRATION FOR PET 5

Figure 3: Illustration of the effect of registration on the images. Reconstruction is by filtered
back-projection, a delayed window is subtracted to remove randoms, but no scatter correction
is done and additional smoothing is applied. Here there is a 4cm shift to the right with about
940 thousand counts overall. The colour range is the same for all 3 images.

is stated that this is valid for typical CT images in Fitchard’s work it, but this should be
investigated again for PET.

Lastly an elegant means of deducing when the subject moved remains an open question –
but given the speed and resilience to low count data it is not inconceivable to use this method
prospectively, blindly dividing a scan into shorter frames and registering them together.
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Abstract
In this paper we present a modified boundary term for Graph-Cuts, which enables the

latter to couple with feature detectors that return a confidence with respect to the detected
image feature. Such detectors lead to improved localisation of boundaries in challeng-
ing images, which are often undetected by the implicit intensity-based edge detection
scheme of the original method. This is particularly true for medical image segmentation,
due to complex organ appearance, partial volume effect and weak intensity contrast at
boundaries. The novel term is validated via its application to the differential segmen-
tation of the prostate. The results demonstrate considerable improvement over classical
Graph-Cuts of the Central Gland / Peripheral Zone separation when it is coupled with a
SUSAN edge detector.

1 Introduction
In the last decade, Graph-Cuts has emerged as the standard interactive segmentation method
due to its computational efficiency, precision and ability to achieve plausible outcomes with
limited interaction. The segmentation is provided via the minimisation of its energy function,
which consists of a weighted sum of a regional and a boundary term. The boundary term,
which is often the only term in the energy function, is designed to align the segmentation
boundary with intensity edges. This is achieved via its coupling with an implicit intensity-
based edge detector. However, such an approach may be suboptimal for medical images,
in which the boundaries may show intensity contrast that is weak, reduced by the partial
volume effect, or characterised by texture changes.

In this paper we suggest a modification of the boundary term, which enables Graph-Cuts
to couple with feature detectors that return a confidence with respect to the detected feature.
This extends the original method and offers a wide selection of feature detectors that can
recover boundaries, which are undetected by intensity-based edge detection. The novel term
is validated via its application to the differential segmentation of the prostate, a challenging
task for which model-based approaches have been employed [1]. The results demonstrate
considerable improvement of the Central Gland/Peripheral Zone separation, when the new
term is coupled with a SUSAN edge detector.

c� 2010. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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Figure 1: An axial slice of a T2 fat suppressed prostate MR image, with a line delineating
the Central Gland (top) and a 3-D segmentation of the latter (bottom): (left) Ground Truth;
(middle) Graph-Cuts; (right) modified Graph-Cuts coupled with SUSAN.

2 Methods
2.1 Dataset
The dataset used in this study consists of 22 3-D T2 fat suppressed Magnetic Resonance
(MR) images of prostates from individuals with Benign Prostate Hyperplasia (BPH), a non
cancerous enlargement of the prostate. Anatomically the prostate is divided into the Pe-
ripheral (PZ), the Central (CZ), the Transitional (TZ) and the fibromuscular zone [1]. In
MR images only two regions are identified: the PZ and what is referred to as the Central
Gland (CG) (Fig. 1), which consists of the remaining three zones. During treatment of BPH
the physicians measure the volumes of the total prostate (TP) and the TZ, which is mostly
enlarged due to the disease. TZ and CG are considered equivalent in this case.

Differential segmentation of the prostate is challenging due to the complex appearance
of its regions. The CG appearance is textured and the borders between CG and PZ are often
indistinguishable. The preprocessing of the dataset involved cropping the images close to the
prostate, interpolating along the z-axis to allow for an iso-voxel resolution and normalising
the voxel intensities to [0,255]. The ground truth was produced by averaging the manual
segmentation of two experts.

2.2 Interactive Graph-Cuts
In interactive Graph-Cuts segmentation [2, 3] an image is represented as a graph. The user
selects voxels that belong to the interior and the exterior of the object of interest, referred
to as foreground and background seeds respectively. The optimal foreground/background
boundary is then obtained via global minimisation of a cost function with min-cut/max-flow
algorithms [4, 8]. Such a function is usually formulated as:

E(A) = λ ·R(A)+B(A) (1)

where R(A)= ∑
p∈P

Rp(Ap), B(A)= ∑
{p,q}∈N

B{p,q} ·δ (Ap,Aq) and δ (Ap,Aq)=

�
1 if Ap �= Aq

0 otherwise.
R(A) and B(A) are the regional and boundary term of the energy function respectively. The
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Figure 2: A 1-D example of the response of a feature detector and the equivalent 1-D graph.
The edge weights are produced by summing the node values. The underlined figure repre-
sents the position of the cut, when the voxels on either side of the graph are connected to the
source and the sink of the graph.

coefficient λ weighs the relative importance between the two terms. N contains all the un-
ordered pairs of neighbouring voxels and A is a binary vector, whose components Ap, Aq
assign labels to pixels p and q in P, respectively, on a given 2-D or 3-D grid.

The regional term assesses how well the intensity of a pixel p fits a known model of the
foreground or the background. These models are either known a priori or estimated by the
user input, when the latter is sufficient. Otherwise the regional term is weighted low relative
to the boundary term or in practice λ = 0. This approach is followed in [2] as well as in
this study. The boundary term encompasses the boundary properties of the configuration A,
represented in the weighted graph. Each edge in this graph is usually assigned a high weight
if the pixel intensity difference of its adjacent nodes is low and vice versa. The exact value
of these weights is calculated with the following Gaussian function [3]:

B{p,q} = K · 1
dist(p,q)

· exp
−(Ip− Iq)2

2σ2 (2)

where Ip and Iq are the intensities of two pixels p and q, and dist(p,q) the euclidean distance
between them. dist(p,q) is set to 1 in case of equally spaced grids (iso-voxel volumes) when
only the immediate neighbours are taken into account. Setting K to 1, leads to a Gaussian
function with its peak equal to 1, which is useful for the normalisation of the graph weights.
σ therefore is the only free parameter in Equation (2), which controls the full width at half
maximum of the peak of the Gaussian function.

2.3 The Feature Detector Based Boundary Term
In order to couple Graph-Cuts with feature detectors, the following steps are followed:
Firstly, since the raw response of most feature detectors [5],[12],[9] lies in the interval [0,1],
a Gaussian function as in [6] is used, where β = 1

2σ2 . Secondly, the effect of the |Ip− Iq|
term is to locate the cut at points of high intensity difference. As we wish the cut to occur
at maxima (ridges) in the feature output, we replace this term in the Gaussian function with
|Rp+Rq|

2 , where Rp and Rq is the response of the edge detector on pixel p and q respectively.
Consequently we have:

B{p,q} = exp(−ε · (Rp +Rq)2) (3)

where ε = β
4 . Equation (3) describes the boundary term used in this study, which enables

Graph-Cuts to couple with feature detectors. Figure 2 further illustrates the cut placement
when the edge weights are calculated by summing the node values.
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2.4 Feature Detectors
In this study the raw response of SUSAN (Smallest Univalue Segment Assimilated Nucleus)
[12] was utilised to drive the Graph-Cuts segmentation. SUSAN in 3-D uses a spherical ker-
nel, which defines a voxel neighbourhood. The value of the voxel at the center of the kernel
is updated based on the detected intensity contrast between this voxel and its neighbours.
A threshold is set by the user to determine the minimum contrast of features that will be
detected. SUSAN’s kernel-based operation enables it to respond to texture edges by taking
into account the intensity variance of a voxel neighbourhood, which is a texture measure
[7]. For this reason this detector was used for recovering the edges between CG and PZ. It
was found useful to smooth the noisy output of the detector with a spherical kernel of radius
equal to 7 that outputs the mean intensity of the voxels inside the kernel. The output was
then normalised to [0,1].

3 Experiments and Results
The validation experiment of this study consisted of segmentation of the Central Gland of the
prostate from a dataset of 22 patients with BPH using Graph-Cuts and Graph-Cuts with the
modified boundary term coupled with a SUSAN edge detector for the same computerised
seed initialisation. The seeds were selected randomly to avoid any bias and in a comput-
erised fashion to exclude human inconsistency from the evaluation process as in [11]. More
specifically, 30 seeds were selected for the Central Gland, 30 for the Peripheral Zone and
30 for the Background, given the ground truth of these regions. The seeds were uniformly
spread throughout the ground-truth volumes of interest. The reason for selecting 30 seeds is
that we have previously observed [11] that this number of seeds is enough for the algorithm
to converge to its best performance. For every image 30 different seed initialisations were
used to allow for observations with statistical significance.

The two algorithms were optimised with respect to their free parameters, prior to the
experiment. Graph-Cut’s σ parameter was set to 0.8, SUSAN’s threshold was set to 24 and
ε was set to 120. The results (Table 1) showed a decrease of almost 20% in the volumetric
difference between segmentation and ground truth, when the new algorithm was used. Fig. 1
shows an example segmentation that further illustrates the different outcome from original
Graph-Cuts and our approach.

4 Concluding Remarks
In this paper a boundary term is presented, which enables Graph-Cuts to couple with feature
detectors that return a confidence with respect to the detected image feature as in [10]. How-
ever, it can also make use of the raw response of detectors such as [5], [12], [9]. Its validation
is performed via its application to the differential segmentation of the prostate. The results
demonstrate considerable improvement of the CG/PZ separation when it is coupled with
a SUSAN edge detector, for randomly selected seeds from the ground truth. The random
selection of seeds was used to permit unbiased comparison between the algorithms. Our ob-
servation is that the results are further improved when the seeds are strategically selected by
an expert. Given the fact that different detectors are appropriate for different domains, this
enables Graph-Cuts to couple with the appropriate feature detector for a particular problem.
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Method Vol.Diff. (%) Max.Dist (voxels) Avg.Dist.(voxels)
GC 46.80±7.24 10.69±0.31 2.61±0.11
GC+SUSAN 27.89±3.84 7.35±0.35 1.76±0.07

Table 1: Mean differences from ground truth ±1.96× standard error across the 22 images,
obtained from Graph-Cuts and Graph-Cuts+SUSAN segmentation for 30 randomly planted
seeds.
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Abstract.   In this study we investigate cases of endometriosis with bladder involvement. The aim is to 
segment the bladder wall and identify any abnormal change of bladder wall thickness. T1- and T2-
weighted multi-spectral magnetic resonance images (MRI) are analysed for segmenting the outer and 
inner wall boundaries, respectively. A level set method without re-initialisation has been used, and 
was found to fail on the T1-weighted images. Therefore, we propose a multi-spectral MRI analysis 
based on intensity profiles along the zero level set contour. This method can be used as a metric for 
estimating the mean bladder wall thickness and for measuring global/local edge conditions, which 
can be potentially used as a prior for the segmentation process.  

1 Introduction  
Endometriosis is a condition defined by the presence of endometrial glandular and stromal tissue in 
areas outside the uterus. It occurs most frequently in the pelvic organs and peritoneum. Endometriosis 
can be a debilitating condition that has a profound effect on the quality 
untold misery and pain over many years. It has been estimated that approximately 9% of the general 
population have endometriosis (estimated range 4-20%). Endometriosis can involve different 
abdominal and pelvic structures. Common sites are the ovaries, uterus (utero-sacral ligaments, pouch 
of Douglas), bowels, and bladder. Laparoscopy is currently the gold standard method to identify the 
disease. The safety of the removal of the lesion will depend on their site and size. Accurate pre-
operative diagnosis of deep infiltrating endometriosis is essential to inform women about the specific 
risks of surgery, as well as to planning surgeries more effectively in hospitals. 

Acquired abdominal MR images of the patients are inspected by individual radiologists. Double 
reading is costly and rare. Due to the huge amount of data and the subjectivity of an individual 
radiologist there is a clinical need for automated, computerised evaluation techniques to 
assist in the interpretation process. In this study, we have investigated specific cases of endometriosis 
with bladder involvement, which requires to segment the bladder wall and identify any abnormal 
change of bladder wall thickness. Two pairs of images of representative patients are presented, 
consisting of a T1- and a T2-weighted MR axial mid-slice image of the bladder. Since urine fluids 
inside bladder are hyperintense on T2- and hypointense on T1-weighted images, and bladder muscles 
are hypointense on both T1- and T2-weighted images, a natural approach is to segment the inner 
bladder wall boundary from T2 image and the outer wall boundary from T1 image. All pairs of 

1. We have assumed 
that non-rigid deformation is negligible between the image pair.  

                                                                                                                          
1  http://www.doc.ic.ac.uk/~dr/software/index.html  
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2 Background     Level  Set  Segmentation  
The level set method, which has been the subject of a large amount of work in recent years, is a very 
elegant way to handle active contours. The basic idea is to embed the contour in a higher dimensional 

function , ,t x y , called the level set function. By evolving the level set function, the resulting 

contour C  is extracted from the zero level, i.e. the contour is the zero level set of the level set 

function, or , | , , 0C t x y t x y . The level set method is non-parametric and implicit. The 

contours represented by the level set function may break or merge naturally during the evolution, and 
any topological changes are automatically handled. The evolution is a classic optimisation problem 
which minimises a total energy term totalE . Commonly totalE  is a weighted sum of different energy 

terms. The external energy term extE  is the driving force to move the active contour towards object 

boundaries and handle topological changes. The internal energy term intE  comprises mathematical 

constraints, which for example can be a curvature constraint. There is also another energy term priE , 

which can incorporate any prior information.  

Based on the early geodesic active contours [1, 2], variational level set methods were introduced. For 
example, Chan and Vese [3] proposed an active contour model using a variational level set 
formulation incorporating region-based information; Leventon et al. [4] proposed a variational level 
set formulation incorporating shape-prior information. The level set method proposed by Li et al. [5] 
is a particular variational level set formulation that penalises the deviation of the level set function 
from a signed distance function. By forcing the level set function to be close to a signed distance 
function, this method eliminates the need for the costly re-initialisation procedure that is used in many 
other level set methods to maintain a stable contour evolution. It is this method that we have adopted 
to generate the results in this paper due to its main advantages: it is fast, as larger time steps can be 
taken without becoming numerically unstable; and its initialisation is very flexible and efficient. Li et 
al. [5] proposed three energy terms: 

2
1

1 1
2

E dxdy   2E g dxdy   and  3E gH dxdy  (1) 

These are the energy terms to be minimised in 2 . More specifically, 1E  is the internal energy 

since it is a function of  only; 2E  and 3E  are both external energy terms, which are based on the 

length of the contour and the area enclosed by the contour respectively.  is the univariate Dirac 
function, H  is the Heaviside function, and g  is the edge indicator function for the image I  defined 

by 
121g G I , where G  is the Gaussian kernel with standard deviation . 

Minimisation of these energy terms with respect to  is solved by the Euler-Lagrange equation, 

which computes the first variation (or the Gâteaux derivative) of totalE , denoted by totalE :  

 div divtotalE g g
t

 (2) 
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where t  is the gradient flow that minimises the functional totalE . In our implementation, if we 

let ,i jL  be the approximation of the right hand side in (2) and let  be the time step, then the 

iteration scheme can be written as 1
, , ,
k k k
i j i j i jL . 

3 Multi-Spectral  Analysis  of  Level  Set  Intensity  Profiles  
Once T1 and T2 images are rigidly registered, a sequential segmentation approach is performed using 
the level set without re-initialisation method as presented above. As shown in Figure 1a, a level set 
evolution was initialised with a rectangle inside the bladder on T2-weighted image. The result shown 
in Figure 1b was the segmentation of inner bladder wall. This segmentation is straight forward 
because of the homogeneous high intensity within the bladder on the T2-weighted image. The 
resulting level set function is then used as the initialisation for second evolution in the T1-weighted 
image (Figure 1e), in order to find the outer bladder wall. However, the segmentation on the T1-
weighted image can be compromised by MR bias field effect, low contrast between organs, 
complexity of abdominal structures, or a combination of different effects. Figure 1f shows an example 
when the final result underestimates the outer wall boundary due to MR bias field effect causing 
artificial higher intensities on the anterior side of bladder (top on Figure 1f). Figure 1c and Figure 1g 
show zoomed-in segments of the corresponding region of the T2- and T1-weighted image respectively.  

Segmentation results from the level set method are rarely definitive, especially as the method can fail 
for a number of reasons and is sensitive to parameter selection. Further analysis is needed to ensure 
our findings and possibly to act as prior to guide the segmentation process. We propose to perform a 
multi-spectral analysis of the intensity profiles of the T1- and T2-weighted image along the zero level 
set normal directions. The first step is to compute the unit normals along the zero level set result from 
the T2 segmentation. On Figure 1c and Figure 1g, unit normals of the resulting T2 contour were 
drawn as blue arrows overlaid on both T1- and T2-weighted images. For traditional level set methods, 
where the level set function  is a signed distance function, unit normals can be found simply by 

computing the normalised gradient of ,  without re-initialisation, 

i.e. when  is not a signed distance function, unit normals were computed from a signed distance 
function  of the resulting contour. The second step is to search for intensity values along each unit 
normal. Pixel intensities were extracted from both T1- and T2-weighted images, and two-dimensional 
arrays of these intensity profiles were constructed. Figure 1d and Figure 1h display two segments of 
these arrays for the T2- and T1-weighted images, respectively. The third step is to analyse these 
intensity profiles. For this, three types of intensity profiles are plotted. Figure 1i shows the global 
mean profile, obtained from averaging all intensity profiles along the contour. This clearly shows a 
very distinctive profile across the bladder wall, where the T2 profile appears to have a concave shape, 
viz. a constant intensity inside the bladder, a sharp intensity decrease at the inner wall boundary, and a 
sharp intensity increase at outer wall boundary, the latter of which is also matched by the T1 profile. 
Mean bladder wall thickness can be interpreted by the spread of the concave region, which is about 4 
mm in this case. Figure 1j shows a local mean profile averaging over the zoomed-in segment in 
Figure 1c and Figure 1g. Here it also shows a good profile which implies a higher level of confidence 
in the local edges, which can be exploited for relaxing constraints to overcome local minima in order 
to reach the correct boundary. Figure 1k shows an individual profile at the centre of the zoomed-in 
segment, which demonstrates good edges but a higher sensitivity to noise; thereby, we prefer to use 
the mean profile over a local segment to represent local intensity profiles. 
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a) T2 initialisation

 

e) T1 initialisation

 

i) Mean intensity profile

 

b) T2 segmentation

 

f) T1 segmentation

 

c) T2 zoomed-in segment

 

g) T1 zoomed-in segment

 

j) Mean profile over segment

 

d) T2 intensity profiles

 

h) T1 intensity profiles

 

k) Mid-profile of the segment

 
F igure 1 Analysis of patient 1 data. (a) Initialising T2 segmentation with a rectangle. (b) Resulting contour on T2 image. 
Two local segments will be analysed (blue and green rectangles). (c) Zoom-in of the blue segment with unit normals 
overlaid (highlighted blue rectangle). (d) Array of T2 intensity profiles extracted along the normals. (e) Initialising T1 
segmentation using the T2 zero level set. (f) Resulting contour on T1 image. (g) Zoom-in of the blue segment on T1 image, 
showing outer wall boundary underestimated. (h) Array of the corresponding T1 intensity profiles. (i) T1 and T2 mean 
intensity profiles. The x-axis is distance away from the contour in mm. The y-axis is image intensity. (j) T1 and T2 mean 
intensity profiles over the blue segment. (k) The mid-profile (one single profile) of the blue segment.  

4 Discussion  and  Conclusion  
Good profiles as those in Figure 1 are not always present. Even on the same set of images, weak local 
profiles may exist. Figure 2 shows another zoomed-in region of the previous image pair. Figure 2b 
illustrates that the segmentation of the T1-weighted image can overestimate the outer wall boundary, 
which may be due to noise. This scenario is reflected in a less strong local intensity profile plotted in 
Figure 2c. Again, this information can act as a prior for the segmentation process, which would 
enhance the edge constraint to trap the evolution at the local minimum. For the measurement of 
bladder wall thickness, this local profile also indicates a thinner bladder wall at this location as the 
spread of the concave region decreases from the mean. In an extreme case of a very weak edge shown 
in Figure 3, the concave region in a local mean profile was found to be of a completely flat 
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appearance. Choosing a higher weight for the edge constraint will not have much effect since there is 
no observable intensity gradient. Nevertheless, in this case we can still estimate the mean bladder wall 
thickness from the global mean intensity profile.  

In our current investigations, we are incorporating the local intensity priors into a coupled level set 
framework, for a more robust and accurate bladder wall segmentation using multi-spectral MRI.  

a) T2 zoomed-in segment

 

b) T1 zoomed-in segment

 

c) Mean profile over segment

 
F igure 2 Analysis of local green segment in F igure 1. (a) Zoomed-in region on T2 image. (b) Zoomed-in region on T1 
image, where boundary is overestimated. (c) Mean T1 and T2 intensity profiles averaging over the segment in (a) and (b).  

a) T2 segmentation

 

b) T1 segmentation

 

c) Mean profile over segment

 
F igure 3 Analysis of patient 2 data. (a) Resulting segmentation on T2 image. (b) Sequential segmentation on T1 image with 
weak boundaries. (c) Mean T1 and T2 intensity profiles averaging over the local segment in blue rectangle in (a) and (b).  
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Abstract

CT-Colonography is widely utilised in the diagnosis of colorectal cancer. However,
the technique is difficult and time-consuming because residual stool may simulate col-
orectal cancer or potentially precancerous polyps. Consequently, scans are routinely
performed with the patient in both prone and supine positions to help differentiate mo-
bile faecal matter from fixed abnormalities of the colonic wall. Currently, the prone and
supine datasets have to be manually aligned which can be very difficult due to the sig-
nificant colonic deformation which takes place during patient movement. Establishing
accurate spatial correspondence between prone and supine inner colon surfaces recon-
structed from CT images can therefore potentially improve the accuracy and reduce the
time taken for interpretation. This paper presents a method for mapping the inner colonic
surface to a cylinder using the Ricci flow which provides a 2D indexing system over the
full length of the colon. This procedure converts the registration task from a 3D to a 2D
problem and could help cope with the large deformations occurring between prone and
supine positions.

c� 2010. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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1 Introduction

Today, CT colonography, or virtual colonoscopy, has been established as a methodology
for screening colorectal lesions in Europe, USA and Japan. Unlike traditional colonoscopy,
which can have high miss-rates with small adenomas [8], CT imaging has the potential to
enable examination of the whole colonic surface for lesions. This is done by imaging the
patient in prone and supine positions to rearrange remaining fluids or a collapsed colon. Fur-
thermore, the discomfort the patient suffers from is drastically reduced and there is consid-
erably less danger of perforating the colon during the screening process. In order to achieve
the best quality images, the bowel is prepared in accordance to current recommendations
[11]. The administration of contrast agents even enables the digital cleansing of remaining
faecal matter from the CT images. However, interpretation of CT colonography is difficult
and time-consuming even for experienced readers. Retained faecal matter or anatomical
structures such as thickened haustral folds can closely simulate pathology and lead to false
positive diagnoses. This can be reduced if the information from both prone and supine
images is taken into account. Currently, the radiologist still has to align both CT images
manually which is a time-intensive and difficult task. Therefore, a method for establishing
the spatial registration between both views has the potential to ease the process and increase
the accuracy of the diagnosis. Several groups have attempted to register the prone and supine
CT images of the colon using features or voxel-based approaches [1, 5, 6, 10]. However, it
is difficult to identify features accurately and a very limited number of corresponding points
are unable to cope with complicated deformation between prone and supine positions in a
reliable way. Furthermore, based on our own studies, conventional non-rigid registration
approaches based on image intensity cannot deliver a reliable and accurate result. These
approaches cannot fully describe the deformation of the colonic surface.

These difficulties in establishing the spatial correspondence between both views in three-
dimensional space motivates us to propose a method to simplify the registration task. The
proposed method is based on a 2D parameterisation which represents the colon as a cylinder
using a conformal one-to-one mapping. Hence, it converts the non-rigid 3D registration task
to a 2D problem. This procedure has the potential to enable a better alignment of the inner
colon surfaces in the prone and supine positions. In order to produce a 2D parameterisation
of the inner colonic surface, we flatten the colon onto a 2D plane. The surface is repeated in
radial direction, but not in the direction along the colon. Therefore, the surface is topolog-
ically cylindrical. Several methods to achieve this flattening have been proposed. This was
originally done to produce better visualisations for examining the colonic surface in order
to detect polyps [4]. Methods based on conformal mapping can give a one-to-one mapping
of the entire surface onto planar space while minimising the local angular distortion. This
preserves local shape attributes. This principle is illustrated in Fig. 1 where a surface S in
R3 is mapped to D in R2 using a one-to-one mapping φ . The extracted inner colon surfaces
need to be of genus-zero so they can be used with conformal mapping methods. We had to
ensure this by manually editing some of the segmentations in order to achieve topologically
correct surfaces. Furthermore, a point in rectum and cecum need to be selected manually to
define the start and end of the cylindrical 2D representation.
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Figure 1: Mapping the inner colon surface onto a cylinder and 2D manifold, where the colour
scale indicates the shape index (see section 2.3)

2 Methods
2.1 Parameterisation of the Inner Colon Surface
One possible conformal mapping to parameterise arbitrary discrete surfaces is the recently
introduced Ricci flow method [3]. Qiu et al. [7] were the first to apply this method to the
colon using volume rendering for the purpose of visualisation. We use the shape index SI
(see section 2.3) to visualise anatomical features and ultimately guide a registration. The
Ricci flow method deforms a surface based on its local curvature in order to achieve the
parameterisation and can be defined by

dui(t)
dt

= K̄i−Ki, (1)

where Ki is the local discrete Gaussian curvature of S and K̄i is the desired Gaussian cur-
vature. ui are the radii computed from a circle packing metric [3]. The Ricci flow can be
regarded as the gradient flow of the Ricci energy [2]. This can be minimised using the steep-
est gradient descent method [3]. For the purpose of producing a mapping onto planar space,
we set the local target curvatures K̄i to zero at all vertices.

2.2 Inner Colon Surface Extraction
We use the air inside the colon as segmented by the method described by Slabaugh et al.
[9] to extract the inner colon surface. We had to ensure topologically correct segmentations
by manually editing in order to achieve genus-zero surfaces. Future work will investigate
automated topological correction. The marching cubes algorithm is then used to extract a
discrete surface mesh. This is subsequently smoothed with a sinc-filter to achieve a contin-
uous surface which converges (using the Ricci flow method). The mesh is also decimated
using a quadric edge collapse in order to reduce computation time. Finally, a Loop subdivi-
sion is used to achieve uniformly sized and non-skewed faces. This results in a closed and
simply connected genus-zero surface S which lies on the air/tissue border of the colon.

In order to parameterise S with the Ricci flow method we convert it to a genus-one surface
SD [3]. Therefore, we define holes in the surface at manually identified points in rectum and
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Figure 2: Computed planar embeddings with error Emax = 2e−5 rad (left), Emax = 5e−6 rad
(middle) and Emax = 5e−6 rad averaged (right)

Figure 3: Sampling the unfolded mesh. The top and bottom bands represent the repetition
of the planar embedded meshes D of the surface S. The raster-image I will fill the space
between the two horizontal lines.

cecum. The remaining surface is doubled, inverted and glued with the original mesh on the
vertices along the previously produced holes. The resulting surface SD is then parameterised
using the Ricci flow.

2.3 Cylindrical Representation of the Inner Colon Surface
The Ricci flow converges to a planar 2D manifold D embedded in R2 with its local Gaussian
curvatures being near to zero everywhere. Once the maximum difference error Emax between
all Ki and K̄i is small enough, D can be computed, using the resulting edge lengths of each
face. We start from a seed face and then iteratively add neighbouring faces similarly to [3].
However, we computed D using an averaging method which allows stopping the convergence
earlier. We compute the position of each triangle vertex based on the intersection of two
circles with radii equal to the corresponding edge lengths. This results in a planar mesh
with cracks and overlapping faces as Ki is not exactly zero at every vertex. Those errors in
computing the planar embedding are reduced as the Ricci flow converges to a lower error.
Sections of 2D surfaces, computed from the same inner colon surface after different error
levels Emax, are shown in Fig. 2 (left) and Fig. 2 (middle). When the errors in the planar
embedding are small enough, the Ricci flow can be stopped and corresponding vertices of
neighbouring triangles can be joined together by averaging their 2D position. This is shown
in Fig. 2 (right) and results in a closed mesh without cracks or overlaps. We want to generate
a rectangular raster-image I which covers the full inner colon surface S. The x-direction is
along the colon and y-direction is going radially around its circumference. However, D is
not rectangular. Therefore, we repeat the mesh in the y-direction until it covers a rectangular
region corresponding to the entire colon surface S as illustrated in Fig. 3. The top (0◦ ) and
bottom (360◦ ) edges of the images correspond to the same line along the surface S.

Each pixel value of I can be any measurement computed on the colon surface S, or could
potentially be any measurement computed from the original CT voxel data in the region
of S. Here, the intensity values are interpolated from the shape index (SI) computed at
each vertex of S. The shape index is defined as SI ≡ 1

2 −
1
π arctan

�
κ1+κ2
κ1−κ2

�
, where κ1 and

κ2 are principal curvatures computed on S. The resulting images for the prone and supine
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Figure 4: Prone (top) and supine (supine) images of the inner colon surface with the shape
index as intensity.

position of the patient with dimensions of nx = 3000 and ny = 150 pixels are shown in Fig.
4. Corresponding features, like haustral folds, flexures or the teniae coli are clearly visible in
both images. These images could be aligned using an intensity-based non-rigid registration
method. This will establish the full spatial correspondence between the inner colon surfaces
extracted from the two CT images and can be mapped back into three-dimensional space
using the mapping φ .

3 Summary and Future Work
We have presented a method for mapping the inner colon surface to a cylindrical 2D manifold
in order to simplify the prone to supine registration task. This is done using a one-to-one
conformal mapping of the entire inner colon surface. One dimension corresponds to distance
along the colon and the other to its angular orientation. This indexing system will be used to
simplify the registration task from a 3D- to a 2D-problem. From the parameterisation we can
compute an image I. Each pixel in I corresponds to a position in three-dimensional space
and is assigned the value of the local shape index computed on the 3D surface. These images
generated from the prone and supine views could be used to guide a non-rigid intensity-based
registration in order to establish full spatial correspondence between the prone and supine
inner colon surfaces.

We are currently investigating a non-rigid method for establishing the spatial correspon-
dence between the colon surfaces extracted from the prone and supine CT scans, based on the
method of producing 2D parameterisations of both surfaces proposed here. This is based on
the method of producing 2D parameterisations of both surfaces proposed here. Furthermore,
we will investigate automated topological correction of the colon segmentation. This is in
order to increase robustness and deal with insufficient distention where the colon surface is
collapsed. We will also explore the effects of varying parameters of the surface extraction.
It will also be interesting to extend the proposed framework to include shape, intensity or
statistical information from the original CT-images.
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Abstract
Pattern recognition in histopathological image analysis requires new techniques and

methods. Various techniques have been presented and some state of the art techniques
have been applied to complex textural data in histological images. In this paper, we
compare the novel Adaptive Discriminant Wavelet Packet Transform (ADWPT) with a
few prominent techniques in texture analysis namely Local Binary Patterns (LBP), Grey
Level Co-occurrence Matrices (GLCMs) and Gabor Transforms. We show that ADWPT
is a better technique for Meningioma subtype classification and produces classification
accuracies of as high as 90%.

1 Introduction
Meningioma subtype classification is a real-world problem from the domain of Histological
Image Analysis. Meningiomas are tumours of the Meninges (covering of the brain and the
nervous system). Histological images are real world data and are considerably different from
synthetic textural data. Histological images have a uniquely complex texture which repre-
sents a new set of issues. The texture in histological images such as Meningiomas is more
or less non-homogenous i.e. different areas in an image may have different textural proper-
ties which in turn may represent different patterns. Hence, textural analysis and subsequent
recognition is not straightforward. Moreover, intra-class variation amongst the samples be-
longing to the same class is high and to make matters worse inter-class differences amongst
the samples is low. This could be seen in the Meningioma subtype images depicted in the
Figure 1.

Diagnosis of Meningiomas is still carried out by human experts. Its hampered by the fact
that the reviewing of the histological slides is time consuming, prone to error and the inter-
rater variability amongst the experts is considerable [2] which makes the therapy regimens
biased. Definition of diagnostic criterion for all tumour entities within the World Health
Organization (WHO) Classification of Tumours [4] has been problematic. Hence, there is
a need for an automated computer based technique to introduce more objectivity in to the
analysis. Most Meningiomas are benign [8] which means that neuropathologists are spend-
ing most of their time analysing and diagnosing benign tumours. Consequently, their is an
urgent need to develop automated techniques to aid the neuropathologist.
c� 2010. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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a. b.

c. d.

Figure 1: Various Meningioma Images belonging to each subtype a. Meningiothelial, b.
Fibroblastic, c. Transitional, d. Psammomatoes

Some of the results on Meningioma subtype classification have been presented in [10]
[9] [12] [5] [11] [1]. Many techniques have been used in literature for texture classification.
Randen and Husoy [13] presented a paper on comparing various texture analysis techniques
for Brodatz texture classification. In this paper we compare the novel Adaptive Discrimi-
nant Wavelet Packet Transform (ADWPT) with Gray Level Co-occurrence Matrix (GLCM),
Gabor Transform (GT) and Local Binary Patterns (LBPs) for Meningioma subtype classifi-
cation. This paper presents comparative results between these techniques.

2 Methods

2.1 Gabor Transform
Gabor analysis of the textures was carried out as proposed by Ma and Manjunath [6]. Four
scales and six orientations were used to provide texture representations at various scales and
orientations. Energy feature is used to construct the feature set. The mean and variance as
suggested by Ma and Manjunath was also computed and classification results generated.

2.2 Local Binary Patterns
LBP [7] with a radius of 1 and 8 neighbourhood pixels was used in the analysis. Other radii
and number of pixels were also used with no apparent improvement in results.

2.3 Adaptive Discriminant Wavelet Packet Transform
ADWPT was carried out up to the fourth level. The subband selection for the most discrim-
inant decomposition was obtained using the Fisher Discriminant. A detailed discussion of
ADWPT is presented in [10] and [11].

2.4 Gray Level Co-occurrence Matrix (GLCM)
GLCM analysis was carried for four directions i.e. 0o, 45o, 90o and 135o with distances set
from 1 to 5. This generated 20 GLCM matrices for each image.
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2.5 Classification using Support Vector Machines (SVMs)

A gaussian kernel is used and a search for the best parameter is carried out. Matlab version
of SVMs [14] developed by Chang and Lin [3] are used for classification.

3 Results and Discussion

Figure 2 shows the projections on the first three principal components performed after PCA
analysis of the features acquired for the two best feature sets i.e. GLCM and ADWPT re-
spectively. The other figures have not been included due to lack of space. The 3D plots
show that ADWPT performs much better than LBP, GLCM and Gabor Transform. In case of
ADWPT, psammomatous is separated well with transitional also found on the edge forming
a relatively separate cluster. GLCM produces comparative results to Gabor but is not able to
differentiate psammomatous well. LBP performs the worst with no clusters seen.

The classification results given in Table 1 again prove that ADWPT provides the best
differentiation amongst the meningioma subtypes followed by Gabor and GLCM with LBP
providing the worse results. There were a total of 960 meningioma images with 240 images
per subtype. 20% of the data is used for testing i.e. 1 patient per subtype while the rest used
for training. Daubechies 8-tap filter was the wavelet filter used.

Table 1: 5-fold cross validated classification accuracy results using Support Vector Machines
for LBP, GLCM, Gabor Transform and ADWPT (Fishers Discriminant) (F=Fibroblastic,
M=Meningiotheliamatous, P=Psammomatous, T=Transitional)

Feature F M P T Avg
ADWPT 79 89 97 89 89
GT 49.2 64.2 95 60.8 67.3
GLCM 68.3 74.2 75 60 69.4
LBP 12.5 65.6 66.7 70.9 53.9

The results in table 1 clearly show that ADWPT performs much better than GLCM, GT
and LBP for meningioma subtype classification. The selection of subbands using the AD-
WPT provides a mechanism for selecting the optimal wavelet packet representation. This
enables the extraction of good features for classification. GT and GLCM acquire classifi-
cation accuracies of around 67% and 69% respectively which is lower than ADWPT. LBP
provides the worst classification accuracies of 53.9%.

4 Conclusion

The paper shows that ADWPT performs much better than the two spatial analysis tech-
niques namely GLCM and LBP and the spatial-frequency analysis technique namely Gabor
Transform included in the study. In the future we will compare the technique with spatial
frequency analysis techniques such as Short time fourier transform and the wavelet packet
algorithm implemented by Al-Kadi [1]. A more detailed analysis with various other feature
and scales may be carried out for GLCMs as well.
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Figure 2: Projections on the first 3 principal components obtained using the PCA analysis of
the a. GLCM-based Energy features and b. ADWPT (Fisher Distance) based Energy feature-
set (Fibroblastic (F), Meningiotheliamatous (M), Psammomatous (P) and Transitional (T))
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Abstract

The development of new vessels on the retina of people with diabetes is rare, but is likely
to lead to severe visual impairment. This paper investigates the selection of suitable
image features for the automatic detection of new vessels on the optic disc. The fea-
tures are chosen based on their discrimination capability (tested using the non-parametric
Wilcoxon rank sum and Ansari-Bradley dispersion tests) and absence of correlation with
other features (tested using the Kendall Tau coefficient). Classification was performed
using a support vector machine. The system was trained and tested by cross-validation
using 38 images with new vessels and 71 normal images without new vessels. Fourteen
features were selected, giving an area under the receiver operator characteristic curve of
0.911 for detecting images with new vessels on the disc. The method could have a useful
role as part of an automated retinopathy analysis system.

1 Introduction
Diabetic retinopathy causes several different retinal lesions. Usually the first sign of retinopa-
thy is the microaneurysm (MA). These appear in the photograph as small red dots. As the
disease progresses capillaries may begin to leak, forming exudates, bright yellow/white lipid
deposits. Larger, dark red blot haemorrhages may also form at this stage. As the disease
progresses to its proliferative stage, ischaemia can trigger abnormal vessel changes, such
as venous beading (VB), intra-retinal microvascular abnormalities (IRMA) and new vessel
growth. New vessels are classified according to their position, either new vessels at the disc
(NVD) if they occur on or within one optic disc diameter of the disc, or new vessels else-
where (NVE). Although the prevalence of new vessels is low, typically 0.4% of the screening
population [3], the associated risk of rapid vision loss mean it must be detected reliably. Fig-
ure 1 shows some examples of normal and abnormal optic disc vessels.

There has been little work automating new vessel detection. However, Jelinek et al., in a
study of 27 images, examined vessel characteristics in fluorescein angiograms in an attempt

c� 2010. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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(a) (b)

Figure 1: Examples of (a) normal discs and (b) discs containing abnormal vessels, indicated
by the white arrows. New vessels are likely to bleed and lead to retinal detachment.

to predict proliferative disease [1]. This paper describes a method for detecting new vessels
on the optic disc in standard screening photographs.

2 Method
A total of 109 colour retinal images were collected from two screening programmes and
a hospital eye clinic. Thirty-eight of the images contained new vessels. Two experienced
graders annotated vessels they considered abnormal; the logical AND of their annotations
was the reference standard.

2.1 Small vessel detection
Several authors have described methods for segmenting normal retinal vessels outside of the
optic disc, but there has been little interest in the disc vessels themselves (indeed the disc is
often masked out altogether). The method below combines a watershed transform and ridge
strength to detect the small and often tortuous disc vessels.

The image was first inverted and filtered with a Gaussian function (standard deviation
equal to 2 pixels) to prevent over-segmentation. The binary watershed lines were thinned,
such that only the pixels at vessel bifurcations have more than two neighbours. Candidate
segments were separated by removing the pixels at bifurcations. The watershed transform
generates closed regions, not all of which coincide with vessels. To remove the non-vessel
segments the ridge strength, kappa, was calculated as [2]

κ =
L2

xLyy +L2
yLxx−2LxLyLxy

(L2
x +L2

y)3/2 , (1)

where L is the Gaussian filtered image, the standard deviation determining the ridge scale.
The subscripts indicate partial derivatives, for example Lx is the first partial derivative of L
with respect to x and Lxx is the second partial derivative with respect to x. κ will be positive
for the vessel centre line ridges and negative in the valleys between vessels.
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2.2 Classification and feature selection
Fifteen features were calculated for each segment, based on characteristics human observers
use to recognise abnormal vessels. They were, briefly: (1) segment length, (2) gradient (the
mean Sobel gradient magnitude along the segment), (3) the Sobel gradient variance along
the segment, (4) segment direction, (5) tortuosity 1 (sum of absolute changes in direction),
(6) tortuosity 2 (maximum difference in angular direction along segment), (7) tortuosity 3
(mean change in angular direction per pixel), (8) grey level (mean segment grey level), (9)
grey level variance along segment, (10) distance of segment centroid from disc centre, (11)
vessel density, (12) number of segments, (13) mean ridge strength (κ), (14) mean estimated
vessel width, (15) mean estimated vessel wall gradient.

A Support Vector Machine (SVM) was chosen as the classifier1 for its rapid training
phase and good classification. All the features were normalised to have zero mean and unit
variance. The SVM was trained and tested by cross validation.

In order to be useful, features must discriminate normal and abnormal vessels. Fur-
thermore no two features should be strongly correlated to prevent redundancy. Two non-
parametric statistical tests were used to infer discrimination ability: the Wilcoxon rank sum
test to test whether the normal and abnormal median feature values differ and the Ansari-
Bradley test to determine whether the dispersions of the normal and abnormal values differ.
If neither the median nor the dispersion differ significantly then the feature is unlikely to
be useful for classification, and indeed could simply add noise and degrade performance.
Correlation was tested using the non-parametric Kendall Tau test.

3 Results
From table 1 the top two features according to the Wilcoxon test are 12 and 15. The poorest
two features are numbers 4 and 1, where in neither case is the median for normal segments
significantly different from that of the abnormal segments. Referring to the Ansari-Bradley
test results the dispersion of feature 4 is not significant either, so this feature is unlikely to
add any value to the classification. In contrast, the dispersion for feature 1 is significant and
so, despite there being no difference in the median values, this feature may still be useful for
classification. This was confirmed by leaving out the features one at a time. Performance was
degraded in all cases except when feature 4 was excluded, when classification performance
improved.

Figure 2 shows the Kendall Tau correlation coefficients for all feature combinations.
None of the correlations are particularly strong. Features 2 and 3, and features 5 and 6 have
the strongest correlation (greater than 0.5) but leaving any of these features out degrades the
classification performance. Figure 3 shows the ROC curve for detection of abnormal seg-
ments and abnormal images. Per image performance is better than the per segment perfor-
mance as abnormal images contain many abnormal segments. Maximum accuracy of 84.4%
is achieved at a sensitivity of 84.2% and specificity of 85.9%. An alternative operating point
gives a sensitivity of 92.1% and a specificity of 73.2%.

The MATLAB code took 35 seconds on an Intel 5160 Xeon processor (3 GHz) to cal-
culate the fifteen features for each image and classification took less than one second per
image.

1Chih-Chung Chang and Chih-Jen Lin, LIBSVM: a library for support vector machines. Available from http:
//www.csie.ntu.edu.tw/~cjlin/libsvm
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Wilcoxon rank test
Feature Score p value

12 22.72 2.7×10−114

15 −15.94 3.6×10−57

8 15.37 2.5×10−53

14 −14.60 2.7×10−48

13 −12.23 2.2×10−34

2 9.10 8.8×10−20

3 7.72 1.2×10−14

9 7.46 8.5×10−14

11 6.57 5.1×10−11

7 −4.79 1.7×10−06

5 3.84 0.00012
10 −3.15 0.0016
6 3.11 0.0019
1 −1.76 0.078
4 −0.00 1

Ansari-Bradley test
Feature Score p value

15 −17.66 8.9×10−70

13 −14.48 1.6×10−47

14 −6.81 9.6×10−12

1 −5.95 2.7×10−09

8 −5.60 2.1×10−08

10 −4.62 3.9×10−06

9 4.21 2.5×10−05

2 3.68 0.00023
7 −3.37 0.00076
3 3.12 0.0018
5 2.74 0.0061
4 −1.56 0.12
12 −1.22 0.22
11 0.85 0.4
6 −0.25 0.8

Table 1: Performance of the fifteen feature parameters assessed using the Wilcoxon rank and
Ansari-Bradley tests. The most significant scores at the top of the tables.
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Figure 2: Feature-feature correlation tested using the Kendall Tau test. The brighter the grey
level the stronger the correlation. The distribution is symmetrical about the leading diagonal.
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Figure 3: ROC curves using 14 features for abnormal image detection (solid line) and ab-
normal segment detection (dashed line).

4 Discussion
An automated system for the detection of abnormal vessels on the optic disc has been out-
lined based on fourteen image features. The features were shown to have good discrimination
and low correlation to other features. The area under the ROC curve of 0.911 means that if
two images are selected at random, one known to be normal and the other abnormal, the
system will classify the abnormal image as the more abnormal 91.1% of the time.

In practice the system could be used in two ways. Firstly as part of a system to detect the
most serious retinopathy requiring referral to an eye hospital. Alternatively, since new ves-
sels on the optic disc have the worst prognosis of all the features of proliferative retinopathy,
it could be used to automatically triage images, so that those classified as having new vessels
could be seen sooner by a human grader.
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Abstract

We evaluate the performance of a system which addresses the problem of building de-
tailed models of shape and appearance of complex structures, given only a training set of
representative images and some minimal manual intervention. We focus on objects with
repeating structures (such as bones in the hands), which can cause normal deformable
registration techniques to fall into local minima and fail. Using a sparse annotation of a
single image we can construct a parts+geometry model capable of locating a small set of
features on every training image. Iterative refinement leads to a model which can locate
structures accurately and reliably. The resulting sparse annotations are sufficient to ini-
tialise a dense groupwise registration algorithm, which gives a detailed correspondence
between all images in the set. We demonstrate the method on a much larger set of radio-
graphs of the hand while comparing results with that of the earlier work, we achieved a
sub-millimeter accuracy in a prominent group.

1 Introduction
Many forms of model can be constructed if we have accurate correspondences defined across
a set of training images. However, obtaining such correspondences can be difficult and time
consuming. In most early work on statistical shape models, for instance [2], the correspon-
dences were created manually. More recently there has been considerable research into
automated methods of achieving correspondence, such as from boundaries in 2D or surfaces
in 3D (eg [4]), or more generally by directly registering images using non-rigid registration
methods or ‘groupwise’ techniques [3].

In our earlier paper we tackled the problem of registering images of objects with consid-
erable shape variation and multiple similar sub-parts. The key problem with such data is one
of initialisation. A common approach to groupwise registration is to first find an affine trans-
formation which gives an approximate solution, then perform non-rigid registration to an
evolving mean to obtain more exact results [3]. Unfortunately, with the degree of variability
exhibited in the hands, the affine stage is insufficient.

We use a parts+geometry model [6]. The local geometry can be used to efficiently select
between multiple candidates for the parts. Donner et al. demonstrated how a sophisticated

c� 2010. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

221



2 ADESHINA AND COOTES: PART-BASED MODELS FOR GROUPWISE REGISTRATION

parts + geometry model can accurately locate points in such images and how such a model
can be constructed automatically from a set of images in which only one is manually anno-
tated [5]. However, the method was only evaluated on a small set of 12 hand radiographs.

In this paper we show how a simple parts + geometry model can be learned from a large
set of images using only one manually annotated image and how this can be used to initialise
a groupwise registration algorithm, leading to dense correspondences [1]. We extend our
earlier work to deal with 536 images (as opposed to 94). The key problem is the huge
variation that exist in registering radiographs of children and young adults for automatic
determination of skeletal maturity. This makes the original method perform less effectively.

In the following we describe the technique in tackling the inherent variation, demonstrate
its use and evaluate it by comparing the results with the initial work [1].

2 Methods

2.1 Multi-Resolution Patch Models
Given one or more training images in which a particular region has been annotated, we can
construct a statistical model of the region. We assume that the region is of fixed shape, but
may vary in size and orientation. In the simplest case the region is an oriented rectangle or
ellipse, centred on a point, p with scale s and orientation θ .

If g(t) are the intensities sampled from n pixels in the region with pose parameters t =
{p,s,θ}, normalised to have a mean of zero and unit variance, then the quality of fit to a
model is evaluated as

fi(g(t)) =
n

∑
j=1

|g j− ḡi j|/σi j (1)

where ḡi is the vector of mean intensities for the region and σi j is an estimate of the mean
absolute difference from the mean across a training set.1

We can then search new images with such a model, by performing an exhaustive search
at a range of positions, orientations and scales to locate local minima of fi(g(t)). This result
in multiple responses for each patch [1].

2.2 Geometric Relationships
To disambiguate the multiple responses of a single patch model, we create a model contain-
ing a set of N patch models, together with a model of the pairwise relationships between
them. This is a widely used and effective technique [6].

Given multiple possible candidates for each part position (from the patch detectors),
we used a graph algorithms to locate the optimal solutions. We used a variant of dynamic
programming in which a network is created where each node can be thought of as having at
most two parents. Details of this method are discussed in [1].

Each candidate response for part i has a pose with parameters ti = {pi,si,θi}. The rela-
tionship between part i and part j can be represented in the cost function, fi j(ti, t j). This can
be derived from the joint PDF of the parameters.

1We find this form (which assumes the data has an exponential distribution) gives more robust results than
normalised correlation, which is essentially a sum of squares measure.
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In the following we take advantage of the fact that the orientation and scale of the objects
are approximately equivalent in each image, and simply use a cost function based on the
relative position of the points:

fi j(ti, t j) = ((p j−pi)−di j)T S−1
i j ((p j−pi)−di j) (2)

where di j is the mean separation of the two points, and Si j is an estimate of the covariance
matrix.

The matching algorithm thus seeks to find the candidates which minimise the following
function

F =
N

∑
i=1

fi(gi)+α ∑
(i, j)∈Arcs

fi j(pi,p j) (3)

The value of α affects the relative importance of patch and geometry matches. In the
following we use α = 0.1, chosen by preliminary experiments on a small subset of the data.
Ways of automatically choosing a good value of α are the focus of current research.

2.3 Building the Model
We initialise a model using a set of parts defined by boxes placed on a single image by the
user (for instance, the rectangles shown in Figure 1a). This takes about one minute to do, and
allows the algorithm to take advantage of user supplied knowledge. We then automatically
define a set of connecting arcs based on the distances between the centres of the boxes. We
use a variant of Prim’s algorithm for the minimum spanning tree, where each node has two
parent nodes, rather than one [1].

We then refine the model by applying it to the whole dataset, ranking the results by final
fit value (per image), and building statistical models of intensity and pairwise relationship
from the best 50% of the matches.

2.4 Dense Correspondence
At convergence we obtain a model of parts and geometry, together with a sparse annotation
of every image in the training set. The centres of each part region define correspondences.We
use these to initialise a groupwise registration. We place a dense mesh of control points on
the first image, use a thin-plate spline based on the sparse annotation to propagate these
points to all other images. We then compute the mean shape and warp each example into the
mean. Furthermore we perform non-rigid registration [3] to modify the control points on
each image to best match to the mean. Finally we re-compute the mean and iterate.

3 Experiments
We applied the technique described above to a set of 536 radiographs of the hands of children,
taken as part of another study2. We divided the dataset into three age-groups. AgeGroup1
-63 images (5 - 7 yrs), AgeGroup2 -284 images (8-13 yrs) and AgeGroup3 - 189 images (14
-19 years) In our earlier work [1] we found the optimal number of boxes to be 19 boxes.
These 19 boxes were annotated on one image (see Figures 1a). For each choice of boxes on

2The authors would like to thank K.Ward, R.Ashby, Z. Mughal and Prof.J.Adams for providing the images.
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a single image, a model of parts and geometry was constructed and used to locate equivalent
points on other images. The models were then rebuilt and refined as described above. Figure
1a shows the initial 19 boxes on one of the images, together with the automatically chosen
connectivity. Matches with the final model are shown in Figure 1b,c,d,e for the various
groups and an example of failure in 1f. The found points in each of the groups were used to
initialise a groupwise algorithm as described above. Qualitative results of the registration is
shown in Figures 2. The crispness of the images indicate a good alignment.

a) b) c) d) e) f)
Figure 1: Example of model(a), search results with 19 parts for set94(b) [1], AgeGroup1(c),
AgeGroup2 (d), AgeGroup3 (e) and an example of a failure (f) respectively (see the tip of
the fifth finger near the label).

a) set94 b) 5-7yr c) 8-13yr d) 14-19yr
Figure 2: Final mean images after groupwise registration. a) set94 [1], b) AgeGroup1,
c)AgeGroup2 and c) AgeGroup3.

We evaluated the accuracy of the points location by comparing with manual annotations
based on an evaluation framework formulated in [1]. The mean distance errors for sparse
point errors was found to be 0.70±0.08mm, 1.08±0.18mm, 0.91±0.15mm, 0.75±0.09mm
for the set94 (images used in [1] ), AgeGroup1, AgeGroup2, AgeGroup3 respectively. The
result of AgeGroup3 14 -19, a very difficult group, is comparable to the original result ob-
tained in [1]. Figure 3a presents the distribution of the errors and compare the various groups.
For the dense correspondence accuracy, a median error of 0.94mm, 1.38mm, 1.1mm and
1.01mm for the set94, AgeGroup1, AgeGroup2, AgeGroup3 respectively. These errors are
higher than in sparse point placement because the evaluation is based on the entire image
region [1]. Figure 3b presents the distribution of the errors and compare the various groups.
Note that in both cases errors are highest for AgeGroup1. The few number of images and
very large variation may be responsible. Sometimes there is no correspondence amongst the
bones.
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a) b)
Figure 3: Comparison of statistics of points errors for various groups. a) Accuracy of sparse
point placement and b) Errors after groupwise registration (mm).

4 Discussion and Conclusions
We have evaluated an approach for automatically locating sparse correspondences across a
set of images, by constructing a parts and geometry model with an extended dataset. We
achieve an accuracy of 0.75mm on the positioning of the chosen parts. This is significantly
better than results quoted by Donner et al.[5] (approx. 1.5mm, though on a different, smaller
dataset). The found points are sufficient to initialise a more detailed group-wise registration
which can give dense point correspondences with approximately 1mm accuracy over the
whole hand. We can conclude that these results are comparable with our earlier work [1].
We have commenced more work on the AgeGroup1 to achieve higher accuracy.

References
[1] Steve A. Adeshina and Timothy F. Cootes. Constructing part-based models for group-

wise registration. In Proc. IEEE International Syposium on Biomedical Imaging, 2010.

[2] T. F. Cootes, C. J. Taylor, D.H. Cooper, and J. Graham. Active shape models - their train-
ing and application. Computer Vision and Image Understanding, 61(1):38–59, January
1995.
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Abstract

We report a new automated method for White Matter Lesions (WMLs) Segmentation
in cranial MR Imaging. WMLs are diffuse white matter abnormalities which are often
presented as hyperintense regions. In our approach, the presence of these abnormalities
are detected as outliers in the intensity distribution of the FLAIR sequence using the his-
togram tails analysis and Box-Whisker plot technique. In addition, our method includes
post-processing to reduce False Positives attributed to MRI artefacts commonly observed
in FLAIR sequences. We validated our approach using 19 cases of cranial MRI. A high
correlation is seen between our automated approach and the results of a manual visual
scoring approach performed by an expert radiologist.

1 Introduction
White Matter Lesions (WMLs), also known as White Matter Hyperintensities, have been
shown to be predictors of several neurological disorders such as Multiple Sclerosis, Vascular
dementia, Stroke and Alzheimer’s Disease. In recent years, there have been a number of
computer-aided WML segmentation approaches reported in the literature. In this paper, our
focus is on threshold-based techniques. Threshold based techniques aim to find an optimal
threshold value from the intensity histogram as a cut-off point to segment WMLs. In an early
study, Hirono et al. [3] defined a threshold value of 3.5 SD of the White Matter(WM) voxel
intensity distribution to segment WMLs. Jack et al. [4] implemented a more complex regres-
sion model to define a cut-off threshold for the FLAIR sequence. In yet another study [8], a
white matter probability map (MNI 152 brains1), was used as a weighting function to favour
the areas that are most likely populated with white matter. Various brain tissue types are
modelled statistically. Voxels with intensities beyond µWM + 6σWM are classified as severe

c� 2010. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

1MNI Brains are various brain atlases modeled by the Montreal Neurological Institute and are popularly used as
standard brain in neuro-radiological studies
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WMLs while voxels having intensities in the range of µWM +3σWM are classified as mild &
moderate WMLs. Boer et al. [2], performed WML segmentation using an intensity threshold
defined by: T = µ + ασ , where α is an optimized threshold parameter. To find the optimum
value for α , segmentation results using various values of α were compared against two ex-
pert delineations. We present a fully automated WMLs detection and segmentation method,
which uses Box-Whisker plot introduced by Tukey [6] to detect WMLs pixels, which are
regarded in our case, as outliers. Apart from being a statistically sound approach for out-
lier detection, Box-Whisker plots also emphasize the histogram tails, which is of particular
interest to us since WMLs too are distributed primarily in the right-tail end of the voxel in-
tensity distribution in FLAIR images. A key advantage of our proposed technique is that it
does not require prior training or modeling. Moreover, since our algorithm is computation-
ally inexpensive, the segmentation can be performed in real-time. In this paper, we report
the correlation between our automated WML segmentation approach and the visual score as
determined by an expert radiologist, as a means to validate the proposed approach.

2 Materials and Methods
The dataset used in this study are MRI sequences obtained from the Advanced Medicine and
Dentistry Institute(AMDI), Universiti Sains Malaysia. Cranial MR images of 19 subjects
comprising of T1-weighted (T1-W) and Fast Fluid Attenuated Inversion Recovery (FLAIR)
sequences. The subjects were scanned using 1.5T magnetic field strength with acquisition
matrices of 512 x 512 for axial FLAIR (mean TR 8002±0 ms, mean TE 127.13±4.26 ms)
and axial T1-weighted (mean TR 489.47±29.34 ms, mean TE 14±0 ms) sequences. Both
sequences have a slice thickness of 5.0 mm. Subjects were between 39 and 75 years of age
(mean age 58.31±9.53 yrs), whose WMLs visual scores[7] ranged between 2 and 18 (mean
WMLs score 5.84±3.88). The volume of WMLs segmented by the proposed automated
method is then used to compare with the gold standard assessments based on manual expert
visual scoring.

Our WML segmentation approach uses multispectral information from T1-weighted, and
FLAIR sequences. We adopted the model-based level set approach proposed by Zhuang et
al. [9] to perform skull stripping. The skull stripped T1-Weighted sequence is subsequently
used as a mask to remove the skull in the corresponding FLAIR sequence. Since 95% of
WMLs occur within the WM, the WM region must be reliably identified first so that hyper-
intense voxels which are not part of the WM could be later discarded. Using the T1-Weighted
sequence, voxels belonging to the WM, as well as the GM, CSF and the background (BG)
regions are classified using the Fuzzy-C-Means clustering. To improve the clustering results,
we apply N3-inhomogeneity correction [5].

The input to the segmentation algorithm is the skull-stripped FLAIR sequence. Gener-
ally, WMLs can be regarded extreme outliers in the voxel intensity distribution. In order
to detect these outliers, we use the Box-Whisker plot. In the Box-Whisker plot method,
outliers, f3, are defined as Eq. 1:

f3 = Q3 +1.5∗ IQR (1)

where IQR is the Inter Quartile Range which denotes points falling within the 25 percentile
and 75 percentile of the voxel distribution(see Eq. 2):

IQR = Q3−Q1 (2)
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In addition, extreme outliers F3 are defined as:

F3 = Q3 +3∗ IQR (3)

As a prerequisite to detect outliers, it is important to first determine the range of intensities
which represent normal brain tissue. In our case, this would be the range of intensities that
are occupied by GM and WM. Due to the partial volume effect (PVE), the intensity ranges for
CSF, GM+WM and WMLs typically overlap. Therefore, we need to have a good estimate of
the range of voxel distribution for the normal brain tissue (i.e. GM + WM). In our proposed
approach, we heuristically estimate the range of intensities directly from the histogram of a
given image. The procedure follows the following steps:

1 The histogram of the skull-stripped FLAIR image is first constructed. Histogram
smoothing is then applied using a 1-Dimensional Gaussian kernel.

2 Considering only the right half of the histogram, an initial point, PINIT , is set at the full
width at half maximum (FWHM) point on the smoothed histogram. PINIT is then used
as the starting point to iteratively search for the rightmost point, PCR (see Fig. 1(b)),
that best bounds the GM + WM voxels. We define PCR to be the tangent point between
the curve of the histogram and the line, LPRL , (dashed line) that is parallel to the “ref-
erence slope", LREF , for the right tail of the histogram. LREF is the line that connects
the peak of the smoothed histogram to rightmost tip as shown in Fig. 1(a).

3 Step 2 is repeated for the left tail of the histogram, which would result in point PCL
being determined (see Fig. 1(b)).

4 The points PCL and PCR define the potential range of intensities for the WM + GM
voxels, in other words, an estimate of the normal brain tissue distribution.

(a) (b)

Figure 1: 1(a) A smoothed histogram depicting overlapping intensity distributions for CSF,
GM, WM and WMLs. 1(b) The outliers and extreme outliers are determined using the Box
and Whisker plot using the intensity distribution of the GM and WM voxels.

As mentioned earlier, the points PCL and PCR only represent an initial estimate of the
range of intensities for the GM and WM. A more statistically sound measure called the
(Inter-Quartile Range) IQR, is then used to compute a more accurate estimate of the bounds
of the normal tissue distribution. Technically, the IQR represents 50% of the middle data
for a given normal distribution. The notion of using the IQR to represent normal tissue
distribution is appealing because its value is not affected by extreme potential outliers in the
data, which can often distort the computing of a measure of spread, and thereby lessening the
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sensitivity to outliers. Hence, we compute the IQR for the range of intensities between the
points PCL and PCR to obtain a more accurate estimate of the normal brain tissue distribution.
Subsequently, we detect outliers and extreme outliers for the FLAIR image using Eq. 1 and
Eq. 3. Results obtained after testing 2100 MRI images, indicate that the existence of extreme
outliers is a highly probable indicator of WMLs. Voxels detected as being outliers, on the
other hand, also indicate the presence of WMLs but with lesser probability. Even though
outliers have lesser probability of signalling the presence of WML, a considerable number
of voxels do actually have intensity values that fall between the outlier and the extreme
outlier points. Therefore, in our approach, extreme outlier points are first used to initially
detect the presence of WMLs in the skull-stripped FLAIR sequence. If an extreme outlier
point is found, the WMLs are then segmented using the range of intensities that fall between
the outlier point and the extreme outlier point in the given histogram. In Box-Whisker plot
analysis, this range of intensities is known as the outer fence [6].

False Positives in FLAIR can be attributed to numerous factors including incomplete
skull stripping and flow artefacts [1]. In our approach, we use the voxels classified as CSF
and WM in the T1-weighted sequences together with morphological processing to reduce
False Positives. Firstly, we apply a dilation operation on the CSF voxels with a 3x3 struc-
turing element, before using the dilated region as a mask to remove flow artefacts present
predominantly at the peri-ventricular region. Next, we remove voxels detected as WMLs but
which do not overlap with the WM region. It should be noted that it is impossible to remove
all false positives for a given image as there are not clear-cut distinction between WMLs
and artefacts, both appear with similar brightness characteristics. Our morphological post
processing can however minimize the effects of FLAIR-related artefacts, thereby potentially
producing accurate segmentation. In fact, there are still numerous approaches [2, 3, 4, 8]
which seem to ignore the effect of flow artefacts altogether and do not report any form of
post-processing.

3 Results and Discussion
We performed regression analysis to measure the correlation between the proposed auto-
mated WMLs segmentation approach and the visual scoring approach. Our results indicate
that there exists a significant correlation between our approach and the manual visual scor-
ing approach (R = 0.8506, P = 3.94× 10−6)(Table 1). It is evident that our approach is
consistent with the visual score provided by experts and can be reliably used to automate the
analysis and quantification of the WMLs on large scale of data. The sample results using our
approach are shown in Fig. 2.

Score 2 4 3 3 2 2 3 4 4 6
WMLs load(mm3) 3574 1442 1248 1900 765 3386 702 8683 4944 2531

Score 10 18 8 6 8 6 6 10 6
WMLs load(mm3) 15443 127235 16365 4484 23262 2526 4364 12712 10769

Table 1: Visual score and calculated total lesion load for 19 subjects

This paper presents a new approach to WMLs detection and segmentation in MR Im-
ages. It includes preliminary evaluation of our approach on a 19 subjects of dataset with
encouraging results. Moreover, the presented approach has been tested on FLAIR datasets
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Figure 2: Automated
segmentation results
for 2 sample MR
images with varying
lesion loads.

that were acquired using different MRI scanner parameter settings. We are currently con-
ducting a more thorough evaluation of our approach on white matter lesions using MRI data
obtained from our university’s hospital(HUSM) and the Advanced Medicine and Dentistry
Institute(AMDI), USM.
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Abstract

We present the first results of a new technique to bin Cone Beam projections without
imposing any motion model. Such a technique is required for studying motion in re-
gions of the body, such as the pelvis, where motion exists and is unpredictable. All mo-
tion information is obtained directly from the projections and the binning is performed
through a type of best first search through the graph of possible complete assignments.
Simplifying assumptions coupled with loss-less dimensional reduction using Principal
Component Analysis, make the method tractable.

1 Introduction
Cone-beam CT (CBCT) is frequently used in image-guided radiotherapy (IGRT) to verify
patient position and the validity of the treatment plan with respect to the planning CT. Ap-
proximately 660 radiographs are typically acquired during a two minute scan and a standard
filtered backprojection algorithm [1] is used to reconstruct a volume. This volume can then
be rigidly registered with the planning CT to evaluate changes in the treatment area and po-
tential misalignments. Such evaluations are needed to dynamically adjust the treatment to
correctly irradiate the target tissue and avoid healthy tissue. A critical issue with this process
is the introduction of blur due to the long acquisition time. This blur makes it difficult for
clinicians to assess alignment and see changes in tissues over the course of the treatment
plan. Several approaches to mitigating this problem have been proposed or implemented
but most rely on some form of radiograph, or projection, binning. Usually, some form of
model is used to guide this binning and most often this is a breathing model where the res-
piratory motion is divided into phases and projections are then binned by phase (see [4][3]).
Projections are matched to phases in many different ways: measuring respiration directly,
estimating it from diaphragm detection in the radiographs, estimating it from external cam-
era views of the patient, etc. An inherent limitation is that without a model, these methods
fail. Few approaches have attempted binning outside of the lung region.

Our approach is to attempt to bin projections without any model at all. We extend our
previous work [2] which implements an exhaustive search of possible binning assignments.
One of the requirements of that method is a two-pass protocol. In this paper we remove
the two-pass protocol change and replace the exhaustive search with a stochastic search.

c� 2010. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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Removing the protocol change allows our ideas to potentially work with existing CBCT
configurations and, indeed, with existing data for retroactive studies in the future. These
studies could be used to better understand tumour motion in many parts of the body that are
currently not studied. We show early results with only two bins but demonstrate on synthetic
and phantom data that both periodic motion and non-periodic motion can be estimated with
visible and measureable improvements

(a) (b) (c) (d) (e)

Figure 1: ROI images from synthetic model with motion in three dimensions. (a) Normal
reconstruction (b) ideal bin 1 (c) ideal bin 2 (d) estimated bin 1 (e) estimated bin2.

(a) (b) (c) (d) (e)

Figure 2: ROI images from QUASAR phantom animated with simulated single shift motion.
(a) Normal reconstruction (b) ideal bin 1 (c) ideal bin 2 (d) estimated bin 1 (e) estimated
bin2.

2 Methods and Materials
Our method poses bin assignment as a search problem. It involves grouping projections
under the assumption of binning similarity in temporally adjacent projections, constructing
reprojections to fill in data gaps, recasting reconstruction as an averaging process of indi-
vidual backprojections, reducing the backprojection size by clipping to a region of interest,
and further reducing the size through the use of principal component analysis. Computing
reconstructions and fitness metrics in eigenspace decreases computational cost, but limits us
to metrics that have meaning in both eigenspace and the original space. We demonstrate
promising results by combining two such metrics.

Bucketing: the likelihood of adjacent projections belonging to the same bin is high
when binning into two bins. We group projections into one-second buckets which reduces
our binning task to 120 items, each containing between five and six projections, instead of
660.

Scoring: To assess the fitness of a given assignment, two volumes are reconstructed
based on a hypothesised binning and evaluated. At the voxel level, correctly binned re-
constructions should, on average, be different from each other reflecting the fact that they
represent the two states of the moving tissue. Globally, however, the reconstructions should
be similar in terms of greylevel distribution (as they are of roughly the same material). The
latter criteria is necesasry as it is possible to reconstruct two highly different volumes due
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to one containing mainly light voxels and the other containing dark voxels. This type of
difference we avoid by minimising the global difference while maximising the voxel differ-
ences. The difference between the greyscale means (dmean = V̄1− V̄2) of the two volumes is
assumed to be Gaussian with zero mean (ie. decreases with increasing dmean). We estimate
the variance of the Gaussian by sampling reconstructions from our search space. We multi-
ply this probability by the sum of squared differences of the two binned volumes to obtain
our fitness score (score = G(d|0,θ)× SSD(V1,V2)). We also, optionally, add a penalising
term if too many buckets are assigned to the same bin. If we know that we are imaging a
region of the body which is likely to have periodic motion, we can make a simple guess at
the period and this is sufficient to help the search process without requiring a precise model
of the pattern.

Searching: Even with the bucketing reduction, 2120 is still too large to search exhaus-
tively. We implemented a Best-N-First method that takes N candidate assignments (of buck-
ets to bins), and generates child assignments by flipping each of the individual bucket assign-
ments and evaluating the result. The best N assignments which are better than the parent’s
score are kept then the best N assignments out of all the children generated are kept. Parents
are added to a retired list and on each iteration, new children are vetted for uniqueness among
their peers and the retired list. The process terminates when fewer than N total new children
are generated.

Regions of Interest (ROIs): Reconstruction volumes are large and mostly contain in-
formation we don’t need from a binning standpoint. What we’re really interested in is the
motion that occurs in the region labelled in the planning CT as the "planning treatment vol-
ume". We simulate this ROI in our experiments with cylindrical regions but nothing prevents
the use of oddly shaped planning volumes. We use these ROIs in two ways: to generate 2D
masks of the projections by projecting the ROIs onto a virtual detector using the same ge-
ometry as the Synergy machine, and using them directly as 3D masks.

Reprojections: A significant problem in reconstruction is the introduction of artefacts.
Two sources of artefacts that impact us directly are motion artefacts and missing projection
artefacts. When we bin projections, reconstructing one bin means all the projections be-
longing to other bins are missing. This creates severe artefacts in the form of streaks and
misshapen structures. Conversely, retaining all the projections introduces the same kinds
of artefacts if there is motion, which the whole effort is predicated on. We mitigate this
problem by constructing filler projections. By taking the volume reconstructed from the
original projections (Vall), we can reproject new projections that hypothetically contain the
blur. We apply a small median filter to Vall before reprojecting to attempt to remove any
motion incorporated into this reconstruction. Furthermore, to eliminate the introduction of
motion artefacts from outside the ROI, we synthesize merged projections consisting of the
reprojection outside the edge-blurred 2D ROI mask and the original projection inside the 2D
ROI.

Individual Backprojections: Having the set of merged and reprojected projections at
matching acquisition angles, we reconstruct a given bin volume by choosing the merged
projections that are assigned to the bin and using the reprojected projections to fill in the
missing projections. Given the many thousands of reconstructions that are needed by the
search process, we factor out the backprojection part of the process. Typical filtered back-
projection algorithms [1] take each filtered projection and backproject them across a single
volume. This is equivalent to backprojecting them into individual volumes and subsequently
averaging these “backprojection volumes”. This preprocessing allows us to reconstruct from
multiple hypothesised binnings merely by averaging the relevant backprojection volumes
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together.
Reconstruction in eigenspace: If we apply Principal Components Analysis (PCA) to

the ROI-clipped backprojection volumes, we obtain a set of low-dimensional eigenspace
projections of the backprojection volumes. Taking the mean of a set of vectors in this space
is the same as taking the mean of the original vectors, after projecting back into the origi-
nal space. Likewise, Euclidean distance between vectors is preserved. This means we can
easily calculate the sum of squared differences between volumes in eigenspace (as SSD and
Euclidean distance in the original space are equivalent). Finally, if we take the dot product
of a vector of the means of the eigenspace basis vectors (which may be pre-calculated) and
any vector in the eigenspace, we obtain the mean of that vector in our original space (i.e.
the greylevel mean). This is a key property because it allows us to calculate the mean of a
reconstruction without first projecting it back into the original space. Coupled with the SSD
property, we are able to generate, in eigenspace, the fitness score. Using PCA, we can take
vectors that contain tens of thousands of elements and truncate them – without loss – to vec-
tors of length ≈ 1320 (the number of merged projections plus the number of reprojections).
Besides making reconstruction fast enough for our purposes, PCA also allows us to evalu-
ate our reconstructions in eigenspace. The two averaged vectors that constitute two binned
reconstructions can be subtracted from each other and the resulting dot product gives us the
sum of squared differences in the original space. Likewise, by taking the dot product of the
vector with the means of the eigenspace column vectors, we obtain means of the vectors in
the original space.

We show results from four experiments, two synthetic and two animated. In the synthetic
case, we construct mathematical phantoms composed of ellipses, cubes, and cylinders and
project them using the same geometry as the Synergy machine. In the first experiment, we
simulate a sinusoidal motion along the z-axis, the axis of rotation. In the second experiment,
we include motion in the x and y axis to create a curved motion.

We now introduce a new method for generating motion from a physical phantom. A
QUASARTMrespiratory motion phantom with a wood cylindrical insert containing an acrylic
sphere was scanned in 16 static positions with the insert being moved 1mm in the z-axis di-
rection each time. A simple utility allows us to literally draw the z-axis motion we want over
time. The correct projections from the 16 sets of projections are then copied to simulate the
motion in a manner similar to “stop motion animation” techniques. In the first experiment,
we simulate a fast breathing pattern with 22 breaths in the two minute duration. In the sec-
ond experiment, we simulate a single shift in the sphere representing the type of motion that
might occur in the prostate region.

3 Results
In each experiment, we construct the motion and so can establish the correct binning assign-
ment and compare the results of our search estimation against the "ideal" binning volumes.
To calculate the correct assignment, we take a representative point in motion, e.g. the centre
of the moving sphere, and apply k-means clustering (k=2). Ideal binning volumes (Vgt1 ,Vgt2 )
are generated from this binning in the mannner described previously. In Figures 1 and 2,
the success of our approach is clear. Table 1 quantifies this by comparing the mean sum
of normalised absolute differences between matched volume pairs. Estimated volumes are
matched so as to minimise this difference metric. The differences between the estimated
volumes and ideal binning volumes is significatnly smaller than between the estimated bins
and the normal (blurry) reconstruction volume constructed by averaging all backprojection
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Comparison 1 2 3 4
Ideal (Vgt1 ,Vgt2 ) vs. Normal (Vall) 12.2 12.4 4.19 3.57
Estimated (Vest1 ,Vest2 ) vs. Normal (Vall) 12.0 12.4 4.28 3.64
Estimated (Vgt1 ,Vgt2 ) vs. Ideal (Vgt1 ,Vgt2 ) 2.87 .906 .662 2.82

Table 1: Comparison of reconstructions for four experiments. All comparisons are mean
normalised sum of absolute differences (over matched volume pairs). Column 1 shows the
synthetic z-axis only experiment; column 2 shows the synthetic phantom with three dimen-
sions of motion; column 3 shows the two-state wood phantom results; column 4 shows the
22-breath phantom simulation results.

volumes. The differences between the ideal bins and the normal reconstruction is shown for
comparison. Of intererest is the fourth column; it reveals that our current algorithm still has
room for improvement.

4 Discussion
We demonstrate initial feasibility of a new binning method requiring no motion model on
synthetic and physical phantoms for the two-bin problem. We also illustrate a technique for
simulating motion using a real phantom that doesn’t require additional scans. The principle
limitation of this new technique is that it is constrained to 1D motion. However, it is useful
for exploring non-periodic types of motion in lower abdominal regions of the body. There
are two potential approaches to extending the method to greater than two bins (and hence
non-linear motion). Firstly, the number of bins in the search assignment could be increased.
However, as the search space has size NM (where N is the number of bins, and M is the
number of buckets) this would greatly increase the size of the search space. The alternative
approach is to perform multi-step binary binning; splitting each bin recursively. This has
(approximately) O(2) complexity in the number of bins and is thus more feasable. It also
has the advantage of using a similarity based stopping criteria to determine the number of
bins required. We are currently working on developing this approach. Subsequently we will
attempt to register the reconstructed volumes to obtain a motion model. If successful, this
technique has the potential to enable large retropective motion studies on the set of CBCT
projections already in existence.
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Abstract

Magnetic Resonance Imaging (MRI) has become an invaluable tool for the non-
invasive exploration of the human body. However, taking full advantage of its power
requires the appropriate setting of numerous parameters. In light of the substantial cost
of an MR scan and of the limitations of MR phantoms, MR simulators offer a convenient
approach to parameter optimization.

Here we present an MR simulator which produces realistic human brain images for
the popular and versatile 3D Magnetic-Prepared Rapid Gradient Echo sequence (3D MP-
RAGE). Our simulator physically models the evolution of the magnetization throughout
the MR acquisition, as dictated by the Bloch equations, and takes into account all ele-
ments (RF pulses, imaging gradients, field inhomogeneities) and timings of the sequence.
The output image is then produced in a similar way to that by which it is reconstructed
in an MR scanner.

By estimating the Point Spread Function (PSF) of the simulated sequence we can
investigate the associated image contrast, partial volume effects and the limit of spatial
resolution. The parameters of the sequence can then be tuned to yield an optimal PSF for
a given application.

1 Introduction
The remarkable versatility of MRI comes at the expense of operational simplicity: indeed the
quality and fit to purpose of a particular acquisition depends on the choice of an appropriate
pulse sequence in an ever increasing palette of possibilities and the adequate tuning of a
growing number of parameters.

Because of the substantial cost of an MR scan and of the limited possibilities offered by
MR phantoms, a number of MR simulators have been developed over the years. They serve
a variety of purposes: learning tool for students and clinicians [9], sequence optimisation
to reduce acquisition time or increase robustness to noise [2, 3, 7] or validation of image
analysis methods in the absence of in-vivo ground truth [6].

In order to cope with the complexity of the MR acquisition process, simulators tend to
make a number of approximations. The simplest simulators take T1 and T2 maps as inputs
and then synthesize new images for a given pulse sequence by considering the evolution

c� 2010. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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Figure 1: MP-RAGE acquisition of a phantom acquired with linear phase encoding (left);
T1 map extracted for use in the simulator (middle); simulated image (right).
of the magnetization during the pulse sequence independently for each voxel [8]. A more
sophisticated approach, Kwan et al. uses fuzzy, interpolated templates to allow for partial
volume effects and noise to be simulated [6]. However their method does not model the im-
age artefacts produced by the evolution of the magnetization through k-space. The simulator
of Petersson et al. overcome this issue by operating in k-space indeed [10]. However it does
not take into account the interaction between the position of voxels and the timing of the
sequence, and becomes unwieldy if more tissues have to be simulated (i.e. partial volume
effect cannot be realistically observed). Finally the most realistic simulators simulate the
MR signal directly by solving the Bloch equations for the particular pulse sequence and a
highly discretized object [1, 2]. This makes it possible to simulate the effect on the PSF of
spin dephasing (T2* decay) and of the evolution of the magnetization during the acquisition.
Indeed, the particularly complex relationship between acquisition parameters and PSF natu-
rally makes it a desirable target for optimization. Regrettably, those two approaches suffered
from a high computational cost, which restricted them to 2-D sequences.

In this article, we present an MR simulator that can be used both as a validation tool
for image processing algorithms, and as a sequence optimizer for high resolution, quanti-
tative MRI. It is based on the solution of the discrete-event Bloch equation, and is capable
of handling 3-D sequences and PSF. Realistic field inhomogeneities can also be readily in-
corporated into the simulations. We chose to simulate the standard MP-RAGE sequence [4]
owing to its flexibility and popularity in both qualitative and quantitative studies. The partic-
ularly complex relationship between the acquisition parameters of an MP-RAGE sequence
and the Point Spread Function (PSF) also makes it a desirable target for optimization. The
PSF is defined as the response of an imaging system to a single point source, and quantifies
the blurring introduced by an imaging system. In the case of MR imaging, the PSF depends
on the object, image acquisition technique and post-processing methods, so the image sim-
ulated from a small object can be used to determine the sequence parameters that optimize
the sharpness of the PSF. Note that although our simulator was developed for the MPRAGE
sequence, it could be easily adapted to a different sequence by defining a new pulse sequence
and the associated k-space trajectory (see [2]).

We detail our approach in Section 2 before presenting some results and a qualitative
validation based on the comparison of both synthetic phantoms and real brain MR data.
We also describe the effect of different simulator parameters, sequences and objects on the
simulated PSF.

2 Method
We model the object to be imaged as a collection of discrete voxels, where each voxel con-
tains a number of isochromats with distinct resonance frequencies. Isochromats consist of
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small imaginary volumes containing a group of spins which resonate at the same frequency.
Those frequencies are drawn from a Lorentzian distribution centered around the Larmor fre-
quency (the average frequency at which the magnetic moment of the protons of the sample
precess about the B0 magnetic field). Note that the relaxation times (T1 and T2) also depend
on isochromat position and can be given by a priori T1, T2 and PD maps. Each isochromat is
then defined by a proton density, a set of relaxation times and a frequency offset.

At the initialisation stage, the user also specifies the different parameters of the sequence,
such as the size of the output image and the sequence timings. For each time point over the
course of the simulation, we compute the magnetization of each isochromat independently by
applying the appropriate operators as dictated by the pulse sequence and solving numerically
the Bloch equations. The MR signal in each voxel is then computed by summing the signal
of its isochromats.

Let M(r, t) = [Mx(r, t),My(r, t),Mz(r, t)]T be the magnetization of isochromat r at time
point t. We approximate the evolution of its magnetization by applying a series of operators,
where each operator models the influence on the magnetization of the various components
of a particular time step of the pulse sequence. We get:

M(r, t +δ t) = Rgrad(t)Rinh(t)Rrelax(t)RRF(t)M(r, t) (1)

Rgrad(t) is the rotation operator corresponding to the application of gradient G(t) where
β = γrG(t)δ t relates G(t) to the angle β around the z axis, for each position.

Rinh(t) is the rotation operator corresponding to B0 field inhomogeneities where φ =
γ ∆B(r) δ t relates the inhomogeneities ∆B(r) during the time δ t to the angle φ around the z
axis.

Rrelax(t) describes the relaxation of the magnetization and is most conveniently described
by a 4D matrix acting on the magnetization vector with an additional term corresponding to
the equilibrium magnetization (Mx, My, Mz, Mo):

Rrelax =





e
−∆t

T2(r) 0 0 0

0 e
−∆t

T2(r) 0 0

0 0 e
−∆t

T1(r) (1− e
−∆t

T1(r) )
0 0 0 1




(2)

RRF(t) is the operator describing the effect of an RF pulse tipping the magnetization
by an angle α about the x axis, applied instantaneously at time t. Because of RF field
inhomogeneities, the tip angle α generally depends on the position of the isochromat, and
could therefore be controlled by an a priori RF map, if available.

Field maps of inhomogeneities in the RF and static (B0) field can be introduced to mod-
ulate the effect of RRF and Rinh. Any relevant scanner preparation steps, such as driving the
magnetization to an steady state, are taken into account by applying the appropriate combi-
nation of RRF and Rrelax to the magnetization.

Finally, each time point corresponds to a different point in k-space (the Fourier reciprocal
space of the image), which we populate by summing the transverse magnetization of all
isochromats. In practice, the MR signal is contaminated by thermal noise so complex white
noise with a specified variance is added to the complex data, before performing any post-
processing. The signal can be filtered in k-space, as is generally performed on an MRI
scanner to minimize effects such as Gibbs ringing. The simulated 3-D image is then obtained
by Fourier transforming the k-space data.
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Figure 2: MP-RAGE acquisitions (top) and simulations (bottom): 1mm isotropic with 300ms
inversion time (left); 1mm isotropic with 850ms inversion time (middle); simulated B1 map
and corresponding image simulation with added noise (right column).

Note that this simulation of the k-space MRI data lends itself very well to parallelisation,
as each isochromat is simulated separately. Consequently, the overal volume can be easily
broken down into several sub-volume simulation processes, to be run in parallel. Still, a
compromise must be found between simulation accuracy and computation time.

3 Results
3.1 Point Spread Function and isochromats
Simulating the PSF of the scanner (the image of a small volume of isochromats, typically of
the order of the reconstructed voxel) gives valuable information about the spatial resolution
of the imaging sequence. In turns, this facilitate the sequence optimization process. In or-
der to determine the minimum number of isochromats required, per voxel, for an adequate
simulation, different PSF with a varying number of isochromats were computed. We then
measured the intensity profile across the simulated image in the readout (x) direction. We
observed that 7 isochromats per direction (giving 7x7x7 discrete values of off resonance)
provided an adequate trade off between simulating an exponential T ∗

2 decay and computa-
tional time, for a width of the offset frequency distribution of 1MHz. As the width of the
distribution increase, more isochromats per volume were required. We also observed that
as the width of the Lorentzian increased, and T ∗

2 decreases, the width of the PSF increased
for a given number of isochromats, as expected. Finally, the PSF in the the phase encoding
direction (y) was unaffected by the number of isochromats or the frequency offset, also as
expected.

3.2 Qualitative phantom validation
We used a spherical phantom made of four quadrants filled with saline solution contain-
ing various concentration of agar (Sigma-Aldrich) and gadolinium (Magnevist, Schering)
to cover a range of relaxation times. The phantom was scanned using an MP-RAGE se-
quence (256x256x20 acquisition matrix with a linear phase encoding scheme and 160ms
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inversion time, 5s shot length). We then segmented the acquired image using FAST FSL
(http://www.fmrib.ox.ac.uk/fsl) before measuring the T1 in each quadrant [5] to produce a T1
map. T ∗

2 values and proton density were assumed constant. We simulated the exact protocol
run on the scanner with noise added at 0.5% of the maximum signal. The ability of our
approach to adequately simulate the artefacts in the phase encoding direction makes for a
simulation result particularly close to the acquisition one (Figure 1).

3.3 Simulating an in vivo image
We acquired a series of MP-RAGE images with different T1-weighting of a volunteer’s
brain and picked the one closest to a standard T1-weighted scan for tissue segmentation.
This served to create a T1 map where the appropriate relaxation times were assigned to
each tissue. Standard T1-weighted MP-RAGE images were simulated for different inversion
time and with an inhomogeneous B1 field. Visual inspection of Figure 2 shows a promising
similarity between the simulated and original images.

4 Conclusion
We have presented a physically realistic MR simulator suitable for 3-D imaging sequences.
We have used it to investigate the PSF in MP-RAGE. The effect of variations in RF and B0
fields could similarly be studied with the end goal of determining the imaging protocols that
will be most robust to those inhomogeneities. We are also planning to make the simulator
available online in the near future.
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Abstract
Identifying functional brain regions from fMRI data involves the comparison of in-

dividual activations and the inference of group activation model. To overcome the short-
comings of voxel-based analyses, which model the data as a smooth random field, we
use a method that directly compares the individual activation patterns. In our work, an
optimal, generative model of the activation foci of interest is computed by employing
factor analysis and model selection techniques. We show the advantages of our approach
to functional localisation on synthetic data and data from an auditory fMRI experiment.

1 Introduction
Identifying brain regions of interest across subjects using functional magnetic resonance
imaging (fMRI) is difficult due to the considerable degree of inter-subject variability in
shape, location and configuration of these regions [4]. The correspondence problem can
be solved by constraining group analysis by functional labels, or macro-anatomical land-
marks [7]. The standard procedure consists in registering the different brains, performing a
voxel-wise, multivariate analysis (e.g. random effects analysis, RFX) and comparing func-
tionally specific effects in the group activation map to atlases containing architectonic in-
formation from post mortem brains [5, 9, 13]. Beyond that, structural matching techniques
have been recently employed for comparing the functional activation patterns across subjects
[6, 8, 11, 12]. We use the surface-based, structural analysis method ISA by Engel, et al. [6],
which allows investigating thoroughly the large number of small but separate activation foci
in the auditory cortex (AC) in relation to regional, macro-anatomical landmarks [1, 13]. Our
work focusses on the model estimation and selection problem in order to extend their ap-
proach: Based on the activation mapping, a group activation model is obtained by applying
standard manifold learning methods. A model that generalises to a wider population (i.e. un-
seen data) without over-fitting is selected by comparing the performance of different models.
The quality of the functional localisation results can then be evaluated statistically.

2 Structural Multi-subject Analysis
Prior to the group analysis, each individual fMRI data set is transformed to a surface-based,
sparse description Y (s) = (y1, . . . ,yN(s)),s = 1, . . . ,K, in terms of the spatial coordinates of

c� 2010. The copyright of this document resides with its authors.
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2 K. ENGEL, K. D. TOENNIES: FMRI GROUP MODEL SELECTION

local maxima y j in the K activation maps [6]. Therefore, the functional volumes are pre-
processed, projected onto the individual cortical surfaces, and analysed in the general linear
model framework. The individual activation patterns Y (s) are assumed to be instantiated
from a group model X = (x1, . . . ,xN), which represents the activation foci of specific re-
gions of interest (ROI). Each pattern may be subject to random and structural error (e.g., due
to measurement and detection error, or inter-individual differences). In order to separate the
ROI from noise, our method uses a parametric model G (p,X) of the group activation pattern,
where the parameters p define constraints on the functional variability across subjects.

Operto, et al. [8] use a Markov process for inferring the group model by comparing the
relative positions of activations in a global reference space. The BFL detection by Thirion,
et al. [11, 12] relies on the leave-one-out validation of individual activations being observed
from average (RFX) activation maps X . In their approaches, p would comprise global pose,
spatial relaxation and smoothing parameters (to account for misregistration), as well as a
reproducibility criterion. In contrast, the ISA method of Engel, et al. [6] simultaneously
estimates the group activation model and recovers correspondences between the activation
foci of specific functional fields by matching in an embedded, i.e. intrinsic, pattern space.
Here, X is a reference pattern, and p contains local pose and variation parameters.

2.1 Activation Mapping
Let the mapping of activation patterns Y ∈ {Y (s),s = 1, . . . ,K} be represented by a function

�(L∗) : X �→ Y, where L∗ = argmax
L

C (L,P,τ), (1)

such that �(xi) is the observed activation focus y j ∈ Y that best corresponds to model point
xi ∈ X (and vice versa). L∗ defines the optimal pairwise assignments w.r.t. the functional
C (L,P,τ) = ∑i ∑ j P(i, j)L(i, j), where P is a correspondence probability matrix with ele-
ments from [0,1], and

L(i, j) =
�

1, if P(i, j) = maxi P(i, j) = max j P(i, j)∧P(i, j) > τ ∈ [0,1)
0, otherwise. (2)

Following [6] for determining true correspondences (1), an iterative scheme estimates at
each discrete time step t > 0 the correspondence probability P, which depends on the feature
affinity in embedded space, and computes a non-rigid, geometry-preserving transformation
to align X and Y w.r.t. the matching pairs i, j. This transformation is described as a smooth,
time-varying displacement field u(x, t),x∈ X , which is expressed in terms of a weight vector
q as u(x, t) = Φq(t), i.e. X(t) = X + u(x, t). The orthonormal vectors in Φ span the pattern
space according to the chosen Gaussian kernel embedding of the activation foci.

2.2 Inferring a Graphical Model of the Functional ROI
Finally, the group activation pattern is defined as

X̄ = {xi : p(xi|Y )≥ ϑ}, (3)

where ϑ ∈ [0,1] is a threshold on the reproducibility of activations in the group. Based on the
correspondences L∗s,ς with a reference pattern X = Y (ς),ς = 1, . . . ,K, we can directly study
the properties of the point distribution that results from the Gaussian kernel embedding [6].
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More specifically, standard methods from statistics, i.e. (kernel) PCA [10, 14], can be applied
for robustly building a statistically representative model of the group activation,

X∗ = X̄∗+Ψb. (4)

Here, X̄∗ denotes the observation mean, and the functions ψk ∈Ψ span the generative pattern
space according to the d×d-empirical covariance matrix C = Ψ∆2Ψ� of the centred random
variables in embedded space. The weight vector b comprises the latent variables, which
follow a N (0,I) distribution with d degrees of freedom (DOF). The posterior p(b|Y ) may
then be used instead of the energy functional C for assessing the matching confidence.

2.3 Model Selection
The observable variables Y are aggregated in a model (4) representing the underlying struc-
tural organisation of the data. Latent variables, as inferred by factor analysis (Sect. 2.2),
represent shared variance, i.e. variations in the spatial coordinates of ROI, expanded along
the (ordered) principal components ψk. Each observation Y deviates from the maximum a-
posteriori reconstruction X̄∗+ Ψ̄b∗ by the residual ρ , for which p(ρ) = N (0,σI). In our
case, the reconstruction error depends on the complexity m of the generative model, as well
as on the reliability of the underlying correspondence sets (i.e. quality of the “training data”).

By model selection one wants to find the m < d-dimensional basis expansion that min-
imises the empirical risk R(σ ,b,m) of the regression function. R is a function of the measure-
ment error, of the estimation error, i.e. distance between the model parameters in the full (Eq.
4) and truncated model space Ψ̄∈Rd×m, and of the approximation error r(m) = ∑d

l=m+1 b(l)2

(cf. [2]). The model with the smallest number of DOF m is selected, such that no more com-
plex model gives a significantly lower risk. We use the method of Cootes et al. [3] for
comparing the empirical distribution p̂(ρ) with a theoretical distribution p(ρ) using error
propagation and the Bhattacharya metric, B, for hypothesis testing.

Unmatched features with ∑i L(i, j) = 0,∀i, are assigned a null label �(y j) = /0, i.e. con-
sidered “noise”. As a result, each subject may or may not show a region associated with a
focus of activation defined at the group level, and the particular measurement may or may
not be included in the correspondence sets used for learning. Our solution to this “chicken
and egg” problem is to select as reference X a representative pattern Y (ς) from the pairwise
correspondences L∗s,n,s �= n. A naïve choice is the sample with the largest number of fea-
tures, i.e. ς1 = argmaxs |Y (s)|. Since selecting an individual observation involves the risk of
introducing a bias in the results, we propose the following alternative strategies for model
selection. The second method uses cross-validation, and selects

ς2 = argmax
s

C (L∗s,n,P,τ), n ∈ {1, . . . ,K}\ s, (5)

based on the inter-pattern similarity function C (cf. Sect. 2.1). The third method uses

ς3 = argmax
s

δ (L∗s,n,P,τ), n ∈ {1, . . . ,K}\ s, (6)

where δ averages the (robust) Mahalanobis distance between the embedded features, which
are observed in a fraction of ϑ subjects (cf. Sect. 2.2). Fourthly, we can select from the
sample the pattern Y (ς) as reference that gives rise to the graphical model, of which the
distrbution of residuals p̂(ρς ) best matches the distribution p(ρ) of the observation noise,
i.e.

ς4 = argmin
s

B(p̂(ρς ), p(ρ)). (7)
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(a) (b) (c)
Figure 1: Predicted location of auditory ROI within the temporal region of a reference cor-
tex. The presented group activation foci were identified in at least 7 of 9 subjects using the
proposed multi-subject analysis (a) and related techniques (see Section 3).

3 Experimental Results
For a quantitative analysis, we synthesised a ground truth pattern X of N = 10 activation foci
with a minimum inter-focus spatial distance of 5 mm on a reference cortical surface from
our database. K = 100 disturbed instances Y of this pattern were generated by duplicating
the original pattern, and introducing random position error e(X)∼N (0,σ),σ = 2mm, and
structural error e(N)∼N (0,ε),ε = 0.1. In our experiments, the data set was randomly split
into a training and test set, and then each of the methods (Sect. 2.3) was run on this split.
We computed the error rates using ϑ = 0.5 in a repeated random sub-sampling validation.
The model X that was selected using minimisation of R using Equations 6 and 7, performed
best and provided a good reconstruction of the ground truth. Except from the largest sample-
based model (i.e. using ς1), we obtained superior results over ISA [6]. The difference in the
performance was statistically significant (p < 0.01, one-sided t-test).

We further compared our results on real data from an auditory fMRI study with the ROI
identified using RFX analysis, ISA [6], and a clustering method (referred to as CVC) that
employs principles of [11]. For the sake of fairness, all analyses were constrained to the
local, surface-based reference spaces of the auditory territories described in [1]. In brief,
for ϑ = 5

9 , the proposed method extracted 9 group activation foci compared with 7 regions
from ISA and CVC. Four regions were identified in the RFX group map, in which small but
separate regions were fused into larger clusters or “averaged out”. In comparison with our
method, both ISA and CVC computed suboptimal assignments, most probably due to the
inferior reliability of the underlying models. The reference pattern was in our case chosen
according to Equation 6. As shown in Figure 1(a), the four foci with highest reproducibility
in at least 7 of 9 subjects identified one activation in the primary AC (red label), one ROI
in the secondary AC (yellow) and two regions (green and pink) on planum temporale, i.e.
association cortex. Each of the auditory territories can be further subdivided into at least
three areas and thus the number of regions found corresponds well with this expectation.
Parts of these regions were also detected by ISA and CVC (Figs. 1b and c).

4 Conclusions and Future Work
This paper presents a novel method for inferring a generative model of the positions of ROI
from fMRI data of multiple subjects. Effectively, the method relaxes the common, over-
simplifying assumption of activated regions being clustered in a common spatial reference.
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Correspondences are found across subjects by a topology-preserving registration of the ac-
tivation patterns in an embedded space [6], and then used for learning a generative group
activation model. In combination with the evaluated strategies for model selection, our ap-
proach improves previous work on the structural analysis of group functional data [6, 8, 11],
and allows a statistical assessment of the individual observations and predictive performance
of the group activation model. The identification of outlying observations is a difficult prob-
lem in the given high dimension (i.e. whole brain)–small sample–“several sources of valid
variation” scenario. Therefore, an important direction for future research is to improve the
inter- and intra-subject modelling, such that to each region a probability can be assigned of
being a ROI given its relative position and specific signal characteristics.
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Abstract

Positron emission tomography (PET) is a molecular imaging technique which is now

widely established as a powerful tool for diagnosing a variety of cancers. However, PET

images are substantially degraded by respiratory motion, to the extent that this may ad-

versely impact upon subsequent diagnosis. A motion correction and attenuation correc-

tion method is proposed to align the gated PET images and then correct for attenuation.

Experimental results show that this method can effectively correct for respiratory motion

and improve PET image quality.

1 Introduction

Positron emission tomography (PET) is a molecular imaging technique which is now widely
established as a powerful tool for diagnosing a variety of cancers. However, PET images
are substantially degraded by respiratory motion to the extent that this may, particularly for
thoracic imaging, adversely impact upon subsequent diagnosis. In terms of the magnitude
of motion, the diaphragm typically moves about 15-20 mm due to respiration; since current
PET scanners have a spatial resolution of approximately 5 mm full width half maximum
(FWHM), respiration substantially reduces the effective spatial resolution.

Gated acquisition of PET data has been proposed to overcome the respiratory motion
effects. Typically, a respiratory cycle is divided into a number of gates, during each of which
the imaged object is assumed to be static. Several different approaches have been proposed
to register respiratory gated PET images. Lamare et al. proposed a B-spline deformable
algorithm for image registration [4]. Lamare’s method relies on dual gating of PET and CT.
Gated CT scans can provide accurate deformation fields for motion correction. However, it
significantly increases the radiation burden to the patient. Dawood et al. used the optic flow
method to estimate motion from PET images without attenuation correction [3]. Therefore,
gated CT acquisition is avoided. Attenuation correction of the motion corrected image was
mentioned in the discussion section of Dawood’s paper, however, does not seem to have been
explored. Since attenuation correction is crucial for quantitatively analysing a PET image, it
is necessary to further explore the attenuation correction of the motion corrected image.

In this work, we propose a motion correction method for respiratory gated PET images.
It is different from previous methods in two aspects. First, motion correction is performed

c� 2010. The copyright of this document resides with its authors.
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Figure 1: The flowchart for motion correction and attenuation correction.

using a regularised registration algorithm. Second, the motion corrected image is further
attenuation corrected using a voxel-wise attenuation correction factor (ACF) image. Ex-
perimental results show that this method can effectively correct for respiratory motion and
improve PET image quality.

2 Methods

2.1 Framework

Respiratory gating divide PET data into a number of gates, each corresponding to a phase
of the respiratory cycle. In this way, the data for each gate contain only slight motion and
thus can be regarded as static. Prior to the PET scan, a CT scan is acquired to provide both
anatomical information and attenuation correction. Because respiration can be monitored
using a respiratory gating device during both PET and CT acquisitions, the CT scan can be
matched to a gate of the PET scan.

Because this CT scan matches only one gate and does not align with the other gates, it
can not used for attenuation correction of the other gates. Otherwise, artefacts are introduced
in reconstruction [3]. Therefore, we reconstruct gated non-attenuation corrected PET (PET-
NAC) images and use these PET-NAC images for motion correction. The gate coincident
with the CT scan is regarded as the “reference” image, whereas the other gates are regarded
as “test” images. The deformation fields between the reference and test images are estimated
using B-spline registration [1, 5]. After all the images are aligned to the same position, they
are summed to form a motion corrected image.

Because the motion corrected image aligns with the CT scan, it can be accurately atten-
uation corrected. We generate a voxel-wise ACF image for the reference gate. The ACF
image is applied to the motion corrected image, resulting in an attenuation corrected PET
(PET-AC) image. The whole framework is illustrated in Figure 1.

2.2 Registration

The goal of registration is to find a transformation g : x→ g(x|θ ) which maps the reference
image fr(x) to a test image ft(x) so that fr(x) corresponds to ft(g(x|θ )) at each location,
x ∈Ω denotes a pixel in a 3-D PET image, and θ denotes the B-spline control points located
on a 3-D lattice. The local deformation g(x|θ ) is determined by the weighted sum of its
neighbouring control points [5].

Registration is formulated as an optimisation problem, where a cost function consists
of a data term which measures the discrepancy between the reference image fr(x) and the
transformed test image ft (g(x|θ )), and a regularisation term. We use the negative correlation
coefficient (CC) to measure the discrepancy of two gated images, since it has the merits
of both mathematical simplicity and computational efficiency. The regularisation term is
derived, assuming that the control point lattice θ is a Markov random field (MRF), which
imposes a local smoothness constraint on the deformation field [1].
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Figure 2: A diagrammatic model of the chest. It mainly consists of two two tissue types of
different attenuation coefficients µ1 and µ2, representing the lung and the body respectively.
l denotes the intersection between a gamma ray and the medium. Due to respiratory motion,
the lung deforms (from the solid curve to the dashed curve), the voxel x moves to x�, and the
intersection l moves to l�.
2.3 Attenuation Correction

Figure 2 shows a diagrammatic model of the chest, which mainly consists of two tissue
types of attenuation coefficients µ1 and µ2, representing the lung and the body respectively.
According to Chang’s paper [2], the attenuation at point x can be estimated as,

A(x) =
1

M

M

∑
i=1

e−µ1li,1−µ2li,2 (1)

where M denotes the total number of projections. The reciprocal of A(x) can be used for
attenuation correction of the intensity of each voxel, and is named the attenuation correction
factor (ACF) image. If the model deforms slightly, the change of A(x) can be approximated
as,

dA = At(g(x|θ ))−Ar(x)

≈ 1

M

M

∑
i=1

e−µ1li,1−µ2li,2 · (−µ1dli,1− µ2dli,2) (2)

where Ar(x) and At(g(x|θ )) denote the attenuation factor of a voxel in the reference image
and the test image respectively. In normal respiration, the diaphragm moves 20 mm in max-
imum. If we select the mid-expiration gate as the reference image, the largest movement
between two gates is about 10 mm. Considering the dimension of the chest, the magnitude
of the movement is fairly small. The approximation in Equation 2 can be justified by Taylor
expansion. It follows that,

|dA| ≤ 1

M

M

∑
i=1

e−µ1li,1−µ2li,2 · |µ1dli,1 + µ2dli,2|

≤ 1

M

M

∑
i=1

e−µ1li,1−µ2li,2 · µm|dli,m|

≤ A · µm|dlm| (3)

where µm = max(µ1,µ2), |dli,m| = max(|dli,1|, |dli,2|, |dli|), |dlm| = maxi |dli,m|.
The two tissue types represent the lung and the body respectively. We have µ1 = 0.0032mm−1

(lung) and µ2 = 0.0096mm−1 (body). Therefore, |dA|≤ A · µmdlm = 0.096A. As we can see,
|dA| is fairly small and negligible. As a result, Ar(x)≈ At(g(x|θ )). Because the ACF is the
reciprocal of A, we have ACFr(x) ≈ ACFt(g(x|θ )). It means that we can use the voxel-wise
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(a) Attenuation image (b) Plot of the attenuation factors against gates

Figure 3: Observation of the changes of attenuation factors for the sample points. The sample
points in the right lung are shown in red, whereas those in the liver are shown in green.

ACF image for the reference gate to attenuation correct all the other gates. In practice, the
ACF image is generated by reconstructing the reference gate twice, respectively with and
without attenuation correction using the CT scan, and then dividing the two reconstructions,

ACFr(x) =
fr,AC(x)
fr,NAC(x)

(4)

After all the PET-NAC images are aligned to the reference gate, they are summed to
form a motion-corrected PET-NAC image fsum,NAC. This image is then attenuation corrected
using the voxel-wise ACF image,

fsum,AC(x) = fsum,NAC(x) ·ACFr(x) (5)

The whole process can be achieved using any existing reconstruction program. The only
additional work is image division and multiplication. It is straightforward to implement.

Table 1: The attenuation factors of the sample points and the changes. Ai denotes the atten-
uation factor for Gate i, and S j denotes the jth sample point. The change dA is calculated as
the difference between Ai and A1, where Gate 1 is regarded as the reference gate.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
A1 0.212 0.247 0.297 0.216 0.196 0.229 0.173 0.089 0.123 0.080

A2 0.200 0.246 0.296 0.216 0.191 0.207 0.179 0.090 0.126 0.082

A3 0.199 0.243 0.297 0.213 0.187 0.213 0.181 0.091 0.126 0.085

A4 0.192 0.246 0.297 0.214 0.201 0.206 0.177 0.090 0.121 0.082

A5 0.216 0.249 0.297 0.221 0.196 0.221 0.172 0.095 0.120 0.081

A6 0.218 0.250 0.300 0.220 0.216 0.213 0.183 0.098 0.121 0.083

A7 0.211 0.254 0.298 0.220 0.215 0.217 0.184 0.090 0.129 0.082

A8 0.208 0.249 0.298 0.222 0.206 0.214 0.182 0.093 0.119 0.082

Mean(dA/A1) 0.039 0.012 0.003 0.016 0.049 0.068 0.038 0.042 0.025 0.024
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(a) Corrected (b) Uncorrected

(c) Static

Figure 4: The motion corrected image, the uncorrected image, and the static image. A 10
mm lesion at the bottom of the right lung is annotated by a red arrow.

3 Results

We simulated highly realistic PET data using a Monte-Carlo based PET simulator PET-
SORTEO. The human anatomy during respiration was modelled by the NCAT phantom. In
order to validate the approximation Ar(x) ≈ At(g(x|θ )), we observed a number of sample
points near the boundaries of the right lung and the liver, where the change of attenuation
is most drastic during respiration. The attenuation factors of the sample points are plotted
against gates in Figure 3 (b). As we can see from the figure, even at boundary positions, the
change of attenuation is relatively small. Table 1 lists the attenuation factors of the sample
points and the corresponding changes.

Figure 4 compares the motion corrected image, the uncorrected image, and the static
image. The static image is the reconstruction of ideal PET data without any motion, which
represents the upper bound of image quality, given the current PET scanner and the recon-
struction algorithm used. It is difficult to see the 10 mm lesion in the uncorrected image and
it is very likely to be missed by a human observer. However, it can be seen clearly in the
motion corrected image and its appearance is similar to that in the static image.

4 Conclusions

The experimental results show that our motion correction method can effectively correct for
respiratory motion and improve PET image quality. Attenuation correction is performed
using an ACF image and is straightforward to implement.
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Abstract.  The  traditional  random  forests  technique  has  shown  good  classification  accuracy  for  2D  
object  segmentation  in  natural  images.  However,  the  technique  suffers  from  a  few  problems  when  
extending  it  to  3D  or  4D  images  which  are  of  great  interest  in  biomedical  image  analysis.  In  this  
paper,  we  develop  an  automatic  3D  random  forests  method  which  is  applied  to  segment  the  fetal  
femur   in  3D  ultrasound.  The  proposed   technique   trains  balanced   trees   from  imbalanced  data.  A  
weighted   voting   mechanism   is   proposed   to   generate   the   probabilistic   class   label.   A   cross  
validation  on  20  3D  fetal  ultrasound  volumes  shows  promising  results.  Experiments  show  that  our  
technique  achieves  segmentation  and  measurements  close  to  the  accuracy  of  expert  delineations.  
The   method   runs   in   a   few   seconds   on   a   standard   PC   and   hence   is   well-suited   for   clinical  
applications.    

1 Introduction  

The  novelty  of   this  work   is   to  extend   the  conventional  Random  Forests   [1]   (RF)   technique   to  
provide  an  efficient  method  for  3D  or  4D  image  segmentation.  In  addition,  we  provide  a  robust  
testing  by  weighting  the  class  decision  of  each  tree.  The  conventional  RF  technique  has  already  
been  used   to   segment  2D   images   [2,  3]  but   great   interest   in  medical   image  analysis   raise   the  
issue   of   having   such   technique   to   accurately   and   efficiently   segment   volumetric   objects.   3D  
features  are  required  to   represent  a  3D  object  of  interest  therefore  we  illustrate  how  to  extend  
several  features  to  3D  efficiently.  The  technique  has  been  validated  and  applied  to  segment  the  
fetal   femur   in   3D   ultrasound   images   although   our   technique   is   equally   applicable   to   other  
problems.  
Manual   measurements   can   be   inaccurate,   tedious   and   time   consuming.   Another   major  

problem   with   manual   segmentation   is   intra   and   inter-observer   reproducibility.   The   problem  
becomes  harder  when  measuring  volumetric   structures  where   the  errors  propagate.  Therefore,  
there   is   an   urgent   need   to   automate   this   process,   enhance   reproducibility   and   minimize   the  
source  of  errors.  
Recently,   learning-based   techniques  have  been  proposed   for   segmentation.  Random   forests  

[1]  is  a  learning-based  technique  in  which  training  using  a  gold  standard  segmentation  is  done  
by  building  multiple  decision  trees  in  which  every  node  except  the  leaves  is  a  decision  node  that  
contains  a  feature  (this  is  called  a  variable  in  statistics  terms)  and  its  corresponding  threshold.  
Every   leaf   node   contains   a   probabilistic   class   distribution   (histogram   of   class   labels   for   the  
voxels   that   have   reached   that  node).  Testing   is  performed  by   traversing  voxels  over   the   trees  
starting  from  the  root  of  each  tree  to  a  leaf  node.  The  voxels  are  split  at  a  given  node  depending  
on  the  classification  of  the  feature/threshold  at  that  node.  The  average  probabilistic  decision  of  
the  class  distribution  from  all  trees  is  considered  the  final  probabilistic  class  distribution  of  the  
test   case   (voxel   label   in   this   scenario).   For   more   information   see   [1-3]   and   Fig.   1.   RF   can  
achieve  comparable  accuracy  to  boosting  while  being  faster   [4].  In  addition,  randomness  in  1)  
choosing  a  sample  training  set  for  each  tree  and  2)  choosing  a  subset  of  features  to  try  at  each  
node   provides   better   generalization   and   helps   avoid   over-fitting.   RF   has   also   shown   to   have  
robustness   to   noise   and   ambiguity   between   classes   in   the   training   data   which   makes   the  
technique  suitable  to  segment  ultrasound  data  [1].  
If   an   equal   vote   from   each   tree   is   used,   the   decision   can   be   biased   by   the   strength   of   the  

classifiers  on  the  decision  node  path  (see  green  nodes  in  Fig.  1).  For  example,  if  the  forest  has  
10  trees  and  the  first  one  has  a  max  depth  of  5  while  the  other  9  trees  have  a  max  depth  of  12  
then  the  decision  made  by  the  first  tree  depends  on  up  to  5  classifiers  which  may  provide  a  poor  
accuracy  compared  to  the  trees  which  have  up  to  12  classifiers  on  every  path.  In  addition,  the  
accuracy  of  each  classifier  affects  the  decision.  This  implies  that  it  would  be  a  better  strategy  if  
each  tree  contributes  a  weighted  vote  toward  the  final  decision.  
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Fig.   1.  Random   forests  which   contain  T   decision   trees.  Decision   is  made   as   a   combination  of   class  
distribution  (red  circles  with  green  outline)  from  every  tree  (ti).  

2 Method  

2.1 Problem  Description  

The   ultimate   goal   of   this   work   is   to   extend   the   traditional   RF   technique   to   3D   image  
segmentation   and   provide   robust   and   meaningful   3D   feature   sets   that   can   be   computed  
efficiently  in  3D.  In  addition,  we  provide  a  weighted  decision  that  depends  on  the  strength  of  
the  features  used  in  each  tree.  

2.2 3D  Feature  Sets  

Each   node   in   the   classification   tree   in   the   RF   framework   is   a   classifier.   The   classifier   is   in  
reality  a  feature  and  its  threshold.  In  conventional  RF,  n'  features  are  randomly  selected  out  of  n  
features   in   the  pool   (in  3D  images,  n  can  be  a  very  huge  number,  e.g.,  108).  This  sub-section  
describes  how  to  create  this  feature  pool.  
Several  challenging  properties  of  ultrasound  data  like  shadowing,  speckle  and  other  artifacts  

make   the  problem  hard.  Therefore,  "intelligent"   features  are   required   to  capture  all  variations.  
Several  feature  sets  are  constructed  for  a  given  image.  We  use  the  phrase  "feature  set"  to  denote  
the  group  of  features  of  the  same  type  but  with  different  window  sizes  and  locations  around  a  
Voxel  Of  Interest  (VoxOI).  Unary3D,  binary3D,  rectangle3D  [3],  Haar3D  [5,  6]  feature  sets  are  
used  and  averaged  rectangle3D  and  position3D  feature  sets  are  proposed.  Fig.  2  illustrates  some  
of  these  feature  sets.  These  features  are  extracted  from  image  voxels.  
A   unary3D   feature   is   the   intensity   value  of   a   random  voxel  within   a   random  size  window  

around  VoxOI.  A  binary3D  feature  is  the  sum,  difference  or  absolute  difference  of  two  random  
voxels  in  a  random  window  around  VoxOI  [3].  A  rectangle3D  feature  is  the  sum  of  all  voxels  of  
a  random  size  rectangular  cuboid  starting  from  a  random  coordinate  around  the  VoxOI.  These  
feature  sets  have  shown  good  performance  in  natural  image  segmentation  [2,  3].  We  extend  the  
2D   integral   images   [7]   to   3D,   see   equations   (1)   and   (2),   to   find   the   3D   rectangular   sum  
efficiently.  Notice   that   the  3D   integral   image   can  be   efficiently   computed   in  one  pass.  Since  
rectangle3D  features  depend  on  the  size  of  rectangular  cuboid  which  is  biased  to  its  dimensions  
we   propose   an   averaged   rectangle3D.   The   averaged   rectangle3D   feature   set   is   actually   a  
unary3D  feature  set  of  the  sub-sampled  image  in  a  multi-resolutions  image.  Haar3D  features  are  
used   to   capture   edge   regions   [6].   Finally,   position3D   features   are   used   to   capture   the   spatial  
locations  of  the  voxels.  This  feature  set  helps  discard  many  regions  that  have  similar  intensity  
and  edge  information  to  the  object  of  interest  (e.g.,  in  our  case  allowing  to  distinguish  the  femur  
from  other  structures  like  tibia).  
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(2)  

In  each  feature  set  many  features  exist.  For  instance,  in  a  rectangle3D  feature  set  116  features  
can   be   generated   with   a   maximum   rectangle3D   size   of   (11,   11,   11)   starting   from   a   random  
voxel   within   a   window   of   a   maximum   size   (11,   11,   11)   around   VoxOI.   Calculating   such  
features  in  3D  requires  considerably  more  time  than  in  2D.  In  addition,  many  of  these  features  
are  redundant  and  many  are  poor  to  be  used  for  classification.  Therefore,   a  weighted  decision  
from  each  tree  should  give  a  more  accurate  classification.  

tT  t1  
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(a)  binary   (b)  Rectangle   (c)  Vertical  Haar  

Fig.  2.  Examples  of  the  feature  sets.  The  green  color  voxels  are  summed  and  subtracted  from  
the  summed  red  voxels.    

2.3 Training  Random  Forests  

In   the   traditional  RF,   the   training  phase  proceeds  by  building   randomized  decision   trees.  The  
number  of  trees  is  set  before  hand.  A  top-down  construction  for  every  tree  is  performed  starting  
from  the  root  node.  Each  tree  is  trained  on  a  random  set  of  the  training  points  with  replacement.  
For   each   node   in   the   tree   n'   features   from   the   feature   pool   are   randomly   selected   without  
replacement.  The  "best"  feature  out  of  n'  with  the  "best"  threshold  is  selected  as  a  classifier  in  
the   tree  node.   Information  gain   is   usually  used   to  decide   the  performance  of  a  classifier.  The  
training  set  is  then  divided  into  two  sub-sets  according  to  the  results  of  the  classifier  to  left  and  
right  branches.  The  same  process  is  continued  recursively  for  each  sub-set  until  the  maximum  
tree  height   is   reached  or  no  more  gain   is  achieved.  For  more   information  see   [1].  After   trees  
construction,   every   leaf   node   contains   a   probabilistic   class   distribution  P(ci|l)   for   each   class  
which  is  the  histogram  of  the  training  examples  of  class  label  ci  that  reached  leaf  node  l.  

2.4 Segmentation  &  Measurements  

In   traditional   RF,   classifying   new   voxels   proceeds   by   testing   each   voxel   on   the  
features/thresholds   for   every   tree   starting   from   the   root   to   a   leaf   node.  The   probability   for   a  
voxel  vi   to  belong  to  a  specific  class  cj   is   the  percentage  of  voxels  of  class  cj   that  reached  the  
leaf  node  with  respect  to  all  voxels  reached  it  (vleaf)  during  training  (3).  The  probabilities  from  
all   trees   are   averaged   to  generate   the   final   probabilistic   decision  of   a   voxel   vi   belonging   to   a  
class  cj  (4).  
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Here  T  is  the  number  of  the  trees  and  lt  is  a  leaf  node  at  treet.    
One  major  issue  is  the  equal  vote  (1/T)  from  each  tree  where  some  trees  may  provide  a  bad  

classification   accuracy.   One   solution   could   be   to   increase   the   number   of   trees   but   this  
significantly  increases  the  training  and  testing  time  in  the  RF.  Therefore,  we  propose  a  weighted  
voting  in  which  the  vote  is  weighted  depending  on  the  features  used  in  each  tree  starting  from  
the  root  until  the  leaf  node.  The  decision  from  each  tree  is  based  on  the  classification  accuracy  
of  the  nodes  visited  for  every  voxel  vi.  To  embed  this  into  the  RF  framework,  a  weighted  sum  of  
trees  probabilities  is  proposed  and  equation  (4)  is  generalized  to  (5).  
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Here  F  is  the  total  number  of  features  on  the  path  from  the  root  to  the  leaf  when  classifying  a  
voxel  and  Scoref(treet)  is  the  training  score  of  a  feature  f  on  a  path  at  tree  t.  Finally,  the  volume  
of  the  segmentation  of  class  cj  is  easily  found  by  multiplying  the  number  of  segmented  voxels  
by  the  voxel  spacing.  

2.5 Post-processing  

This  step  is  application-specific  and  is  mainly  applied  here  to  reject  regions  with  similar  local  
shape   and   intensity   distribution   to   the   object   of   interest.   Although   RF   provides   good  
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classification  accuracy,  it  is  a  discriminative  model  that  captures   local  similarities.  As  a  result,  
any  structure  which  looks  similar  in  intensity  distribution  and  local  shape  can  be  regarded  as  the  
object  of   interest.  A  position   feature  set   is  added   to  reject  such  regions.  Unfortunately,   in  our  
specific   application   some   femur   like   structures   are   close   to   the   femur   and   therefore   position  
features  may  not  be  able  to  distinguish  between  the  two  (e.g.,  the  femur  is  connected  to  tibia  via  
the   knee   ligaments).   To   accommodate   this,   the   largest   3D   connected      component   was  
automatically  selected  (the  femur).    

3 Experimental  Results  

Several  measurements  of  fetal  structures  from  2D  ultrasound  images  are  important  to  diagnose  
the  growth  of  the  fetus  and  estimate  gestational  age  and  birth  weight  [8,  9].  Clinicians  usually  
measure  head   circumference,   biparietal   diameter,   abdominal   circumference   and   femur   length.  
Several  research  groups  have  studied  and  manually  measured  the  fetal  femur  [8-10].  They  have  
mainly  focused  on  measuring  femur  length  to  correlate  it  with  gestational  age  or  birth  weight.  
Several  research  groups  have  tried  to  automate  the  process  of  segmenting  and  measuring  such  
structures  in  2D  ultrasound  images  [5,  11].  To  our  knowledge  we  are  the  first  to  investigate  the  
problem  of  automatic  femur  volume  segmentation  in  3D  ultrasound  images.  

3.1 Dataset  

We  tested  our  technique  on  20  3D  ultrasound  volumes  [9]  acquired  on  19  weeks  fetuses  ±6  days  
using   a  GE  Voluson  730   scanner.  Volumes  dimensions   are   approximately  70×70×140  with   a  
(0.5×0.5×0.5)   mm3   voxel   spacing.   Although   out-of-bag   error   estimate   can   be   used   as   a  
classification  error  measure  [1],  cross  validation  was  performed  on  the  20  volumes  by  using  18  
images  for  training  and  two  for  testing.  Cross  validation  provides  a  more  general  and  realistic  
error  measure  compared  to  the  out-of-bag  error  in  this  application.  

3.2 Validation  methodology  

Experiments  on  the  traditional  and  weighted  RF  are  reported  to  support  the  proposed  technique.  
RF  requires  several  parameters  to  be  set.  The  parameters  were  fixed  for  all  experiments  (T  =  10,  
max-tree-depth  =  10,  n'  =  100).  Recall  and  precision  were  calculated  to  measure  how  well  the  
segmentation  of  the  proposed  technique  compared  to  an  expert  manual  segmentation  according  
to  (7)  and  (8)  respectively.  

Recall  =
F PTP

TP    (7)   Precision  =
F NTP

TP      (8)  
Where:  TP  is  True  Positive  
   FP  is  False  Positive  
   FN  is  False  Negative  

Recall  and  precision  comparisons  of  the  20  volumes  for  the  traditional  RF  and  the  weighted  
RF  are  shown  in  Table  1.  Notice  that  the  higher  the  recall  the  closer  the  segmentation  is  to  the  
ground   truth.   Bland-Altman   plots   for   the   volume   measurements   to   compare   the   manual  
segmentation  and  the  traditional  and  weighted  RF  techniques  show  that  the  weighted  RF  has  the  
minimum  bias  and  tightest  standard  deviation  bounds  (Fig.  3).  Visual  comparisons  between  the  
manual  segmentation  and  the  both  RF  methods  are  shown  in  Fig.  4.    
The  training  and  segmentation  times  for  the  RF  technique  are  shown  in  Table  2.  These  times  

are  for  one  experiment  where  18  ultrasound  images  were  used  for  training  and  one  for  testing,  
T=10,  n'=100,  Max-tree-depth=10,  n~=8*106.  
  
  
  
  
  
  
  
  
  
  
  

     
Fig.   3.  Bland-Altman   plots   for   the   segmented   femur   volumes. Left: manual   vs.   traditional.   RF. 
Right: manual vs. weighted RF.  
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4 Conclusions  &  Future  work  

In  this  paper,  the  RF  technique  has  been  extended  from  the  traditional  2D  RF  to  3D.  We  have  
shown   that   using  weighted   class  decision   from  each   tree   in  RF  outperforms   the   conventional  
method.   The   technique   has   shown   good   accuracy   and   performance   on   the   problem   of   fetal  
femur   segmentation   in   3D   ultrasound   data.   Validation   has   been   performed   on   a   good   size  
dataset  which  showed  promising  results.  One  major  issue  to  consider  is   to  eliminate  irrelevant  
features  in  the  huge  feature  pool.  This  will   theoretically  provide  better  classification  accuracy.  
A   second   issue   is   how   to   integrate   global   shape   information   in   the   RF   framework   since  RF  
mainly  capture   the   local   shape   information  of   the  object  of   interest.   Researchers  have   looked  
into  this  issue  by  applying  a  generative  model  to  the  results  of  the  discriminative  model  (e.g.,  
Boosting   and   its   variations,  RF,   etc...)   [12].   Specific   to  our   application,   the   feature   set   could  
also  be  extended  to  account  for  the  signal  attenuation  for  both  the  distal  and  proximal  ends  of  
the  femur.  We  also  plan  to  study  the  intra  and  inter-observer  reproducibility  by  doing  multiple  
manual  segmentations  from  multiple  experts.  Finally,  this  approach  is  general  and  not  restricted  
to  the  femur  or  indeed  ultrasound.  We  plan  to  look  at  other  applications  too.    
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Fig.   4. A 2D slice of the segmentation using 3D random 
forests. Top is an original longitudinal (left) and ground truth 
(right). Bottom is the segmentation using traditional RF (left) 
and weighted RF (right).  
  

Table   1.   Recall   &   precision   for   the  
traditional  and  weighted  RF  methods.  

     
Recall  

  
Precision  

Trad.  RF   64%±18%   88%±11%  
Weighted  
RF   70%±15%   88%±11%  

  
Table   2.   Training   &   test   time   for  
traditional  and  weighted  RF  methods.  

  
Training  
time  
(Hours)  

Segmentation  
time  (Sec)  

Trad.  RF   18   13  
Weighted  
RF   18   22  
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Abstract
The use of long-axis images in cardiac MRI segmentation is essential in order to

locate the valves and delineate the ventricles’ volume accurately. However, depending
on the imaging protocol used, long-axis images do not always provide enough support
for straightforward segmentation. We show that it is possible to use both short-axis and
long-axis images for segmentation, even in cases where the long-axis images do not cover
the entire heart volume and have various orientations and spacings, and different gains
and contrasts. We propose a method to achieve this goal, based on the simultaneous
interpolation and segmentation of the data in a level set framework. Results on both
synthetic and real images are presented.

1 Introduction
Automatic segmentation of cardiac MRI images has been extensively studied over the last
decade and more, thanks to its clinical usefulness. In particular, the evaluation of the vol-
umes of the heart ventricles is a challenging problem because of the high precision required
to reliably compute stroke volumes, ejection fractions, and other clinical parameters. One
of the major problems in computing these volumes comes from the difficult localisation of
the valves which separate the ventricles from the atrias, and thus delineate the ventricles’
volumes. Indeed, these valves are generally not visible in short-axis (SA) images, which
are most often used in cardiac MRI segmentation. A commonly used method to overcome
this difficulty is to constrain the ventricles segmentation with a statistical model. The extra
robustness provided by the model is expected to allow the demarcation of the volumes cor-
rectly without searching for the valves. However, since the valves are more easily visible
in long-axis (LA) images, it would also be sensible to use these images in order to locate,
or even track, the valves. In addition, the use of LA images offers the added advantage of
providing a better definition of the shape of the apex.

In practise, LA images are rarely used, and the segmentation is generally performed on a
stack of SA images only. This is mainly due to the fact that it is relatively easy to build a 3D

c� 2010. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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volume from a set of parallel SA slices, either by using directly one slice per pixel plane or
by using interpolation to fill the gaps between the slices, such as in [2, 7, 12]. However, the
reconstruction of the chest volume using both SA and LA slices may be more problematic,
especially when LA slices offer only a very partial cover of the chest volume and present
various orientations and irregular spacings. In addition, some data sets present differences in
the gain and contrast of their slices, which complicates the volume reconstruction even more.
A few attempts have been made to use both SA and LA images in order to segment the heart
by fitting a model on the images ([1, 4, 5, 9, 11, 12]). In [1, 4] two volumes are built from
the SA and LA images separately using interpolation. Then a model of the heart is registered
on the two volumes successively until convergence. In [12] a 3D volume is reconstructed
by fusion of the interpolated SA and LA volumes, and a model is fitted directly on the full
volume. Note that in these three cases, the authors have been able to reconstruct a 3D volume
using the LA images because they had a stack of parallel and regularly spaced LA images
which covered the entire heart volume. Moreover, the SA and LA slices had similar gains
and contrasts. In [5, 9, 11] a model is registered on the SA and LA images without filling
the gaps between the slices by interpolation, relying on the model properties to assure the
continuity and smoothness of the interpolated object. In [5] the model is deformed manually,
while in [9, 11] ASM and AAM methods are used.

In this paper, we present a new method to segment a 3D volume when only slices with
arbitrary spatial configurations and different gains and contrasts are available. Our method
relies on the use of level sets in order to interpolate data between the slices, and therefore it
does not require a training phase, unlike the deformable model methods presented in [9, 11].
The rest of the paper is organized as follows. The proposed method is described in Section
2. Results on both synthetic and real images, and their analysis, are presented in Section 3.
Section 4 concludes the paper.

2 Proposed Method
In [3], Grevera and Udupa introduced a shape-based interpolation method to reconstruct full
volumes from grey-level slices. The basic idea of their approach was to preserve the shape of
the interpolated objects by performing a contour interpolation of a (N +1)-D shape derived
from the N-D objects, as illustrated in Figure 1. First a binary image of dimension N + 1 is
built from an original grey-level image of dimension N, using the grey level values of the
original image to derive the additional dimension. This transformation is illustrated in Fig.
1(a). More formally, the values of the new (N +1)-D image are computed by:

fB(v1,v2, ...,vN ,m) = 1 iff f (v1,v2, ...,vN) � m, otherwise fL(v1,v2, ...,vN ,m) = 0, (1)

where m is the grey value. This produces a single object (the black area in Fig. 1(a)) with a
closed contour. In a second step, this contour is interpolated using implicit function interpo-
lation. A distance function to the contour is computed, with positive values inside the object
and negative values outside. Then this function is interpolated using a classic, scalar data
interpolation method, and the interpolated contour is extracted from its 0-level (the red line
in Fig. 1(b)). The last step consists of creating the final N-D image by collapsing the binary
data set obtained at step 2, using the inverse process of the initial binarization (Fig. 1(c)).

This method works well on slices having the same gain and contrast. However, if that is
not the case, interpolation artifacts are produced and may bias the volume segmentation. We
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now propose a method to interpolate the shape being segmented in a process similar to the
shape-based interpolation, but which does not suffer from this limitation.

a b c

Figure 1: Shape based interpolation (1D case) - a) Step 1: Binarization; b) Step 2: Implicit
function interpolation; c) Step 3: Collapsing

In order to avoid creating interpolation artifacts, we propose to interpolate the data di-
rectly during the segmentation process. In [6], Morigi and Sgallari note that Grevera and
Udupa’s shape-based interpolation is the same as interpolating every greylevel line (i.e. iso-
intensity contour lines) in the volume using distance transform interpolations. Furthermore,
they propose to use level sets, which are distance functions, to perform the interpolation.
They use level set morphings in order to generate missing slices between parallel ones. This
method can not be used with slices having arbitrary orientation, and would not remove the
interpolation artifacts produced by different gains and contrasts of the slices. However, we
propose to interpolate the missing data by interpolating the level set function itself during
the segmentation process. Therefore, instead of interpolating every greylevel line, we inter-
polate only the shape being segmented, which generally corresponds to a greylevel line. The
complete algorithm is then as follows: At each iteration,

1. Evolve the level set function in the image planes, that is to say where data support is
available to compute the velocity of the contour.

2. Interpolate the level set function between the image planes.

The level set’s velocity is computed locally in the individual image planes, so the evo-
lution of the contour is not sensitive to differences in the gain and contrast of the slices.
Consequently, the object’s shape is correctly segmented in the image planes and interpolated
outside.

We experimented with two methods to interpolate the level set function, namely natural
neighbours (NN) interpolation and curvature based interpolation. NN interpolation was in-
troduced by Sibson in [8]. In order to interpolate a point x, this method relies on a Voronoi
diagram to find the coordinates and weights of the interpolating neighbours Pi. The weight
of each neighbour Pi is computed directly from the volume of the Voronoi sub-cell that point
x would “steal” from it if it was inserted into the Voronoi diagram.

We note that interpolating the level set function is the same as smoothing it. This observa-
tion provides us with the second level set interpolation method, which is a simple smoothing
of the level set function under the influence of its curvature, i.e.:

∂φ (x)
∂ t

= κ (x) |∇φ (x)| (2)

Here φ (x) denotes the level set function and κ (x) its curvature at point x. This method
provides a better smoothing of the level set function than the NN method, and is considerably
faster.
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3 Results
We tested the proposed method on synthetic and real data sets, against the shape-based vol-
ume reconstruction method of Grevera and Udupa [3]. Two synthetic data sets were used
in this study. They consist of a 3D volume containing an object made of a cylinder and a
hemisphere (Fig. 2(a)). In the first data set, all the slices have the same gain and contrast
(Fig. 2(b)), while in the second set one slice has been given a different gain and contrast
(Fig. 2(c)). The volume in each of the two data sets is the typical size of a real one, and
the position and orientation of the slices are the same as SA and LA slices of a real data set
chosen arbitrarily.

We used the CACE level set algorithm introduced in [10]. The volume reconstruction
method and the proposed method gave similar results when tested on the first data set (Fig-
ure 2 (b)). The computed Jaccard’s coefficients are 97.6% when segmenting the original, full
volume data set, 96.6% after reconstructing the volume using the shape-based interpolation
method, and 92.7% with the proposed method. The two methods gave very different results
when tested on the second data set, and the propose method achieved a better accuracy. In-
deed, with the shape-based volume reconstruction method, the interpolation artifact disturbs
the evolution of the level set and attracts the contour like an object’s border (Fig. 2(c)i),
and the resulting Jaccard’s coefficient is only 85.9%. However, the proposed method did
not create such artefacts and was able to contour the object correctly, yielding a Jaccard’s
coefficient of 93.0% (Figure 2(c)ii).

i ii i ii
(a) (b) (c)

Figure 2: Segmentation of synthetic data sets; (a) Full volume data set, (b) Homogeneous
data set, (c) Data set with different gains and contrasts; in each case (i) is the Shape based
interpolation method and (ii) is the proposed method (xz-plane in the middle of the volume
(long-axis view))

Our real data comprises of 10 data sets, each containing 11 parallel SA images spaced
by 10mm, and 3 to 6 LA images with various positions and orientations. The pixels in the
data sets range in size from 1.7708x1.7708mm to 2.0833x2.0833mm. In Fig. 3, we show
a comparative result where our proposed approach is more accurate while the shape-based
interpolation method suffers through the introduction of interpolation artifacts which attract
the active contour to incorrect positions. Additionally, our method is faster, with a processing
time of 7.4 minutes against 15.1 minutes for the shape-based interpolation method - using
C++ under Linux on a 3GHz CPU with 3.8GB RAM.

4 Conclusion
We proposed a new method to interpolate and segment 3D data from SA and LA cardiac
MR images simultaneously. The approach is suited to any data set, regardless of the spatial
configuration, and gain and contrast, of the slices. This is achieved through the interpolation
of the level set function itself rather than the images. The method was tested against a shape-
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i ii i ii
(a) (b)

Figure 3: Segmentation of a real data set; (a) Shape-based interpolation method, (b) Proposed
method; i) One short-axis view, ii) xz-plane in the middle of the volume (long-axis view)

based volume reconstruction method, on both synthetic and real data sets. The two methods
gave similar results on data sets made of slices having the same gains and contrasts, but the
proposed method was superior on all other data sets.
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Abstract
We present a method based on graphical models for the localization of corresponding

anatomical landmarks in CT images of multiple patients for which only limited labeled
training data is available. Our method mobilizes anatomical spatial relationships learnt
from labeled training images in order to improve dense matching using weak landmark
appearance descriptors. In this study, we report results for localization of 22 different
anatomical landmarks in 20 unseen lung cancer patients and different types of anatomi-
cal constraints (none, box-range, Gaussian). The average registration error over all land-
marks improved from 18.8 voxels (37.6mm) of the raw landmark descriptors to 4.2 vox-
els (8.4 mm) using the anatomical constraints.

1 Introduction
Inter-subject matching and registration of whole-body oncology CT images is a challeng-
ing problem due to the intrinsically high variability of normal subjects and of pathological
structures. The motivation for our work is to develop algorithms for improved inter-subject
registration in whole-body PET/CT oncology applications. In this work, we report meth-
ods to match corresponding structures of multiple patients for which there is only a limited
labeled training dataset. Our approach is based on a parts-based graphical model.

Conventional approaches to determining correspondences in medical imaging typically
rely on registration methods. However, despite considerable advances in deformable regis-
tration, there still do not exist reliable methods for aligning whole-body images of differ-
ent subjects. The performance of inter-subject registration could be improved by informa-
tive priors that capture the wide variability of structures. Active shape/appearance models
(ASM/AAM) have addressed this problem [2]. However, several authors have drawn atten-
tion to the limitations of such global models when applied to clinical images in which there
are significant local abnormalities [1, 7]. Graphical Models , developed in computer vision,
offer an alternative approach to modeling flexible objects, one which does not impose ex-
plicit global priors, and which is generally considered to be potentially more robust to local
abnormalities than global AAMs.

c� 2010. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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In medical image analysis, the attractive properties of graphical models have attracted
attention in spine labeling [3, 6]. However, whole-body matching involves considerably
more complex anatomical variability. Here, we report a method that is capable of localizing
a broad range of structures of interest to a clinician, including both skeletal and soft tissues

2 Methods
Our method is based on the Pictorial Structure model [4, 5], which we summarize here.

2.1 Pictorial Structure Representation
All landmarks share the same representation, which comprises a unary energy term for part
appearance and a set of pair-wise terms for spatial compatibility. It takes the form of a
tree-structured undirected graphical model G with nodes vi,v j representing the landmarks.

P(L | I,Θ) ∝

�
n

∏
i=1

p(I | li,ui)α ∏
vi,v j∈G

p
�
li, l j

�� ci j
�
�

(1)

In this equation, the first product term represents the cost of each landmark vi at location li,
given the quality of match of landmark appearance model ui to the image I. The second term
is the compatibility cost of connected pairs of landmarks assuming conditional independence
(i.e., anatomical constraints, represented by ci j). This equation can be rewritten as an energy
minimization problem by taking its negative logarithm. L is the vector of locations li assigned
to all landmarks vi, Θ are the model parameters learnt from the data. α is a normalization
constant, selected empirically for each type of spatial constraint and fixed for all parts (for
box-range constraints: α = 1, for Gaussian constraints: α = 20).

Local Appearance. We model local tissue appearance in terms of local rectangular
image patches around a candidate landmarks with a fixed scale h=12 voxels. Patches are
projected onto a set of n = 17 bases that includes the mean template and the top n = 16 prin-
cipal eigen-patches obtained from ground truth patches for each landmark. Additional pos-
itive examples were generated from the hand-annotated patches by random rotations within
anatomically plausible ranges. Negative examples of non-landmark tissue ("background")
are sampled from unlabelled tissue from a spherical region of interest within the segmented
body outline. The variability of part appearance is represented by the distribution of the co-
efficients, ui ∼ N(M,Σ) for each part i, where M,Σ are diagonal matrices. ubi ∼ N(M,Σ) is
the model for the local "background".

Pair-wise Anatomical Constraints. Pair-wise spatial compatibility terms Gi j(xi,x j)
penalise part placements outside of the degree of anatomical variability exhibited within the
training database The functional form of this spatial model is approximated as a distribution
over�li j,k = li,k− l j,k (the relative position vector of two parts i, j in training patient k). We
evaluate: no constraints; box-range constraints P(li

�� l j) ∼ U
�

min�li j,k,max�li j,k

�
; (search

within a bounding cube); and Gaussian models P(li
�� l j)∼N

�
�li j,k,µi,Σi

�
with diagonal and

full covariance. The Gaussian terms are truncated at 3 standard deviations.

2.2 Learning Pictorial Structure Parameters
The parameters of the model are learnt as maximum likelihood (ML) estimates from the
training data D. The connectivity of graph G is obtained based on an estimated n-by-n
matrix Q of edge compatibilities, Qi j (G | D)∼ ∑li,l j∈D−logP(li, l j

�� ci j).
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(a) Top femur head (b) Carina (c) Aortic arch (d) Th12 vertebra (e) Top of kidney

Figure 1: Example landmark posterior probability maps. Top: Coronal, Bottom: Sagittal
views. Images show a 16x16x16 cm region centered at the ground-truth location. Bright
colors correspond to high probability landmark placements ( 1). Dark colors correspond to
low probability landmark placements ( 0). White box indicates patch scale h = 12 vox.

A set of edges connecting all parts in a tree is obtained by finding the minimum spanning
tree of the complete graph such that the sum of edge costs is minimum. Intuitively, this can
be seen as searching for edges with the most compact ("rigid") pair-wise constraints.

The pair-wise spatial model is fitted by directly calculating the MLE estimate for the
vector �li j,k (i.e. the mean and the diagonal or full covariance matrix for the Gaussian or
bounding cube for the box-range model). The appearance model parameters are obtained by
direct calculation of the sample mean and variance of the feature coefficients.

2.3 Matching Pictorial Structure to New Image
To find the best placements for the parts in a new image, we apply the appearance models to
the whole image using a sliding window approach. The log-likelihood ratios are combined
using a Naive Bayes classifier to obtain the posterior probability for each landmark and
sliding window placements. For computational reasons, the dense descriptors were evaluated
in a cube-shaped region of interest centered around the ground-truth landmark placement
([81 x 81 x 81 voxels]).

Min-sum belief propagation algorithm is used for an exact, globally optimal fitting using
the (dense) appearance posterior probability maps and the pair-wise compatibility terms.
Pair-wise terms are evaluated using the fast generalized Distance transforms [4] and fast
min/max filters.

3 Data and Results
To date, our database comprises 83 lung cancer PET/CT cases (here, randomly split into 63
training and 20 unseen test images). Contrast-enhanced, diagnostic-quality CT scans of the
torso were acquired using Siemens Biograph 6 and re-sampled to 2mm isotropic resolution.

22 clinical landmarks were selected by an expert radiologist with 20 years experience,
according to their utility as anatomical reference points for whole-body PET/CT. Ground-
truth landmark positions were annotated by a non-expert reader, who followed interactive
guidance by the expert. The expert subsequently validated a subset of the annotations, in-
cluding a) All placements flagged as uncertain or abnormal b) All annotations where the
non-expert disagreed with another non-expert c) All 30% of randomly selected patients.
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(a) Box-Range (b) Gaussian

Figure 2: Anatomical constraints. Colored shapes show valid constraint ranges, overlaid
on one training patient (black lines). Blue and green points represent the training and test
points respectively, plotted in the local coordinates of the neighboring landmarks. Labels
correspond to landmarks 1 - 22 (Table 1)

Performance was assessed in terms of the robustness to misclassification and landmark
registration accuracy with different spatial constraint models. Localization accuracy was
measured in terms of the mean RMS error. Robustness was measured as the proportion of
failed detections, defined as parts placed above 10 voxels from the ground truth landmark
location (Table 1).

4 Discussion and Conclusion
We aim to establish correspondence for a limited set of clinical anatomical landmarks which
are guaranteed to be present and localizable in most clinical oncology images. Our method
can compensate for weak appearance descriptors with a high level of false positives and can
disambiguate repeated self similar structures by mobilizing relations between landmarks in
the image.

Our experiments show that all types of anatomical constraints improve registration com-
pared to using the appearance descriptors on their own. Localization of most landmarks
improved significantly, as evidenced by the reduction of average Mean RMS error from 18.8
voxels down to 4.2 voxels and the reduction in misclassifications from 48% down to 8%.
Gaussian constraints consistently outperform box-range constraints. However, we saw no
improvement on average from using full over diagonal covariance, which suggests the Gaus-
sian distributions may be a wrong model for some relations.

Some landmarks remain relative poorly localized. These include bottom sternum, a
highly variable structure with ambiguous ground-truth placements and the center of blad-
der, an intrinsically poorly localizable structure, due to variable fullness and appearance of
any contrast agent. Moreover, in coccyx and top of kidney, high variability of both appear-
ance and spatial relations hinders more accurate localization. Finally, Th12 vertebra cannot
be accurately localized with the current model as the available constraints are too broad to
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Table 1: A. Landmark registration accuracy. The table shows mean RMS error from
the ground-truth location. Lower error means more accurate localization. B. Landmark
detection robustness. The table shows failure rate (% detections above 10 voxel RMS).
Lower failure rate means more reliable localization. Results shown for 22 landmarks and
four constraint types (none, box-range, diagonal and full Gauss).

A) Avg. RMS Error B) Misclassification rate
[Voxels] [% Failed detections]

No Box Diag Full No Box Diag Full
1 C2 vertebra 27.4 8.0 1.9 1.9 75 20 0 0
2 C7 vertebra 11.3 4.9 2.5 2.3 40 5 0 0
3 top of the sternum 16.3 5.2 3.1 2.8 45 15 0 5
4 top right lung 15.7 3.2 3.6 3.7 40 0 0 0
5 top left lung 3.1 3.1 3.0 2.9 0 0 0 0
6 aortic arch 12.9 4.9 4.1 4.0 35 5 0 0
7 carina 22.7 2.3 2.4 2.3 40 0 0 0
8 low sternum (ribs) 28.8 11.4 6.6 6.2 95 50 15 10
9 low sternum (tip) 26.3 12.6 9.1 8.4 80 50 35 30

10 Th12 vertebra 17.9 7.5 5.7 6.0 80 40 25 25
11 top right kidney 37.0 10.2 4.6 4.9 75 35 15 20
12 bottom right kidney 6.7 2.6 2.8 2.9 10 0 0 0
13 top left kidney 32.8 7.2 6.5 6.5 80 25 20 20
14 bottom left kidney 15.0 2.8 3.6 3.7 30 5 10 5
15 L5 vertebra 19.6 6.0 5.0 5.1 70 25 20 20
16 right illiac crest 15.7 4.9 3.9 3.8 30 10 5 0
17 left illiac crest 10.8 3.3 4.0 3.9 20 0 0 0
18 right head of femur 9.8 2.1 2.2 2.2 20 0 0 0
19 left head of femur 4.4 2.8 2.4 2.6 5 0 0 0
20 symphysis 19.6 3.9 3.3 3.4 50 0 0 0
21 os coccygeum 15.1 4.9 4.1 4.9 35 15 10 15
22 center of bladder 43.7 17.0 8.6 8.6 95 80 40 30

Average 18.8 5.9 4.2 4.2 48 17 9 8

disambiguate from unlabeled L1 and Th11 vertebra. Overall, the Gaussian model appears
better suited than box-range. However, it introduces a certain bias to "population mean" and
box constraints may be more suited if a better appearance descriptors are available. We used
an ad-hoc generative appearance descriptor and didn’t attempt to optimize the parameters
(anisotropic patch scale, number of features etc.), which we leave for future work. The per-
formance achieved to date in our experiments is also limited by the spatial resolution of the
down-sampled data as well as the variability in the ground-truth annotations, particularly for
the intrinsically less well localized landmarks such as the top of the lung. Moreover, here
we use only one tree-structured model to cover all the landmarks. Locally optimized graph
structure may provide improved spatial constraining to a particular landmark of interest.
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Abstract

We compare the utility of models of the structure of carpal bones in the hand for pre-
dicting skeletal maturity in infants (0 -7 yrs). Skeletal maturity assessment is important
for diagnosing and monitoring growth disorders. Statistical models of bone shape and
appearance have been shown to be useful for estimating skeletal maturity. In this work
we investigate the effect of the choice of models of different carpal bones’ structure on
prediction performance. By analysing the performance on a dataset of 294 digitized ra-
diographs of normal infants we show that a simple texture based appearance model of
the carpal region produces the best results. Our results show a mean absolute error of
(0.42, 0.53) years, for female and male, from such a texture based model.

1 Introduction
Skeletal maturity plays an important role in the diagnosis of growth and endocrine disorders.
The two main methods examine the morphology of the bones and the joints of the non-
dominant hand in a radiograph. A significant difference between the bone age and the actual
age of a child is an indication of growth abnormalities. The predominant methods in clinical
practice are those of Greulich and Pyle(GP) [4] and Tanner and Whitehouse(TW2/3) [7].

There have been many attempts to automate the bone age assessment procedure. These
range from classical image analysis methods [6], machine learning techniques and model
based methods [5]. Thodberg et al.[8] recently showed how Active Appearance Models [2]
can be used to determine skeletal maturity. However the estimation was limited to 2 - 17
years and excluded the use of carpal bones.

The key issue here is that the most critical years during which corrective procedures can
easily be carried out are excluded in maturity estimation. The reason may be due to the
lack of availability of images and the poor radiograph image quality at this early age. The
Carpal bones, which are the most useful at this stage, are either in cartilage form or are just
appearing as a dot as shown in Figure 1. Their order of appearance is not consistent. Zhang
et al. [9] used classical image processing techniques and fuzzy classification to estimate bone

c� 2010. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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age from the Hamate and Capitate (see Figure 1). We differ in our approach from Zhang et
al. as we use statistical models of appearance to evaluate the utility of the carpal bones
from ages 0 -7 years. This work is intended to complement our earlier work [1] where we
evaluated several structures in estimating skeletal maturity, but the work was limited to ages
above 5 years. It will also complement the work of Thodberg et al. [8], who estimated age
from 2 years without the use of carpal bones.

The main problem is that of correspondence which results from inconsistent appearance
of the component carpal bones as illustrated in Figure 1. In our approach we built several
variants of statistical models of appearance, the parameters of which were used in a linear
regressor to predict the ’common’ (race normalized) bone age of the child.

a) Radiograph b) Carpals bones c) Carpals (2 bones)
Figure 1: a) Example of a hand radiograph of a child with no bones, b) Carpal bones labeled
and c) carpal region with two bones.

2 Methods
2.1 Data Set
We have used a publicly available database of radiographs of the non-dominant hand of nor-
mally developing children from Ipilab laboratories1. We used a subset of 294 images repre-
senting ages from 0 -7 years. The dataset are of children from 4 ethnic groups (Caucasians,
Asians, African Americans and Hispanics). The data also comes with two independent ex-
pert ratings who were blinded to the chronological age and the ethnicity of the children at
the time of reading.

In studying the structures of the carpal bones, we regard the expert average of the bone
age as ‘common’ bone age.

2.2 Construction of Statistical Appearance Models
Statistical appearance models (SAM) [2] were generated by combining a model of shape
variation with a model of texture variation. Each radiograph was manually annotated with
points around important structures. Statistical models of shape and texture (intensities in the
reference frame) were constructed by applying Principal Component Analysis (PCA) to the
resulting annotations, leading to linear models of the form

x = x̄+Psbs g = ḡ+Pgbg (1)

where x̄ is the mean shape, ḡ is the mean texture, Ps,Pg are the main modes of shape and
texture variation and bs,bg are the shape and texture model parameter vectors. Combining

1http://www.ipilab.org/BAAweb/
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the shape and texture models gives a combined appearance model of the form

x = x̄+Qsc g = ḡ+Qgc (2)

where Qs, Qg are matrices describing the modes of variation derived from the training set
and c is a combined vector of appearance parameters controlling both shape and texture.

2.3 Groupwise registration
The manual annotation uses only a few points for each local bone complex model, so does
not represent details of the bone shape. To improve the density of the correspondences
we applied a ‘groupwise’ non-rigid registration algorithm, similar to that in [3], initialised
with the manual points. For each structure we defined a dense triangulated mesh on one
image, then used the manual annotation to propagate this to the other images using thin-plate
spline interpolation. We then estimated the mean shape and texture and applied a non-rigid
registration approach to improve the correspondence between each image and the mean. The
process is repeated until convergence, leading to an accurate, dense correspondence across
the set. Models of shape, texture and appearance were then constructed from the resulting
points.

2.4 Estimation of skeletal maturity
Given the appearance models we can compute shape, texture and appearance parameter vec-
tors for each structure on each image.

We use classical linear regression of the form, A = wT p + A0, where A is the predicted
age, w is a vector of weights, p is the parameter vector and A0 is a constant. In the following
we describe experiments comparing the performance of different models of the carpal bones.

3 Experiments
We built several carpal bones’ models as in Figure 3 from annotations shown in Figure 2.
We describe the texture model and each of the appearance models (AM) as follows:
a) A texture model built from 17 points around the carpal region (Figures 2a and 3a).
b) An AM of all carpal bones built from points around each of 7 bones (Figures 2b and 3b).
c) An AM built from points around the carpal region and around 2 consistent bones (Figures
2c and 3c).
d) An AM built from points around 4 bones with registration (Figures 2d and 3d).
e) An AM built from points around 5 bones with registration (Figures 2e and 3e).
f) An AM built from points around 2 consistent bones with registration (Figures 2f and 3f).
g) A group AM built from images with 2 bones from the dataset. Groups of 2,4-6 and 7
bones were also built (Figures 2g and 3g).
h) An AM built from single Capitate bone with registration (Figures 2h and 3h).
i) An AM built from single Hamate bone with registration (Figures not shown. Results in
Table 1, item i).

Images of males and females were pooled to create the models.
For each model we computed the shape, texture and appearance parameters for every

image. We then evaluated the utility of linear age prediction models using a Leave-One-Out
(LOO) paradigm. We trained linear regressors to predict age on all but one image, then tested
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a) Texture model b) All carpals c) Carpals 2 d) Carpals 4

e) Carpals 5 reg f) Carpals 2 g) Group models(2) h) Capitate
Figure 2: Annotation for different models. Legends corresponds to Table 1

a) Texture model b) All carpals c) Carpals 2 d) Carpals 4

e) Carpals 5 reg f) Carpals 2 reg g) Group models(2) h) Capitate reg
Figure 3: Carpals models. Legends corresponds to Table 1

the prediction on the left-out image. Since male and female children are known to develop
at different rates, different regressor models were used for the male and the female sets. We
evaluated performance using the mean absolute error between prediction and the average of
the expert readings, which we refer to as ‘common’ bone age.

4 Discussion and Conclusion

The result in tables 1 show that the best performance was obtained from the texture based
model (a). It is the simplest with 17 points around the carpal region. This show that it is
possible to estimate the changes in shape and the appearance of bones in the carpal region and
thereby estimate skeletal maturity even in the absence of individual bones’ correspondence.
The texture model solved the problems of lack of correspondence in the carpal region in
early ages and can be applied in other applications.

The texture model result of mean absolute errors of 0.42, 0.53 years in table 1 compares
favourably with other figures from the literature [9],[8] and [1]. This is especially so when
the inter- and intra- rater variability associated with the expert reading with which we trained
the regressor is considered. We believe this method provides an effective way of estimating
skeletal maturity for often neglected infants. In future we hope to extract the Carpals region
of interest automatically.
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Female Male
Shape Tex. App. Shape Tex. App.

a na 0.42 ±0.03 na na 0.53±0.04 na
b 0.44±0.03 0.47±0.04 0.49±0.03 0.65±0.04 0.83±0.05 0.71±0.04
c 0.49±0.03 0.44±0.03 0.52 ±0.03 0.54±0.04 0.60±0.04 0.61±0.04
d 0.50±0.03 0.62±0.05 0.49±0.03 0.64±0.05 0.70±0.05 0.64±0.05
e 0.45±0.03 0.52±0.04 0.48±0.03 0.66±0.04 0.72±0.05 0.74±0.05
f 0.47±0.03 0.54±0.04 0.54±0.04 0.65±0.05 0.78±0.05 0.70±0.05
g 0.44 ±0.03 0.49±0.04 0.46±0.05 0.68 ±0.04 0.80±0.05 0.61±0.05
h 0.66±0.05 0.73±0.05 0.69±0.06 0.94±0.07 1.02±0.07 1.11±0.1
i 0.58±0.05 0.74±0.05 0.61±0.05 0.84±0.06 0.95±0.06 0.82±0.06

Table 1: Average performance various carpal based models - Mean absolute prediction error
for female and male (years). Letters correspond to description in Section 3 and models
shown in Figure 3
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