
1

OP2-Clang: A Source-to-Source Translator
Using Clang/LLVM LibTooling

G.D. Balogh1, G.R. Mudalige2, I.Z. Reguly1, S.F. Antao3, C. Bertolli3

Abstract—Domain Specific Languages or Active Library
frameworks have recently emerged as an important method
for gaining performance portability, where an application
can be efficiently executed on a wide range of HPC architec-
tures without significant manual modifications. Embedded
DSLs such as OP2, provides an API embedded in general
purpose languages such as C/C++/Fortran. They rely on
source-to-source translation and code refactorization to
translate the higher-level API calls to platform specific
parallel implementations. OP2 targets the solution of
unstructured-mesh computations, where it can generate
a variety of parallel implementations for execution on
architectures such as CPUs, GPUs, distributed memory
clusters and heterogeneous processors making use of a
wide range of platform specific optimizations. Compiler
tool-chains supporting source-to-source translation of code
written in mainstream languages currently lack the capabil-
ities to carry out such wide-ranging code transformations.
Clang/LLVM’s Tooling library (LibTooling) has long been
touted as having such capabilities but have only demon-
strated its use in simple source refactoring tasks.

In this paper we introduce OP2-Clang, a source-to-
source translator based on LibTooling, for OP2’s C/C++
API, capable of generating target parallel code based on
SIMD, OpenMP, CUDA and their combinations with MPI.
OP2-Clang is designed to significantly reduce maintenance,
particularly making it easy to be extended to generate new
parallelizations and optimizations for hardware platforms.
In this research, we demonstrate its capabilities including
(1) the use of LibTooling’s AST matchers together with a
simple strategy that use parallelization templates or skele-
tons to significantly reduce the complexity of generating
radically different and transformed target code and (2)
chart the challenges and solution to generating optimized
parallelizations for OpenMP, SIMD and CUDA. Results
indicate that OP2-Clang produces near-identical parallel
code to that of OP2’s current source-to-source translator.
We believe that the lessons learnt in OP2-Clang can be
readily applied to developing other similar source-to-source
translators, particularly for DSLs.

Index Terms—Source-to-source translation, Clang,

*The following names are subject to trademark: LLVM™,
CLANG™, NVIDIA™, P100™, CUDA™, INTEL™,

1G.D. Balogh and I.Z. Reguly is with the Faculty of In-
formation Technology and Bionics, Pázmány Péter Catholic Uni-
versity, Hungary. balogh.gabor.daniel@itk.ppke.hu,
reguly.istvan@itk.ppke.hu

2G.R. Mudalige is with the Department of Computer Science,
University of Warwick, UK. g.mudalige@warwick.ac.uk

3C. Bertolli and S.F. Antao is with the IBM T.J. Watson
Research Center, USA. Samuel.Antao@ibm.com,
cbertol@us.ibm.com

LibTooling, CUDA, OpenMP, automatic parallelization,
DSL, OP2, unstructured-mesh

I. INTRODUCTION

Domain Specific Languages or Active Library frame-
works provide higher-level abstraction mechanisms, us-
ing which applications can be developed by scientists
and engineers. Particularly when developing numeri-
cal simulation programs for parallel high-performance
computing systems, these frameworks boost both pro-
grammers’ productivity and application performance by
separating the concerns of programming the numerical
solution from its parallel implementation. As such, they
have recently emerged as an important method for
gaining performance portability, where an application
can be efficiently executed on a wide range of HPC
architectures without significant manual modifications.

Embedded DSLs (eDSLs) such as OP2 provide a
domain specific API embedded in C/C++ and For-
tran [1], [2]. The API appears as calls to functions in
a classical software library to the application developer.
However, OP2 can then make use of extensive source-
to-source translation and code refactorization to translate
the higher-level API calls to platform specific parallel
implementations. In the case of OP2, which provides
a high-level domain specific abstraction for the solu-
tion of unstructured-mesh applications, the source-to-
source translation can generate a wide range of parallel
implementations for execution on architectures such as
CPUs, GPUs, distributed memory clusters and emerging
heterogeneous processors. The generated code makes use
of parallel programming models/extensions including
SIMD-vectorization, OpenMP3.0/4.0, CUDA, OpenACC
and their combinations with MPI. Furthermore they
implement the best platform specific optimizations, in-
cluding sophisticated orchestration of parallelizations to
handle data races, optimized data layout and accesses,
embedding of parameters/flags that allow to tune the
performance at runtime and even facilitate runtime-
optimizations for gaining further performance.

Compiler tool-chains supporting source-to-source
translation of code written in mainstream languages
such as C/C++ or Fortran currently lack the capabil-
ities to carry out such wide-ranging code transforma-
tions. Available tool-chains such as the ROSE compiler

2

framework [3], [4], [5] and others, have suffered from
a lack of adoption by both the compilers and HPC
community. This has been a major factor in limiting
the wider adoption of DSLs or active libraries with a
non-conventional source-to-source translator where there
is a lack of a significant community of developers
under open governance to maintain it. The result is
often a highly complicated tool with a narrow focus,
steep learning curve, inflexible for easy extension to
produce different target code (e.g. new optimizations,
new parallelizations for different hardware, etc.) and
issues with long-term maintenance. In other words, the
lack of industrial-strength tooling that can be integrated
in a DevOps toolchain without any changes provokes a
lack of growth in the numbers of users and developers
for DSLs or active libraries, which in turn is the source
of missing tools themselves, leading to a typical catch-
22 or deadlock situation. The underlying motivation of
the research presented in this paper is to break this
deadlock by pioneering the introduction of a industrial-
strength compiler toolchain, to come-up with a standard
(or a methodology) that can be integrated as is in most
DevOps environments.

Clang/LLVM’s Tooling library (libTooling) [6] has
long been touted as facilitating source-to-source trans-
lation capabilities but have only demonstrated its use in
simple source refactoring and code generation tasks [7],
[8] or in the transformation of a very limited subset of
algorithms without hardware specific optimizations [9].
In this paper we introduce OP2-Clang [10], a source-to-
source translator based on Clang’s LibTooling for OP2.
The broader aim is to generate platform specific parallel
codes for unstructured-mesh applications written with
OP2. Two options to achieve this are: (1) translating
programs written with OP2’s C/C++ API, to code with
C++ parallelised with SIMD, OpenMP, CUDA, and their
combinations with MPI etc., that can then be compiled
by conventional platform specific compilers and (2) com-
piling programs written with OP2’s C/C++ API to LLVM
IR. The former case, which is the subject of this paper,
follows OP2’s current application development process
and has been shown to deliver significant performance
improvements. The latter case, which will be explored
in future work, opens up the chance for application-
driven low level optimizations which would otherwise
be unavailable to the source-to-source OP2 solution
or to the same application written as a generic C++
program. The development of OP2-Clang also aims to
provide additional benefits, ones which are not easy to
implement in OP2’s current source-to-source translation
layer written in Python. These include full syntax and
semantic analysis of OP2 programs with improved user
development tools to diagnose errors and correct them.
Much of such capabilities come for free when using

Clang/LLVM. In this research, we chart the development
of OP2-Clang, outlining its design and architecture.
More specifically we make the following contributions.

• We demonstrate how Clang’s LibTooling can be
used for source-to-source translations as required by
OP2 where the target code includes wide-ranging
code transformations such as SIMD-vectorization,
OpenMP, CUDA and their combinations with MPI.
Such a wide range of source-to-source target code
generation have not been previously demonstrated
either using LibTooling nor any other Clang/LLVM
compiler tool.

• We present the design, including the use of LibTool-
ing’s AST matchers together with a novel strategy
that use parallelization templates or skeletons to
reduce the complexity of the translator. The use
of skeletons allows to significantly reduce the code
that needs to be generated from scratch and help
modularize the translator to be easily extensible
with new parallelizations.

• OP2-Clang is used for generating parallel code
for two unstructured mesh applications written
using the OP2 API: (1) an industrial represen-
tative Airfoil [11] CFD application and (2) a
production-grade Tsunami simulation application
called Volna [12], [13]. The performance of the
generated parallelizations is compared to code gen-
erated by OP2’s current source-to-source translator
demonstrating identical performance on a number
of multi-core/many-core systems.

The work described in this paper is the first step towards
an application-driven full stack optimizer toolchain
based on Clang/LLVM. The rest of this paper is orga-
nized as follows. In Section II we briefly introduce the
motivation driving this work, including eDSLs such as
OP2 and limitations of current source-to-source trans-
lation software. In Section III we chart the design and
development of OP2-Clang. In Section IV we illustrate
the ease of extending the tool charting the case for
the SIMD-vectorization and CUDA code generator. In
Section V we evaluate the performance of the gener-
ated parallel code and compare the results to the code
generated by the current OP2 source-to-source translator.
Section VI details conclusions and future work.

II. BACKGROUND AND MOTIVATION

Source-to-source transformations and code generation
have been used in many previous frameworks, partic-
ularly as a means to help application developers write
programs for new hardware. Some of the earliest were
motivated by the emergence of NVIDIA GPUs for
scientific computations. Williams et al. [4], [5] showed
that with proper annotations on the source written in

3

the MINT programming model [14] the ROSE compiler
tool-chain [3] can be used to generate transformations
to utilize GPUs. ROSE was also previously explored
as a source-to-source translator tool-chain in the initial
stages of the OP2 project [15]. However it proved to be
hard to maintain and required a lot of coding effort to
change the generated code or to adopt new parallelization
models. Ueng et al. with CUDAlite [16] showed that
the memory usage of existing annotated CUDA codes
can be optimized with source-to-source tools based on
the Phoenix compiler infrastructure. Other notable work
include translators such as O2G [17] based on the Cetus
compiler framework [18] which is designed to perform
source-to-source transformations based on static data
dependence analysis and the hiCUDA [19] programming
model which use a set of directives to transform C/C++
applications to CUDA using the front-end of the GNU
C/C++ compiler. Another notable source-to-source trans-
formation tool is Scout [20] which uses LLVM/Clang to
vectorize loops using SIMD instructions at source level.
The source-to-source transformation entails replacing
expressions by their vectorized intrinsic counterparts.
Other parallelization are not supported. To achieve this,
Scout modifies the AST of the source code directly. The
tools capabilities has been applied to production CFD
codes at the German Aerospace Centre.

There are two main issues with the above works:
(1) difficulties in extending them to generate new par-
allelizations or generating multiple target parallel code
and (2) the underlying source-to-source translation tool
relying on unmaintained software technologies due to
their lack of adaptation by the community. Both these
issues makes them difficult to be used in eDSLs such as
OP2, which has so far relied on tools written in Python
to carry out the translation of higher level API statements
to their optimized platform specific versions. In fact,
Python has been and continue to be used in related
DSLs and active library frameworks for target code
generation. These include, OPS [21], Firedrake [22],
OpenSBLI [23], DeVito [24] and others. However, the
tools written in Python significantly lacks the robustness
of compiler frameworks such as Clang/LLVM or GNU.
They do only limited syntax or semantic checking, have
even limited error/bug reporting to ease the development
and becomes complicated very quickly when adding
different optimizations, which in turn affect its maintain-
ability and extensibility. The present work is motivated
by the need to overcome these deficiencies and aims at
making use of Clang/LLVM’s LibTooling for full code
analysis and synthesis.

Previous work with LibTooling include [9], [25]
which demonstrate its use for translation of annotated
C/C++ code to CUDA using the MINT programming
model. While OP2-Clang’s goals are similar, in this

paper we demonstrate the used of LibTooling for not
only generating CUDA code, but other parallelizations
such as OpenMP, SIMD and MPI. We also demonstrate
how OP2-Clang can be extended with ease for new
parallelizations for OP2 and apply the tool on industry
representative applications.

A. OP2

The OP2 DSL is the second version of the Oxford
Parallel Library for Unstructured mesh Solvers (OPlus),
aimed at expressing and automatically parallelising un-
structured mesh computations. While the first version
was a classical software library, facilitating MPI paral-
lelization, OP2 can be called an “active” library, or an
embedded DSL.

The library provides an API that abstracts the solution
of unstructured mesh computations. Its key components
consists of (1) a mesh made up of a number of sets (such
as edges and vertices), (2) connections between sets (e.g
an edge is connected to two vertices), (3) data defined on
sets (such as coordinates on vertices, pressure/velocity
on a cell centre) and (4) Computations over a given set
in the mesh. The abstraction allows the declaration of
various static unstructured meshes, while extensions to
it are currently planned to support mesh adaptivity.

A user initially sets up a mesh and hands all the
data and metadata to the library using the OP2 API.
The API appears as a classical software API embedded
in C/C++ or Fortran. Any access to the data handed
to OP2 can only be accessed subsequently via these
API calls. Essentially, OP2 makes a private copy of the
data internally and restructures its layout in any way
that it sees fit to obtain best performance for the target
platform. Once the mesh is set up, computations are
expressed as a parallel loop over a given set, applying
a “computational kernel” at each set element that uses
data that is accessed either directly on the iteration set,
or via at most one level of indirection. The type of access
is also described - read, write, read-write or associative
increment. The algorithms that can be solved by OP2
are restricted to ones in which the order of elements
executed may not affect the end result to within machine
precision. Additionally, users may pass mesh-invariant
data to the elemental computational kernel and also carry
out reductions.

This formulation of parallel loops were intentionally
constructed so that it lends itself to only a handful of
computational and memory access patterns: (1) directly
accessed, (2) indirectly read and (3) indirectly written/in-
cremented. Due to this high level description, OP2 is
free to parallelise these loops, selecting the best imple-
mentation and optimizations for a given architecture. In
other words, the abstraction allows OP2 to generate code

4

1 /* ----- elemental kernel function in res.h ------*/
2 void res(const double *edge,
3 double *cell0, double *cell1){
4 //Computations, such as:
5 cell0 += *edge; *cell1 += *edge;
6 }
7

8 /* ---------- in the main program file -----------*/
9 // Declaring the mesh with OP2

10 // sets
11 op_set edges = op_decl_set(numedge, "edges");
12 op_set cells = op_decl_set(numcell, "cells");
13 // mppings -connectivity between sets
14 op_map edge2cell = op_decl_map(edges, cells,
15 2, etoc_mapdata,"edge2cell");
16 // data on sets
17 op_dat p_edge = op_decl_dat(edges,
18 1,"double",edata,"p_edge");
19 op_dat p_cell = op_decl_dat(cells,
20 4,"double",cdata,"p_cell");
21

22 // OP2 parallel loop declaration
23 op_par_loop(res,"res", edges,
24 op_arg_dat(p_edge,-1,OP_ID ,4,"double",OP_READ),
25 op_arg_dat(p_cell, 0,edge2cell,4,"double",OP_INC),
26 op_arg_dat(p_cell, 1,edge2cell,4,"double",OP_INC));

Figure 1: Specification of an OP2 parallel loop

tailored to context. The various parallelization and per-
formance of production applications using OP2 has been
published previously in [26], [13] demonstrating near-
optimal performance on a wide range of architectures
including multi-core CPUs, GPUs, clusters of CPUs
and GPUs. The generated parallelization makes use of
an even larger range of programming models such as
OpenMP, OpenMP4.0, CUDA, OpenACC, their combi-
nations with MPI and even simultaneous heterogeneous
execution.

OP2 was one of the earliest high-level abstractions
frameworks to apply this development method to pro-
duction applications [26]. Related frameworks for un-
structured mesh applications include FeniCS [27], Fire-
drake [28], [29] and PyFR [30]. Other frameworks tar-
geting a different domain include OPS [31], Devito [32],
STELLA [33] (and its successor GridTools) and PSy-
clone [34]. In comparison, Kokkos [35] and RAJA [36]
relies on C++ templates to provide a thin portability layer
for parallel loops. As such the abstraction is not as high
(or focused to a narrower domain) as OP2 and no code
generation is carried out. OP2 is able to generate code
that includes sophisticated orchestration of parallel exe-
cutions, such as various colouring strategies (to handle
data races), and modifications to the elemental kernel
that the high-level application programmer would not
have to manually implement themselves. In comparison,
a Kokkos or RAJA developer would have to manually
implement such changes to their code, as its abstraction
is at the parallel loop level. However the advantage is
that, Kokkos and RAJA are able to handle a wider range
of domains.

The OP2 API was constructed to make it easy for a

parsing phase to extract the relevant information about
each loop that will describe which computation and
memory access patterns will be used - this is required
for code generation aimed at different architectures and
parallelizations. Figure 1 shows the declaration of the
mesh and subsequent definition of an OP2 parallel loop.
In this example, the loop is over the set of edges in
a mesh carrying out the computation per edge (which
can be viewed as an elemental kernel) defined in the
function res, accessing the data on edges p_edge
directly and updating the data held on the two cells,
p_cell, adjacent to an edge, indirectly via the mapping
edge2cell. The op_arg_dat provides all the details
of how an op_dat’s data is accessed in the loop. Its
first argument is the op_dat, followed by its indirection
index, op_map used to access the data indirectly, arity
of the data in the op_dat and the type of the data. The
final argument is the access mode of the data, read only,
increment and others (such as read/write and write only
not shown here).

The op_par_loop call contains all the necessary
information about the computational loop to perform the
parallelization. It is clear that due to the abstraction, the
parallelization depends only on a handful of parameters
such as the existence of indirectly accessed data or
reductions in the loop, plus the data access modes that
lends to optimizations.

The fact that only a few parameters define the paral-
lelization means that in case of two computational loops,
the generated parallel loops have the same lines of code
with only small code sections with divergences. The
identical chunks of code in the generated parallel loops
can be considered as invariant to the transformation or
boilerplate code that should be generated into every
parallel implementation without change. However, given
that these sections largely define the structure of the
generated code, they can be viewed as an important
blueprint of the target code to be generated. This leads
us to the idea of using a parallel implementation (with
the invariant chunks) of a dummy loop and carry-out the
code generation process as a refactoring or modification
of this parallel loop. In other words, use the dummy
parallel loop as a skeleton (or template) and modify it to
generate the required candidate computational loop. For
example, Figure 2 and Figure 3 illustrates partial parallel
skeletons we can extract for the generated OpenMP
implementation for direct and indirect loops.

In a direct loop all iterations are independent from
each other and as such the parallelization of such a
loop does not have to worry about data races. However
in indirect loops there is at least one op_dat that is
accessed using and indirection, i.e via an op_map. Such
indirections occur when the op_dat is not declared
on the set over which the loop is iterating over. In

5

1 // elemental kernel function
2 void skeleton(double * __restrict__ d) {}
3

4 void op_par_loop_skeleton(char const *name,
5 op_set set,
6 op_arg arg0) {
7 //number of arguments
8 int nargs = 1;
9 op_arg args[1] = {arg0};

10

11 /*----------- Invariant code -----------------*/
12 int exec_size =
13 op_mpi_halo_exchanges(set, nargs, args);
14 #pragma omp parallel for
15 for (int n = 0; n < exec_size; n++) {
16 if (n == set->core_size)
17 op_mpi_wait_all(nargs, args);
18 /*--*/
19

20 // set up pointers, call elemental kernel
21 skeleton(&((double *)arg0.data)[2 * n]);
22 }
23 }

Figure 2: Skeleton for OpenMP (excerpt) - direct kernels

which case an op_map that provides the connectivity
information between the iteration set and the set on
which the op_dat is declared over is used to access
(read or write depending on the access mode) the data.
This essentially leads to an indirect access.

With indirect loops we have to ensure that there is
no two threads writing to the same data location at the
same time. This is handled through the invariant code
responsible for the ordering of the loop iterations in
Figure. 3. In this case OP2 orchestrates the execution
of iterations using a colouring scheme [37].

Note how for both direct and indirect loops the
skeleton includes calls to MPI halo exchanges us-
ing op_mpi_halo_exchanges() to facilitate dis-
tributed memory parallelism together with OpenMP.
OP2, implements distributed memory parallelization as
a classical library in the back-end. As the computation
requires values from neighbouring mesh elements during
a distributed memory parallel run, halo exchanges are
needed to carry out the computation over the mesh
elements in the boundary of each MPI partition. Ad-
ditionally data races over MPI is handled by redundant
computation over the halo elements [38].

III. CLANG LIBTOOLING FOR OP2 CODE
GENERATION

The idea of modifying the target parallelization skeletons
forms the basis for the design of OP2-Clang in this work.
The alternative would require the full target source gen-
eration with the information given in an op_par_loop.
The variations to be generated for each parallelization
and optimization, with such a technique, would have
made the code generator prohibitively laborious to de-
velop and even more problematic to extend and maintain.
The skeletons, simply allows us to reuse code and allows

1 // elemental kernel function
2 void skeleton(double * __restrict__ d) {}
3

4 void op_par_loop_skeleton(char const *name,
5 op_set set,
6 op_arg arg0) {
7 //number of arguments
8 int nargs = 1; op_arg args[1] = {arg0};
9 int ninds = 1; op_arg inds[1] = {0};

10

11 /*----------- Invariant code -----------------*/
12 int set_size =
13 op_mpi_halo_exchanges(set, nargs, args);
14 op_plan *Plan = op_plan_get(name, set, 256, nargs,
15 args, ninds, inds);
16 int block_offset = 0;
17 for (int col = 0; col < Plan->ncolors; col++) {
18 if (col == Plan->ncolors_core)
19 op_mpi_wait_all(nargs, args);
20 int nblocks = Plan->ncolblk[col];
21 #pragma omp parallel for
22 for(int blockIdx = 0; blockIdx<nblocks;
23 blockIdx++) {
24 int blockId =
25 Plan->blkmap[blockIdx +block_offset];
26 int nelem = Plan->nelems[blockId];
27 int offset_b = Plan->offset[blockId];
28 for(int n = offset_b; n<offset_b+nelem; n++) {
29 /*--*/
30 // Prepare indirect accesses
31 int map0idx =
32 arg0.map_data[n * arg0.map->dim + 0];
33 // set up pointers, call elemental kernel
34 skeleton(&((double *)arg0.data)[2*map0idx]);
35 }
36 }
37 }

Figure 3: Skeleton for OpenMP (excerpt) - indirect kernels

OP2 Application (C/C++ API)

Modified
OP2 Application

Target Specific Optimized
Application Files

unstructured mesh problem

OP2-Clang

(Phase 1) AST analysis and data collection

MPI CUDAOpenMP SIMD

(Phase 2) Target Specific Code Generators

New ?

Conventional Compiler + Compiler Flags
(e.g. Icc, nvcc, pgcc, ifort, gfortran)

Parallel executable

CUDA

OpenMP

MPI

MPI+CUDA

Other

…

New ?

OP2 Platform Specific
Optimized Backend libraries

link

Figure 4: The high-level architecture of OP2-Clang and its
place within OP2

the code generator to concentrate on the parts which
need to be customized for each loop, optimization, target
architecture and so on. As such we use multiple skeletons
for each parallelization. In most cases one skeleton for
direct and one for indirect kernels are used, given the
considerable differences in direct and indirect loops as
given in Figure. 2 and Figure. 3. The aim, as mentioned
before, is to avoid significant structural transformation.

Clang’s Tooling library (libTooling) provides a conve-
nient API to perform a range of varying operations over

6

1 // elemental kernel function
2 void skeleton(double * __restrict__ d) {}
3

4

5

6

7

8 void op_par_loop_skeleton(char const *name,
9 op_set set,

10 op_arg arg0) {
11 //number of arguments
12 int nargs = 1;
13 op_arg args[1] = {arg0};
14

15 /* ------------- Invariant code ------------ */
16 int exec_size =
17 op_mpi_halo_exchanges(set, nargs, args);
18 for (int n = 0; n < exec_size; n++) {
19 if (n == set->core_size)
20 op_mpi_wait_all(nargs, args);
21 /* --- */
22

23 // prepare indirect accesses
24 int map0idx = arg0.map_data[n*arg0.map->dim+0];
25

26

27 // set up pointers, call kernel
28 skeleton(&((double *)arg0.data)[2 * map0idx]);
29

30

31 }
32 // invariant code
33 ...
34 }

Figure 5: Parallelization skeleton for MPI (excerpt)

source code. As such, it’s capabilities lend very well to
the tasks of refactoring and source code modification of
a parallelization skeleton in OP2. The starting point of
source-to-source translation in OP2-Clang is to make use
of Clang to parse and generate an Abstract Syntax Tree
(AST) of the code with OP2 API calls. The generated
AST is used to collect the required information of the
sets, maps, data including their types and sizes and
information in each of the parallel loops that make up the
application. The second phase involves transforming the
skeletons with the information for each parallel loop. The
two phases of code generation and where they fit in to the
overall architecture of OP2 is illustrated in Figure 4. The
output of OP2-Clang will be compiled by conventional
compilers, linking with OP2’s platform specific libraries
for a given parallelization to produce the final parallel
executable. Each parallel version is generated separately.

A. OP2-Clang Application Processor

The first phase of OP2-Clang is responsible for collect-
ing all data about the parallel loops, or kernel calls, used
in the application. This step will also do semantic checks
based on the types of the op_dats. Particularly check
whether the declared op_dats match the types declared
in the op_par_loop. However, such checks are not
currently implemented, but will be very straightforward
to do so given that all the information is present in the
AST. The data collection and model creation happens

1 // elemental kernel function
2 void res(double * __restrict__ edge,
3 double * __restrict__ cell0,
4 double * __restrict__ cell1) {
5 *cell0 += *edge; *cell1 += *edge;
6 }
7

8 void op_par_loop_res(char const *name, op_set set,
9 op_arg arg0, op_arg arg1,

10 op_arg arg2) {
11 //number of arguments
12 int nargs = 3;
13 op_arg args[3] = {arg0, arg1, arg2};
14

15 /* ------------- Invariant code ------------ */
16 int exec_size =
17 op_mpi_halo_exchanges(set, nargs, args);
18 for (int n = 0; n < exec_size; n++) {
19 if (n == set->core_size)
20 op_mpi_wait_all(nargs, args);
21 /* --- */
22

23 // prepare indirect accesses
24 int map0idx = arg1.map_data[n*arg1.map->dim+0];
25 int map1idx = arg1.map_data[n*arg1.map->dim+1];
26

27 // set up pointers, call kernel
28 res(&((double *)arg0.data)[n],
29 &((double *)arg1.data)[2 * map0idx],
30 &((double *)arg1.data)[2 * map1idx]);
31 }
32 // invariant code
33 ...
34 }

Figure 6: Generated MPI parallization (excerpt)

along the OP2 API calls. As the parser builds the
AST with the help of ASTMatchers [39], OP2-Clang
keeps a record of the kernel calls, global constants
and global variable declarations that are also accessible
inside kernels.

During the data collection, this phase also carries out
a number of modifications to the application level files
that contain the OP2 API calls. Essentially replacing the
op_par_loop calls with the function calls that im-
plement the specific parallel implementations. Of course
these implementations are yet to be generated in the
second phase of code generation.

B. OP2-Clang Target Specific Code Generators

The second phase is responsible for generating the
target-specific optimized parallel implementations for
each of the kernels whose details are now collected
within OP2-Clang. Given the information of each of
the op_par_loops the parallelization (currently one
of OpenMP, CUDA, SIMD or MPI) we are generating
code for and whether the loop is a direct or indirect loop,
a target skeleton can be selected.

The target code generation then, is a matter of chang-
ing the selected skeleton at appropriate places, using the
properties of the candidate op_par_loop for which
you are going to generate a parallelization for. For
example, consider the op_par_loop in Figure 1. This
loop is an indirect loop with three arguments, one of

7

1 FunctionDecl op_par_loop_skeleton
2 ...
3 `-CallExpr 'void'
4 |-DeclRefExpr 'void (double *)' lvalue
5 Function 'skeleton'
6 `-UnaryOperator 'double *' prefix '&'
7 `-ArraySubscriptExpr 'double' lvalue
8 (...)

Figure 7: Elemental function call in the AST of the skeleton

1 StatementMatcher funcitonCallMatcher =
2 callExpr(
3 callee(functionDecl(hasName("skeleton"),
4 parameterCountIs(1))),
5 hasAncestor(
6 functionDecl(
7 hasName("op_par_loop_skeleton"))))
8 .bind("function_call");

Figure 8: ASTMatcher to match the AST node for the
elemental function call

which is a directly accessed op_dat and two of which
are indirectly accessed op_dats. The loop iterates over
the set of edges and the elemental computation kernel
is given by res. Figure 5 shows the simplest skeleton in
OP2-Clang, the skeleton for generating MPI paralleliza-
tions and Figure 6 shows the specific code that needs
to be generated by changing the skeleton for the above
loop. The elemental kernel function needs to be set to
res, number of arguments set to three, while handling
the indirections by using the mappings specified for
those arguments and finally the elemental kernel should
be called by passing in the appropriate arguments.

This type of transformations rhyme well with Clang’s
RefactoringTool[40], [41], which can apply replacements
to the source code based on the AST. As such the
process of modifying the skeleton first creates the AST
of the skeleton by running it through Clang. Then
the AST is searched for points of interest (i.e. points
where the skeleton needs to be modified). The search is
again done using ASTMatchers which in principal are
descriptions of AST nodes of interest. For example, to set
the specific elemental kernel function from skeleton
to res in Figure 5, OP2-Clang needs to find the function
call in the AST (part of which is given in Figure 7)
using the matcher given in Figure 8. The definitions of
the matchers is trivial, given that the skeleton is an input
to the above process.

To formulate all such modifications to the skeleton,
we create a set of matchers and run them through the
OP2RefactoringTool which is derived from the
base class RefactoringTool in LibTooling. When
OP2RefactoringTool with the specific collection
of matchers are run through the AST of the skeleton,
the matchers find the AST nodes of interest, create a
MatchResult object containing all the information for
the given match, invokes a callback function with the

1 CallExpr *match =
2 Result.Nodes.getNodeAs<CallExpr>("func_call");
3 SourceLocation begin = match->getLocStart();
4 SourceLocation end = match->getLocEnd();
5 SourceRange matchRange(begin, end);
6 string replacement =
7 "res(&((double *)arg0.data)[n],"
8 "&((double *)arg1.data)[2 * map0idx],"
9 "&((double *)arg1.data)[2 * map1idx]);"

10 Replacement replacement(*Result.SourceManager,
11 CharSourceRange(matchRange,false),
12 replacement);

Figure 9: Example of creating a Replacement to re-
place the elemental function call. The Result object is
the MatchFinder::MatchResult object created by the
match of the ASTMatcher from Figure 8.

MatchResult where we can identify which matcher
found a match with its keys. The identified calling
matcher provides the AST node of interest and the
corresponding source location. This allows to generate
the specific replacement code in a Replacement[42]
just as it is shown in Figure 9. The replacement is not
immediately done, but is collected in a map. Once all the
AST nodes of interest are matched and the replacement
strings collected, together with the source locations, they
can be applied to the source code. In this case the
collection of Replacements are checked to ascertain
if the replacements are independent from each other so
that they can be applied to the source without errors.
This finalizes and commits the changes to the skeleton.

As it can be seen, the process does not do large struc-
tural transformations. All the changes on the skeleton
can be formulated as replacements of single lines or
small source ranges. The adoption of skeletons leads to
another implicit benefit. As the code generation requires
the AST of the skeleton built the skeleton must be valid
C/C++ code, which combined with the fact that we apply
relatively small modifications on the code, implies that
the generated code can also be guaranteed to be valid
C/C++. Any errors can only come from small chunks
of generated code which is easy for the OP2-Clang
developer to debug. This is a significant benefit during
the development of a new code generator. One of the key
difficulties of OP2’s current Python-based translator is
the lack of support for such debugging tasks to ascertain
that valid C/C++ code is generated.

IV. EXTENSIBILITY AND MODULARITY

The underlying aim of OP2 is to create a performance
portable application written using the OP2 API. A further
objective is to “future-proof” the higher-level science
application where only the code generation needs to be
extended to translate it to be able to execute on new hard-
ware platforms. As such the target code generation, using
OP2’s Python-based translator currently supports a range

8

1 __constant__ intdirect_res_stride_OP2CONSTANT;
2 __constant__ intopDat1_res_stride_OP2CONSTANT;
3

4 __device__ void res_calc_gpu(
5 const double * __restrict edge,
6 double * __restrict cell0,
7 double * __restrict cell1){
8 cell0[0 * opDat1_res_stride_OP2CONSTANT] +=
9 edge[0 * direct_res_stride_OP2CONSTANT];

10 cell1[0 * opDat1_res_stride_OP2CONSTANT] +=
11 edge[0 * direct_res_stride_OP2CONSTANT];
12 }

Figure 10: The modified version of the elemental function
res, to use strided memory accesses wit SoA data layout.

1 ...
2 // CUDA kernel function
3 __global__ void op_cuda_res(
4 const double *__restrict arg0,
5 double *ind_arg0, double *ind_arg1,
6 constint *__restrict opDat0Map,
7 int start, int end,
8 const int * __restrict col_reord,
9 int set_size) {

10 int tid = threadIdx.x + blockIdx.x * blockDim.x;
11 if (tid + start >= end)
12 return;
13 int n = col_reord[tid + start];
14 int map0idx = opDat0Map[n + set_size * 0];
15 int map1idx = opDat0Map[n + set_size * 1];
16

17 res_calc_gpu(arg0 + n,
18 ind_arg0 + map0idx * 1,
19 ind_arg1 + map1idx * 1);
20 }
21 ...

Figure 11: CUDA kernel with global colouring (excerpt)

of parallelizations with optimizations tailored to the
underlying hardware to gain near-optimal performance.
The new OP2-Clang source-to-source translator will also
need to support generating all these parallelizations and
optimizations, but also be easy to extend to implement
new parallelizations and optimizations. In this section we
present further evidence of OP2-Clang’s capabilities for
modular and extensible code generation for a number of
architectures, carrying-out different optimizations.

Since the data collection phase is independent from
the target code generation OP2-Clang only needs to
add a new target-specific code generator to support
generating code for a new platform or to use a new
parallel programming model. As we have seen, a target-
specific code generator consists of (1) a parallel skeleton
(usually one skeleton for implementing direct loops and
one for indirect loops) (2) A list of matchers that identify
AST nodes of interest and (3) a corresponding list of
Replacements that specify the changes to the code.

While the skeletons already modularizes and en-
ables reuse of code, the matchers and the correspond-
ing Replacements can also be reused. Thus, when
developing a new code generator we reuse existing
ASTMatchers and Replacements as required. Only
the matchers and Replacements that do not exist need

1 ...
2 // CUDA kernel function
3 void op_cuda_res(const double *__restrict arg0,
4 double *ind_arg0, double *ind_arg1,
5 constint *__restrict opDat0Map,
6 int block_offset, int *blkmap,
7 int *offset, int *nelems,
8 int *ncolors, int *colors,
9 int nblocks, int set_size) {

10 __shared__ int nelems2, ncolor, nelem, offset_b;
11 extern __shared__char shared[];
12

13 if (blockIdx.x >= nblocks) return;
14

15 double arg1_l[1] = {0.0}, arg2_l[1] = {0.0};
16 if (threadIdx.x == 0) {
17 int blockId = blkmap[blockIdx.x + block_offset];
18 nelem = nelems[blockId];
19 offset_b = offset[blockId];
20 ncolor = ncolors[blockId];
21 }
22 __synchthreads();
23

24 int col2 = -1, n = threadIdx.x;
25 if (n < nelem) {
26 res_calc_gpu(arg0 + offset_b + n,
27 arg1_l, arg2_l);
28 col2 = colors[n + offset_b];
29 }
30 for (int col = 0; col < ncolor; col++) {
31 if (col2 == col) {
32 int map0idx = opDat0Map[n+offset_b+set_size*0];
33 int map1idx = opDat0Map[n+offset_b+set_size*1];
34 ind_arg0[0 + map0idx * 1] += arg1_l[0];
35 ind_arg1[0 + map1idx * 1] += arg2_l[0];
36 }
37 __synchthreads();
38 }
39 }
40 ...

Figure 12: CUDA kernel with hierarchical colouring (excerpt)

to be created from scratch.
While Clang’s ASTMatchers is extensive, there are

some AST nodes that don’t have specialized matchers we
required. For example there were currently no matchers
to match nodes representing the OpenMP constructs.
We had to extended the list of available matchers with
a single matcher to match the omp parallel for
pragma in order to be able to perform our translation
conveniently. We plan to work with the community to
deliver these extensions back to the mainstream Clang
repository. In this section we look at several other
challenges that had to be overcome when supporting the
various code generators for OP2.

A. CUDA

The CUDA parallelization presented a number of chal-
lenges in code generation. Again, much of the code
generation using a skeleton followed a similar process
to that of the OpenMP parallelization. However, the
skeleton was larger and required considerably more
replacements. Nevertheless, the steps taken to do the
replacements were the same. For CUDA it was necessary
to accurately set the device pointers and create a CUDA
kernel call that encapsulate the elemental function. OP2
handles the data movement between the device and the

9

host in the backend with copying the data to device
arrays and update host arrays if necessary, therefore this
aspect doesn’t affect the code generation.

The main challenge with CUDA was implementing
a number of optimizations that significantly impact the
performance on GPUs, unlike the previous paralleliza-
tions that utilizes CPUs. First among these is memory
accesses; the memory accesses pattern of CPUs are
not optimal for GPUs. For example to gain coalesced
memory accesses on GPUs, OP2 can restructure the data
arrays to make the neighbouring threads read data next
to each other in memory. On CPUs, with large caches,
it is beneficial to organize data in an Array of Structs
(AoS) layout which maximizes data reuse. However, on
GPUs, the threads are performing the same operation on
consecutive set elements at the same time. Organizing
the data such that the data needed by consecutive threads
are next to each other is more beneficial. In this case we
can read one cache line and use all of the data in it. This
data layout is called a Structure of Arrays (SoA) layout.
To use a SoA layout OP2-Clang needs to change the
indexing inside the elemental function to use a strided
accesses pattern. The generated elemental function for
executing res in CUDA is illustrated in Figure 10.

Another way to improve the memory access patterns
in CUDA is to modify the colouring strategy used for
indirect kernels. The colouring in the OpenMP paral-
lelization is done such that no two threads with the same
colour write to the same data locations. Then iterations
with the same colour can be run in parallel. Applying this
strategy to CUDA, means that thread blocks need to be
coloured and no two thread blocks will write to the same
data. However for CUDA, previous work [43] has shown
that a further level of colouring gives better performance.
In this case the threads within a thread block is also
coloured to avoid data races. This two level colouring is
called hierarchical colouring. Hierarchical colouring has
shown to considerably improve data locality and data
reuse inside CUDA blocks. The difference in the CUDA
kernel function between the two colouring strategies
are shown in Figures 11 and 12. The variations to the
code to be generated can simply be captured again
with a different skeleton, in this case a skeleton that
does the hierarchical colouring. However, the required
Replacements, including the data layout transformations
(AoS to SoA) can be reused for both one-level colouring
and hierarchical colouring skeletons.

B. SIMD vectorization

A more involved code generation task is required for
SIMD vectorization on CPUs. For vectorization, OP2
attempts to parallelise over the iteration set of the
loop [44]. The idea is to generate code that will be auto-
matically vectorized when compiled using a conventional

1 ...
2 // vectorized elemental function
3 inline void res_vec(const double edge[*][SIMD_VEC],
4 double cell0[*][SIMD_VEC],
5 double cell1[*][SIMD_VEC], i) {
6 cell0[0][i] += edge[0][i];
7 cell1[0][i] += edge[0][i];
8 }
9 ...

10

11 #pragma novector
12 for(int n=0; n<(exec_size/SIMD_VEC)*SIMD_VEC;
13 n+=SIMD_VEC) {
14 double arg0_p[1][VEC];
15 double arg1_p[1][VEC];
16 double arg2_p[1][VEC];
17

18 //gather data to local variables
19 #pragma omp simd
20 for (int i = 0; i < SIMD_VEC; i++) {
21 arg0_p[0][i] = (ptr0)[idx0_2 + 0];
22 arg1_p[0][i] = 0.0;
23 arg2_p[0][i] = 0.0;
24 }
25 //vectorized elemental function call
26 #pragma omp simd
27 for (int i = 0; i < SIMD_VEC; i++) {
28 res_vec(arg0_p, arg1_p, arg2_p, i);
29 }
30 // Scatter indirect increments
31 for (int i = 0; i < SIMD_VEC; i++) {
32 int map0idx = arg1.map_data[(n + i) *
33 arg1.map->dim + 0];
34 int map1idx = arg1.map_data[(n + i) *
35 arg1.map->dim + 1];
36 ((double *)arg1.data)[2 * map0idx] += arg1_p[i];
37 ((double *)arg2.data)[2 * map1idx] += arg2_p[i];
38 }
39 }
40 // remainder loop
41 for (int n = 0; n < exec_size; n++) {
42 int map0idx = arg1.map_data[n * arg1.map->dim + 0];
43 int map1idx = arg1.map_data[n * arg1.map->dim + 1];
44 res(&((double *)arg0.data)[n],
45 &((double *)arg1.data)[2 * map0idx],
46 &((double *)arg1.data)[2 * map1idx]);
47 }
48 ...

Figure 13: Vectorized loop for res (excerpt).

C/C++ compiler such as icpc. Figure 13 illustrates the
code that needs to be generated by OP2-Clang to achieve
vectorization for our example loop res. There are two
key difference here, compared to non-vectorizable code
as in Figure 6: (1) the use of gather/scatters when indirect
increments are applied and (2) the use of a modified
elemental function in the vectorized loop. The first is
motivated due to the multiple-iterations (equivalent to
the SIMD vector length of the CPU) that are carried
out simultaneously. In this case we need to be careful
when indirect writes are performed. In each iteration we
perform a gather of the required data to local arrays than
perform the computation on the local copies and then we
perform a scatter to write back the updated values. The
gathers and the execution of the kernel is vectorized with
#pragma omp simd, the scatter cannot be vectorized
due to data races and so is executed serially. Finally, the
remainder of the iteration set needs to be completed.
Much of the code in Figure 13 can be generated as

10

SIMD OpenMP CUDA Global
(AoS)

CUDA Global
(SoA)

CUDA
Hierarchical

(AoS)

CUDA
Hierarchical

(SoA)

Airfoil 363.92 s
(-0.2%)

70.417 s
(1.2%)

12.77 s
(-0.6%) 9.58 s (-0.4%) 9.85 s (0.2%) 7.30 s (1.8%)

Volna 95.39 s
(0.3%)

14.84 s
(-0.2%) 3.00 s (0.5%) 2.33 s (0.2%) 2.32 s (1.2%) 1.97 s (1.1%)

Table I: Performance of Airfoil and Volna on the Intel Xeon E5-1660 CPU (for OpenMP and SIMD) and on an NVIDIA P100
GPU with OP2-Clang . CUDA results with two different colourings (global and hierarchical) and two data layouts (AoS and
SoA) presented. The values in parenthesis are the percentage difference in run time compared to the sources generated with
OP2’s current Python-based source-to-source translator (negative values means OP2-Clang has better performance).

discussed previously. However, now we also need to
modify the internals of the elemental function res to
produce a vectorizable elemental kernel res_vec. The
function signature needs to be changed as illustrated,
which in turn requires modifications to the data accesses
inside the function body (i.e. the computational kernel).

In order to perform these transformations we intro-
duced a further layer of refactoring which parses the
elemental function and transform it to the vectorized ver-
sion. Since the elemental function consists of the kernel
that each iteration of the loop performs, the scope of
these transformations is limited. Even the indexing of the
arrays are done in the generated code that calls the ele-
mental function. To perform the necessary changes to the
elemental function, the function itself is passed through
Clang to obtain its AST, matchers are used to identify the
AST nodes in the function signature and replace them
with the correct array subscript (e.g *edge is changed
to edge[*][SIMD_VEC]). Again ASTMatchers are
used to identify AST nodes within the elemental kernel,
replacing them with the variable with array subscripts
(edge[0] is changed to edge[0][i]). Simple deref-
erences are replaced with [0][simd_vec] indexing.
The match and replacements here are only different by
the fact that we are now modifying the elemental kernel
itself and not a skeleton.

V. EVALUATION AND PERFORMANCE

In contrast to the OP2-Clang translator, OP2’s cur-
rent Python based translator only parses the application
source so far as to identify OP2 API calls. However,
no AST is created as a result, but simply the specifi-
cations and arguments in each of the op_par_loop
calls are collected and stored in Python lists. When
it comes to generating code, the full source of what
is to be generated is produced, using the information
gathered in these lists, for each of the parallelizations.
No text replacements are done as in the OP2-Clang
translator. However, as the invariant code for a given
parallelization can be generated without change, only the
specific changes for a given op_par_loop needs to be
produced. Again, the code generation stage does not use
an AST. As such, changing code within elemental ker-
nels (as in the SIMD Vectorization case) is significantly

difficult and cannot easily handle different ways a user
might write their elemental kernels. All of the above
makes the Python translator error prone and difficult to
extend and maintain. In this section we present some
results from evaluating the OP2-Clang translator on two
OP2 applications by comparing code generated from it
to the performance of the code generated through OP2’s
current Python based translator.

Both of the applications used in these tests have
loops with indirections and indirect increments, various
global reductions and use of global constants. The first,
Airfoil, is a benchmark application, representative of
large industrial CFD applications utilized by users of
OP2. It is a non-linear 2D inviscid airfoil code that uses
an unstructured grid and a finite-volume discretization
to solve the 2D Euler equations using a scalar numerical
dissipation [11]. The mesh used in our experiments
consists over 2.8 million nodes cells and about 5.8
million edges. Airfoil consists of five computational
loops and in the most computational intensive loop
about 100 floating-point operations performed per mesh
edge. The second application, Volna is a shallow water
simulation capable of handling the complete life-cycle
of a tsunami (generation, propagation and run-up along
the coast) [12], [13]. The simulation algorithm works on
unstructured triangular meshes and uses the finite volume
method. For the experiments we used a mesh with about
2.4 million cells and about 3.5 million edges.

The generated code were compiled and executed on
a single Intel Xeon CPU E5-1660 node (total of 8
cores) for OpenMP and SIMD vectorization (using Intel
compilers suite 17.0.3.) and a single NVIDIA P100 GPU
with CUDA 9.0. Table I shows the performance results
and percentage difference of runtime compared to OP2’s
current Python-based translator. In all cases the perfor-
mance difference is less than 2%. This figure was the
same when comparing run-times of each kernel. These
results, therefore gives an initial indication that identical
code was generated by OP2-Clang. We are currently
carrying out further tests to identify any differences in
performance. As mentioned the absolute performance of
production applications using OP2 has been published
previously in [26], [45].

11

VI. CONCLUSIONS AND FUTURE WORK

In this paper we introduced OP2-Clang, a source-to-
source translator based on LibTooling, for OP2. OP2-
Clang is capable of parsing a higher-level declarative
programme written in OP2’s C/C++ API and generate
parallel code based on SIMD, OpenMP, CUDA and their
combinations with MPI. The wide range of transforma-
tions required for generating code for each paralleliza-
tion in OP2 and the variation in specific optimizations
for each are significant, going well beyond what has been
previously demonstrated with LibTooling. We presented
the use of parallelization skeletons to reuse code and
demonstrated the use of LibTooling’s ASTMathchers
and Replacements to modify a skeleton to generate
the necessary parallel code. Multiple levels of refactor-
ing using LibTooling’s RefactoringTool enables to
apply specific optimizations in a flexible, maintainable
and extensible manner. Challenges in developing OP2-
Clang were presented, discussing the generation of MPI,
OpenMP, SIMD vectorized code and CUDA code for
CPUs and GPUs. Performance from the OP2-Clang
generated code showed near-identical performance to
the code generated by OP2’s current source-to-source
translator (based on Python). We believe that the lessons
learnt from OP2-Clang can be readily applied in develop-
ing similar source-to-source translators, particularly for
DSLs.

The next stage of this work will add semantic checks
over the generated code at the time of the translation
to help developers debug their OP2 applications. At this
point OP2-Clang will be ready to replace the existing
translator in OP2. Longer term objectives of this research
will look in to how information about the high-level
OP2 application can be propagated down to the IR
level. The open research question is whether we can
propagate information that we know holds true given
the OP2 abstraction to the LLVM optimizer. This will
then enable LLVM to do optimizations that it would
have not identified or attempted if the same application
was developed as a general purpose programme using
conventional C++. This we hope will enable us to en-
force more aggressive optimizations, resulting in higher
performance. Additionally we hope also to generalize
the optimizations we discover while working with OP2-
Clang to all C++ programs supported by Clang/LLVM.
We also believe that this work can be extended for OP2’s
Fortran API, if a similar infrastructure is developed
around the upcoming Flang [46] front end.

The full source of OP2-Clang is available as open
source software at [10]. OP2, and the Airfoil application
is available at [1]. Volna is available at [45]. The authors
welcome new users and developers to these projects.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the use of
the University of Oxford Advanced Research Com-
puting (ARC) facility in carrying out this work http:
//dx.doi.org/10.5281/zenodo.22558. István Reguly was
supported by the János Bolyai Research Scholarship
of the Hungarian Academy of Sciences. Project no.
PD 124905 has been implemented with the support
provided from the National Research, Development and
Innovation Fund of Hungary, financed under the PD_17
funding scheme. The research has been supported by
the European Union, co-financed by the European Social
Fund (EFOP-3.6.2-16-2017-00013). OP2 was developed
with funding from the UK Technology Strategy Board
and Rolls-Royce Plc. through the Siloet project and the
UK Engineering and Physical Sciences Research Council
projects EP/I006079/1, EP/I00677X/1 on ‘Multi-layered
Abstractions for PDEs.

REFERENCES

[1] “OP2 github repository.” https://github.com/OP2/OP2-Common.
[2] G. Mudalige, M. Giles, I. Reguly, C. Bertolli, and P. Kelly, “Op2:

An active library framework for solving unstructured mesh-
based applications on multi-core and many-core architectures,”
in Innovative Parallel Computing (InPar), 2012, pp. 1–12, IEEE,
2012.

[3] D. J. Quinlan et al., “Rose compiler project,” 2012.
[4] P. Yang, F. Dong, D. Williams, J. Roerdink, B. Liu, A. Anvari-

Moghaddam, G. Min, et al., “Improving utility of gpu in accel-
erating industrial applications with user-centred automatic code
translation,” IEEE Transactions on Industrial Informatics, 2017.

[5] D. Williams, V. Codreanu, P. Yang, B. Liu, F. Dong, B. Yasar,
B. Mahdian, A. Chiarini, X. Zhao, and J. B. Roerdink, “Eval-
uation of autoparallelization toolkits for commodity gpus,” in
International Conference on Parallel Processing and Applied
Mathematics, pp. 447–457, Springer, 2013.

[6] “Libtooling,” 2018.
[7] E. Bendersky, “Modern source-to-source transformation with

clang and libtooling,” 2014.
[8] J. Wu, A. Belevich, E. Bendersky, M. Heffernan, C. Leary,

J. Pienaar, B. Roune, R. Springer, X. Weng, and R. Hundt,
“gpucc: an open-source gpgpu compiler,” in Proceedings of
the 2016 International Symposium on Code Generation and
Optimization, pp. 105–116, ACM, 2016.

[9] M. Marangoni and T. Wischgoll, “Togpu: Automatic source
transformation from c++ to cuda using clang/llvm,” Electronic
Imaging, vol. 2016, no. 1, pp. 1–9, 2016.

[10] “OP2-Clang github repository.” https://github.com/bgd54/
OP2-Clang.

[11] M. B. Giles, G. R. Mudalige, Z. Sharif, G. Markall, and
P. H. Kelly, “Performance analysis and optimization of the op2
framework on many-core architectures,” The Computer Journal,
vol. 55, no. 2, pp. 168–180, 2011.

[12] D. Dutykh, R. Poncet, and F. Dias, “The volna code for the nu-
merical modeling of tsunami waves: Generation, propagation and
inundation,” European Journal of Mechanics-B/Fluids, vol. 30,
no. 6, pp. 598–615, 2011.

[13] I. Z. Reguly, D. Gopinathan, J. H. Beck, M. B. Giles, S. Guil-
las, and F. Dias, “The volna-op2 tsunami code (version 1.0),”
Geoscientific Model Development Discussions, 2018.

[14] D. Unat, X. Cai, and S. B. Baden, “Mint: realizing cuda perfor-
mance in 3d stencil methods with annotated c,” in Proceedings
of the international conference on Supercomputing, pp. 214–224,
ACM, 2011.

http://dx.doi.org/10.5281/zenodo.22558
http://dx.doi.org/10.5281/zenodo.22558
https://github.com/OP2/OP2-Common
https://github.com/bgd54/OP2-Clang
https://github.com/bgd54/OP2-Clang

12

[15] C. Bertolli, A. Betts, G. Mudalige, M. Giles, and P. Kelly, “De-
sign and performance of the op2 library for unstructured mesh
applications,” in European Conference on Parallel Processing,
pp. 191–200, Springer, 2011.

[16] S.-Z. Ueng, M. Lathara, S. S. Baghsorkhi, and W. H. Wen-
mei, “Cuda-lite: Reducing gpu programming complexity,” in
International Workshop on Languages and Compilers for Parallel
Computing, pp. 1–15, Springer, 2008.

[17] S. Lee, S.-J. Min, and R. Eigenmann, “Openmp to gpgpu: a
compiler framework for automatic translation and optimization,”
ACM Sigplan Notices, vol. 44, no. 4, pp. 101–110, 2009.

[18] S.-I. Lee, T. A. Johnson, and R. Eigenmann, “Cetus–an extensible
compiler infrastructure for source-to-source transformation,” in
International Workshop on Languages and Compilers for Parallel
Computing, pp. 539–553, Springer, 2003.

[19] T. D. Han and T. S. Abdelrahman, “hi cuda: a high-level
directive-based language for gpu programming,” in Proceedings
of 2nd Workshop on General Purpose Processing on Graphics
Processing Units, pp. 52–61, ACM, 2009.

[20] O. Krzikalla, K. Feldhoff, R. Müller-Pfefferkorn, and W. E.
Nagel, “Scout: A source-to-source transformator for simd-
optimizations,” in Proceedings of the 2011 International Con-
ference on Parallel Processing - Volume 2, Euro-Par’11, (Berlin,
Heidelberg), pp. 137–145, Springer-Verlag, 2012.

[21] I. Z. Reguly, G. R. Mudalige, M. B. Giles, D. Curran, and
S. McIntosh-Smith, “The ops domain specific abstraction for
multi-block structured grid computations,” in Proceedings of
the 2014 Fourth International Workshop on Domain-Specific
Languages and High-Level Frameworks for High Performance
Computing, WOLFHPC ’14, pp. 58–67, IEEE Computer Society,
2014.

[22] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini,
A. T. T. Mcrae, G.-T. Bercea, G. R. Markall, and P. H. J. Kelly,
“Firedrake: Automating the finite element method by composing
abstractions,” ACM Trans. Math. Softw., vol. 43, pp. 24:1–24:27,
Dec. 2016.

[23] C. T. Jacobs, S. P. Jammy, and N. D. Sandham, “OpenSBLI: A
framework for the automated derivation and parallel execution of
finite difference solvers on a range of computer architectures,”
Journal of Computational Science, vol. 18, pp. 12–23, 2017.

[24] M. Lange, N. Kukreja, M. Louboutin, F. Luporini, F. Vieira,
V. Pandolfo, P. Velesko, P. Kazakas, and G. Gorman, “De-
vito: Towards a generic finite difference dsl using symbolic
python,” in Proceedings of the 6th Workshop on Python for High-
Performance and Scientific Computing, PyHPC ’16, (Piscataway,
NJ, USA), pp. 67–75, IEEE Press, 2016.

[25] N. Jacobsen, “Llvm supported source-to-source translation-
translation from annotated c/c++ to cuda c/c++,” Master’s thesis,
2016.

[26] I. Z. Reguly, G. R. Mudalige, C. Bertolli, M. B. Giles, A. Betts,
P. H. Kelly, and D. Radford, “Acceleration of a full-scale indus-
trial cfd application with op2,” IEEE Transactions on Parallel
and Distributed Systems, vol. 27, no. 5, pp. 1265–1278, 2016.

[27] K. B. Ølgaard, A. Logg, and G. N. Wells, “Automated
Code Generation for Discontinuous Galerkin Methods,” CoRR,
vol. abs/1104.0628, 2011.

[28] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini,
A. T. T. McRae, G.-T. Bercea, G. R. Markall, and P. H. J.
Kelly, “Firedrake: Automating the Finite Element Method by
Composing Abstractions,” ACM Transactions on Mathematical
Software, 2017.

[29] C. T. Jacobs and M. D. Piggott, “Firedrake-Fluids v0.1: numerical
modelling of shallow water flows using an automated solution
framework,” Geoscientific Model Development, vol. 8, no. 3,
pp. 533–547, 2015.

[30] P. Vincent, F. Witherden, B. Vermeire, J. S. Park, and A. Iyer,
“Towards green aviation with python at petascale,” in SC16:
International Conference for High Performance Computing, Net-
working, Storage and Analysis, pp. 1–11, Nov 2016.

[31] I. Z. Reguly, G. R. Mudalige, M. B. Giles, D. Curran, and
S. McIntosh-Smith, “The ops domain specific abstraction for
multi-block structured grid computations,” in 2014 Fourth In-

ternational Workshop on Domain-Specific Languages and High-
Level Frameworks for High Performance Computing, pp. 58–67,
Nov 2014.

[32] M. Lange, N. Kukreja, M. Louboutin, F. Luporini, F. Vieira,
V. Pandolfo, P. Velesko, P. Kazakas, and G. Gorman, “Devito:
Towards a generic finite difference dsl using symbolic python,”
pp. 67–75, IEEE, 2016.

[33] T. Gysi, C. Osuna, O. Fuhrer, M. Bianco, and T. C. Schulthess,
“Stella: A domain-specific tool for structured grid methods in
weather and climate models,” in Proceedings of the International
Conference for High Performance Computing, Networking, Stor-
age and Analysis, SC ’15, (New York, NY, USA), pp. 41:1–41:12,
ACM, 2015.

[34] “PSyclone Project - GitHub Repository,” 2018. https://github.
com/stfc/PSyclone.

[35] H. Carter Edwards, C. R. Trott, and D. Sunderland, “Kokkos,” J.
Parallel Distrib. Comput., vol. 74, pp. 3202–3216, Dec 2014.

[36] R. D. Hornung and J. A. Keasler, “The RAJA portability layer:
Overview and status,” tech. rep., Lawrence Livermore National
Lab. (LLNL), 9 2014.

[37] M. B. Giles, G. R. Mudalige, B. Spencer, C. Bertolli, and
I. Reguly, “Designing op2 for gpu architectures,” Journal of
Parallel and Distributed Computing, vol. 73, no. 11, pp. 1451–
1460, 2013.

[38] G. Mudalige, M. Giles, J. Thiyagalingam, I. Reguly, C. Bertolli,
P. Kelly, and A. Trefethen, “Design and initial performance
of a high-level unstructured mesh framework on heterogeneous
parallel systems,” Parallel Computing, vol. 39, no. 11, pp. 669 –
692, 2013.

[39] “Matching the clang ast.” https://clang.llvm.org/docs/
LibASTMatchers.html, 2018.

[40] “Refactoringtool class reference.”
[41] E. Bendersky, “Ast matchers and clang refactoring tools,” 2014.
[42] “Replacements class reference,” 2018.
[43] A. A. Sulyok, G. D. Balogh, I. Z. Reguly, and G. R. Mudalige,

“Improving locality of unstructured mesh algorithms on gpus,”
CoRR, vol. abs/1802.03749, 2018.

[44] G. R. Mudalige, I. Z. Reguly, and M. B. Giles, “Auto-vectorizing
a large-scale production unstructured-mesh cfd application,” in
Proceedings of the 3rd Workshop on Programming Models for
SIMD/Vector Processing, WPMVP ’16, (New York, NY, USA),
pp. 5:1–5:8, ACM, 2016.

[45] “OP2-Volna github repository.” https://github.com/reguly/volna.
[46] “Flang: a fortran compiler targeting llvm.,” 2018.

https://github.com/stfc/PSyclone
https://github.com/stfc/PSyclone
https://clang.llvm.org/docs/LibASTMatchers.html
https://clang.llvm.org/docs/LibASTMatchers.html

	Introduction
	Background and Motivation
	OP2

	Clang LibTooling for OP2 Code Generation
	OP2-Clang Application Processor
	OP2-Clang Target Specific Code Generators

	Extensibility and Modularity
	CUDA
	SIMD vectorization

	Evaluation and Performance
	Conclusions and Future Work
	References

