
OP2: An Active Library Framework for Solving
Unstructured Mesh-based Applications on Multi-Core and

Many-Core Architectures ∗

G.R. Mudalige, M.B. Giles
Oxford eResearch Centre,

University of Oxford,
United Kingdom

gihan.mudalige@oerc.ox.ac.uk,
mike.giles@maths.ox.ac.uk

I. Reguly
Pázmány Péter Catholic

University, Hungary
reguly.istvan@itk.ppke.hu

C. Bertolli, P.H.J Kelly
Dept. of Computing,

Imperial College London,
United Kingdom

{c.bertolli, p.kelly}@imperial.ac.uk

ABSTRACT
OP2 is an “active” library framework for the solution of
unstructured mesh-based applications. It utilizes source-
to-source translation and compilation so that a single ap-
plication code written using the OP2 API can be trans-
formed into different parallel implementations for execution
on different back-end hardware platforms. In this paper we
present the design of the current OP2 library, and inves-
tigate its capabilities in achieving performance portability,
near-optimal performance, and scaling on modern multi-core
and many-core processor based systems. A key feature of
this work is OP2’s recent extension facilitating the develop-
ment and execution of applications on a distributed memory
cluster of GPUs.

We discuss the main design issues in parallelizing unstruc-
tured mesh based applications on heterogeneous platforms.
These include handling data dependencies in accessing indi-
rectly referenced data, the impact of unstructured mesh data
layouts (array of structs vs. struct of arrays) and design con-
siderations in generating code for execution on a cluster of
GPUs. A representative CFD application written using the
OP2 framework is utilized to provide a contrasting bench-
marking and performance analysis study on a range of multi-
core/many-core systems. These include multi-core CPUs
from Intel (Westmere and Sandy Bridge) and AMD (Magny-
Cours), GPUs from NVIDIA (GTX560Ti, Tesla C2070), a
distributed memory CPU cluster (Cray XE6) and a dis-
tributed memory GPU cluster (Tesla C2050 GPUs with In-
finiBand). OP2’s design choices are explored with quanti-
tative insights into their contributions to performance. We
demonstrate that an application written once at a high-level
using the OP2 API can be easily portable across a wide
range of contrasting platforms and is capable of achieving
near-optimal performance without the intervention of the
domain application programmer.

Categories and Subject Descriptors
C.4 [Performance of Systems]; C.1.2 [Multiple Data
Stream Architectures]

∗This research is funded by the UK Technology Strategy
Board and Rolls-Royce plc. through the Siloet project,
the UK Engineering and Physical Sciences Research Coun-
cil projects EP/I006079/1, EP/I00677X/1 on Multi-layered
Abstractions for PDEs and the Algorithms and Software for
Emerging Architectures (ASEArch) EP/J010553/1 project

Keywords
OP2, Active Library, Domain Specific Language, Unstruc-
tured mesh, GPU

1. INTRODUCTION
With the advent of novel processor architectures such as
general purpose GPUs and heterogeneous many-core pro-
cessors (e.g. Intel MIC [33], AMD APUs [1]), the latest
“many-core” programming extensions and technologies are
needed to take advantage of the full potential of emerging
parallel high performance systems. Even traditional CPUs
have increasingly larger vector units (e.g. AVX) and CPU
clusters are advancing towards capabilities to scale up to
a billion threads. In turn, the increasing number of pro-
cessor cores demands more data to be exchanged between
main-memory and processor, within a complicated mem-
ory hierarchy, making data-movement costly and bandwidth
an increasingly important bottleneck. Such developments
demand radical new approaches to programming applica-
tions in order to maintain scalability. This problem is com-
pounded by the rapidly changing hardware architectures
landscape with additional limitations due to chip energy
consumption and resilience. Application developers would
like to benefit from the performance gains promised by these
new systems, but are very worried about the software devel-
opment costs involved and the need to constantly maintain
an expert level of knowledge in the details of new technolo-
gies and architectures in order to obtain the best perfor-
mance from their codes. It is therefore clear that a level of
abstraction is highly desirable so that domain application
developers/scientists can reach an increased level of produc-
tivity and performance without having to learn the intricate
details of new architectures.

Such an abstraction enables application developers to fo-
cus on solving problems at a higher level and not worry
about architecture specific optimizations. This splits the
problem space into (1) a higher application level where sci-
entists and engineers concentrate on solving domain specific
problems and write code that remains unchanged for dif-
ferent underlying hardware and (2) a lower implementation
level, that focuses on how a computation can be executed
most efficiently on a given platform by carefully analyzing
the computation, data access/communication and synchro-
nization patterns. The correct abstraction will pave the way
for easy maintenance of a higher-level application source by

domain application developers but allow optimization and
parallel programming experts to apply radically aggressive
and platform specific optimizations when implementing the
required solution on various hardware platforms. The ob-
jective will be to provide near optimal performance without
burdening the domain application developers. Furthermore,
once a correct abstraction is established it will make it possi-
ble to easily integrate support for any future novel hardware.

OP2 aims to provide such an abstraction layer, for the
solution of unstructured mesh-based applications. OP2 uses
an “active library” approach where a single application code
written using the OP2 API can be transformed in to different
parallel implementations which can then be linked against
the appropriate parallel library (e.g. OpenMP, CUDA, MPI,
OpenCL, AVX, etc.) enabling execution on different back-
end hardware platforms. A key feature of this approach is
that at the user application level the API statements appear
similar to normal function calls simplifying the application
development process. At the same time the generated code
from OP2 and the platform specific back-end libraries are
highly optimized utilizing the best low-level features of a
target architecture to make an OP2 application achieve near-
optimal performance including high computational efficiency
and minimized memory traffic.

OP2 currently supports code generation and execution on
a number of different platforms: (1) single-threaded on a
CPU, (2) multi-threaded using OpenMP for execution on a
single SMP node consisting of multi-core CPUs (including
large shared-memory nodes), (3) parallelized using CUDA
for execution on a single NVIDIA GPU, (4) parallelized on
a cluster of CPUs using MPI and (5) parallelized on a clus-
ter of NVIDIA GPUs using MPI and CUDA. Additionally,
back-ends targeting OpenCL, AVX multi-cores and a cluster
of multi-threaded CPUs (using MPI + OpenMP) are cur-
rently nearing completion. In our previous work [24, 25, 16]
we presented OP2’s API and its back-end design facilitat-
ing the code generation for and execution of unstructured
mesh applications on single-node systems. In this paper we
(1) extend the OP2 design to include multi-GPU platforms
and (2) explore OP2’s capabilities in achieving near opti-
mal performance, performance portability and scaling on
various current multi-core and many-core processor based
systems. We begin in Section 2 with a brief overview of
the OP2 API and a review of its main design strategies
for handling (1) data dependencies on single/shared-memory
nodes and distributed memory systems and (2) unstructured
mesh data layouts (array of structs vs. struct of arrays).
We then present the design of OP2’s multi-GPU back-end
which facilitates the execution of an OP2 application on a
cluster of GPUs. Next in Section 3 we investigate the per-
formance of an industrial representative CFD code written
using OP2 on a range of current flagship multi-core and
many core systems. Benchmarked systems consist of multi-
core CPUs from AMD (Magny-Cours), Intel (Westmere and
Sandy Bridge) and GPUs from NVIDIA (GTX560Ti, Tesla
C2070), a distributed memory cluster (Cray XE6) and a dis-
tributed memory GPU cluster (based on Tesla C2050 GPUs
interconnected by DDR InfiniBand). OP2’s design choices
are explored with quantitative insights into their contribu-
tions to performance.

We believe that results from a performance analysis study
of a standard CFD benchmark, the Airfoil, on GPU clusters
is an important step forward with respect to our previous

0

(0.128)

1

(0.345)

2
(0.224)

3

(0.118)

4
(0.246)

5
(0.324)

6

(0.112)

7

(0.928)

8
(0.237)

2

(7.4)

3

(5.5)

4

(7.6)

7

(9.9)

8

(8.9)

9

(6.4)

0 (3.3)

1 (2.1)

5 (3.4)

6 (10.5)

11 (3.6)

10 (4.4)

Figure 1: An example mesh with edge and quadri-
lateral cell indices (data values in parenthesis)

work [24, 25, 16]. With the inclusion of the multi-GPU back-
end, the range of target back-ends supported by OP2 gives
us a unique opportunity to carry out an extensive study into
the comparative performance of modern systems. As such,
this paper details the most comprehensive platform compar-
ison we have carried-out to date with OP2. We use highly-
optimized code generated through OP2 for both CPU and
GPU back-ends, using the same application code, allowing
for a direct performance comparison. Our results demon-
strate that an application written once at a high-level using
the OP2 API is easily portable across a wide range of con-
trasting platforms and is capable of achieving near-optimal
performance without the intervention of the domain appli-
cation programmer.

2. OP2
2.1 The OP2 API
Unstructured grids/meshes have been and continue to be
used for a wide range of computational science and engi-
neering applications. They have been applied in the so-
lution of partial differential equations (PDEs) in computa-
tional fluid dynamics (CFD), structural mechanics, compu-
tational electro-magnetics (CEM) and general finite element
methods. In three dimensions, millions of elements are often
required for the desired solution accuracy, leading to signif-
icant computational costs.

Unstructured meshes, unlike structured meshes, use con-
nectivity information to specify the mesh topology. The
OP2 approach to the solution of unstructured mesh prob-
lems (based on ideas developed in its predecessor OPlus [17,
19]) involves breaking down the algorithm into four distinct
parts: (1) sets, (2) data on sets, (3) connectivity (or map-
ping) between the sets and (4) operations over sets. This
leads to an API through which any mesh or graph can be
completely and abstractly defined. Depending on the ap-
plication, a set can consist of nodes, edges, triangular faces,
quadrilateral faces, or other elements. Associated with these
sets are data (e.g. node coordinates, edge weights) and map-
pings between sets which define how elements of one set
connect with the elements of another set.

In our previous work [24, 25] we have presented in detail
the design of the OP2 API. For completeness, here we give
an overview of the API using the simple quadrilateral mesh
illustrated in Figure 1. The OP2 API supports program
development in C/C++ and Fortran. We use the C/C++
API in this paper; an illustration of the OP2 API based
on Fortran is detailed in [16]. The mesh in Figure 1 can
be defined by three sets: edges, cells (quadrilaterals) and

boundary edges. There are 12 edges, 9 cells and 12 boundary
edges which can be defined using the OP2 API as follows:

int nedges = 12; int ncells = 9; int nbedges = 12;
op_set edges = op_decl_set(nedges, "edges");
op_set cells = op_decl_set(ncells, "cells");
op_set bedges = op_decl_set(nbedges, "bedges");

The connectivity is declared through the mappings between
the sets. Considering only the interior edges in this exam-
ple, the integer array edge_to_cell gives the connectivity
between cells and interior edges.

int edge_to_cell[24] = {0,1, 1,2, 0,3, 1,4, 2,5, 3,4,
4,5, 3,6, 4,7, 5,8, 6,7, 7,8 };

op_map pecell = op_decl_map(edges, cells, 2,
edge_to_cell, "edge_to_cell_map");

Each element belonging to the set edges is mapped to two
different elements in the set cells. The op_map declaration
defines this mapping where pecell has a dimension of 2 and
thus its index 0 and 1 maps to cells 0 and 1, index 2 and 3
maps to cells 1 and 2 and so on. When declaring a mapping
we first pass the source set (e.g. edges) then the destination
set (e.g. cells). Then we pass the dimension of each map
entry (e.g. 2; as pecell maps each edge to 2 cells). Once
the sets and connectivity are defined, data can be associated
with the sets; the following are some data arrays that contain
double precision data associated with the cells and the edges
respectively. Note that here a single double precision value
per set element is declared. A vector of a number of values
per set element could also be declared (e.g. a vector with
three doubles per cell to store its X,Y,Z coordinates).

double cell_data[9] = {0.128, 0.345, 0.224, 0.118, 0.246,
0.324, 0.112, 0.928, 0.237};

double edge_data[12] = {3.3, 2.1, 7.4, 5.5, 7.6, 3.4,
10.5, 9.9, 8.9, 6.4, 4.4, 3.6};

op_dat dcells = op_decl_dat(cells, 1, "double",
cell_data, "data_on_cells");

op_dat dedges = op_decl_set(edges, 1, "double",
edge_data, "data_on_edges");

All the numerically intensive computations in the unstruc-
tured mesh application can be described as operations over
sets. Within an application code, this corresponds to loops
over a given set, accessing data through the mappings (i.e.
one level of indirection), performing some calculations, then
writing back (possibly through the mappings) to the data
arrays. If the loop involves indirection through a mapping
OP2 denotes it as an indirect loop; if not, it is called a direct
loop. The OP2 API provides a parallel loop declaration syn-
tax which allows the user to declare the computation over
sets in these loops. Consider the following sequential loop,
operating over each interior edge in the mesh illustrated in
Figure 1. Each of the cells updates its data value using the
data values held on the edge connected to that cell and the
corresponding neighboring cell.

void res_seq_loop(int nedges, int *edge_to_cell,
double *edge_data, double *cell_data)

{
for (int i = 0; i<nedges; i++){

cell_data[edge_to_cell[2*i]] += edge_data[i];
cell_data[edge_to_cell[2*i+1]] += edge_data[i];

}
}

An application developer declares this loop using the OP2
API as follows, together with the “elemental” kernel func-
tion.

void res(double* edge, double* cell0, double* cell1){
*cell0 += *edge;
*cell1 += *edge;

}
op_par_loop(res,"residual_calculation", edges,

op_arg(dedges, -1, OP_ID, 1, "double", OP_READ),
op_arg(dcells, 0, pecell, 1, "double", OP_INC),
op_arg(dcells, 1, pecell, 1, "double", OP_INC));

The elemental kernel function takes 3 arguments in this case
and the parallel loop declaration requires the access method
of each to be declared (OP INC, OP READ, etc). OP ID
indicates that the data in dedges is to be accessed without
any indirection (i.e. directly). decells on the other hand is
accessed through the pecell mapping using the given index
(0 and 1). The dimension (or cardinality) of the data (in
this example 1, for all data) is also declared.

The OP2 compiler handles the architecture specific code
generation and parallelization. An application written using
the OP2 API will be parsed through the OP2 compiler and
will produce a modified main program and back-end specific
code. These are then compiled using a conventional compiler
(e.g. gcc, icc, nvcc) and linked against platform specific
OP2 back-end libraries to generate the final executable. In
the OP2 project we currently have two prototype compilers,
one written in MATLAB which only parses OP2 calls and
a second source-to-source translator built using the ROSE
compiler framework [10] which is capable of full source code
analysis. Preliminary details of the ROSE source-to-source
translator can be found in [16]. The slightly verbose API
was needed as a result of the initial MATLAB prototype
parser but also facilitate consistency checks to identify user
errors during application development.

One could argue that most if not all of the details that an
op_par_loop specifies could be inferred automatically just
by parsing a conventional loop (e.g. res_seq_loop in the
above example) without the need for a specialized API such
as used in OP2. However, in industrial-strength applica-
tions it is typically hard or impossible to perform full pro-
gram analysis due to an over-complex control flow and the
impossibility of full pointer analysis. The syntax presented
in this paper permits instead the definition of “generic“ rou-
tines which can be applied to different datasets, giving the
compiler the opportunity to achieve code analysis and syn-
thesis in a simple and straightforward way.

OP2’s general decomposition of unstructured mesh algo-
rithms, imposes no restrictions on the actual algorithms, it
just separates the components of a code [24, 25]. However,
OP2 makes an important restriction that the order in which
elements are processed must not affect the final result, to
within the limits of finite precision floating-point arithmetic.
This constraint allows OP2 to choose its own order to obtain
maximum parallelism, which on platforms such as GPUs is
crucial to gain good performance. We consider that this
is a reasonable limitation of OP2 considering that all high
performance implementations for unstructured grids do ex-
tensive renumbering for MPI partitioning and also cache op-
timization [18], and accept the loss of bit-wise reproducibil-
ity. However, if this is a concern for some users, then one
option is to move to approximate quad-precision [28] using
two double-precision variables for the local summations so

that it becomes very much less likely to get even a single bit
difference when truncating back to double precision. This
technique requires four floating point operations instead of
one, but in most applications this is unlikely to increase the
overall operation count by more than 5-10%, so in practice
the main concern is probably the additional memory require-
ments. The same approach could also be used to greatly
reduce the variation in the results from global summations.

Another restriction in OP2, is that the sets and mappings
between sets must be static and the operands in the set
operations cannot be referenced through a double level of
mapping indirection (i.e. a mapping to another set which in
turn uses another mapping to access data associated with
a third set). The straightforward programming interface
combined with efficient parallel execution makes it an at-
tractive prospect for the many algorithms which fall within
the scope of OP2. For example the API could be used for
explicit relaxation methods such as Jacobi iteration; pseudo-
time-stepping methods; multi-grid methods which use ex-
plicit smoothers; Krylov subspace methods with explicit pre-
conditioning; semi-implicit methods where the implicit solve
is performed within a set member, for example performing
block Jacobi where the block is across a number of PDE’s at
each vertex of a mesh. However, algorithms based on order
dependent relaxation methods, such as Gauss-Seidel or ILU
(incomplete LU decomposition), lie beyond the current ca-
pabilities of the framework. The OP2 API could be extended
to handle such sweep operations, but the loss in the degree of
parallelism available means that it seems unlikely one would
obtain good parallel performance on multiple GPUs [31].

Currently, OP2 supports generating parallel code for exe-
cution on a single-threaded CPU, a single SMP system based
on multi-core CPUs using OpenMP, a single NVIDIA GPU
using CUDA, a cluster of CPUs using MPI and a cluster of
GPUs using MPI and CUDA. In the next sections we present
in detail the design of OP2 for parallelizing unstructured
mesh applications on these contrasting back-end platforms.
The OP2 auto-generated code contains all of the best hand-
tuning optimizations to our knowledge (except for using SoA
data layout for solely directly accessed data as detailed in
Section, 2.4) and we are not aware of any ways of obtaining
additional performance at the time of writing. The perfor-
mance data on bandwidth in Section 3.1 show that there is
very little scope for additional speedup.

2.2 The OP2 Parallelization Strategy
OP2 uses hierarchical parallelism with two principal levels:
(1) distributed memory and (2) single-node/shared-memory.
Using exactly the same approach as OPlus [17, 19], the
distributed memory level uses standard graph partitioning
techniques in which the domain is partitioned among the
compute nodes of a cluster, and import/export halos are
constructed for MPI message-passing. A key issue impact-
ing performance with the above design is the size of the
halos which directly determines the size of messages passed
when a parallel loop is executed. Our assumption is that the
proportion of halo data becomes very small as the partition
size becomes large. This depends on the quality of partitions
held by each MPI process. OP2 utilizes two well established
parallel mesh partitioning libraries, ParMETISs [8] and PT-
Scotch [12] to obtain high quality partitions.

The single-node design is motivated by several key fac-
tors. Firstly a single node may have different kinds of par-

allelism depending on the target hardware: on multi-core
CPUs shared memory multi-threading is available with the
possibility of each thread using vectorization to exploit the
capabilities of SSE/AVX vector units. On GPUs, multiple
thread blocks are available with each block having multiple
threads. Secondly, memory bandwidth is a major limita-
tion on both existing and emerging processors. In the case
of CPUs this is the bandwidth between main-memory and
the CPU cores, while on the GPUs this is the bandwidth
between the main graphics (global) memory and the GPU
cores. Thus the OP2 design is motivated to reduce the data
movement between memory and cores.

In the specific case of GPUs, the size of the distributed-
memory partition assigned to each GPU is constrained to be
small enough to fit entirely within the GPU’s global memory.
This means that the only data exchange between the GPU
and the host CPU is for the halo exchange with other GPUs.
Within the GPU, for each parallel loop with indirect refer-
encing, the partition is sub-divided into a number of mini-
partitions; these are sized so that the required indirectly-
accessed data will fit within the 48kB of shared memory in
the SM. Each thread block first loads the indirectly-accessed
data into the shared memory, and then performs the desired
computations. Using shared memory instead of L1 cache
makes maximum use of the available local memory; caches
hold the entire cache line even when only part of it may be
needed. This approach requires some tedious programming
to use locally renumbered indices for each mini-partition,
but this is all handled automatically by OP2’s run-time rou-
tines. Since the global memory is typically 3-6GB in size,
and each mini-partition has at most 48kB of data, the total
number of mini-partitions is very large, usually more than
10,000. This leads naturally to very good load-balancing
across the GPU. Within the mini-partition, each thread in
the thread block works on one or more elements of the set
over which the operation is parallelized; the only potential
difficulty here concerns the data dependencies addressed in
the next section.

In standard MPI computations, because of the cost of
re-partitioning, the partitioning is usually done just once
and the same partitioning is then used for each stage of
the computation. In contrast, for single node CPU and
GPU executions, between each stage of the computation the
data resides in the main memory (on a CPU node) or the
global memory (on a GPU), and so the mini-partitioning
and thread block size for each parallel loop calculation can
be considered independently of the requirements of the other
parallel loops. Based on ideas from FFTW [21], OP2 con-
structs for each parallel loop an execution “plan” (op_plan)
which is a customized mini-partition and thread-block size
execution template. Thus on a GPU the execution of a
given loop makes optimum use of the local shared memory
on each multiprocessor considering in detail the memory re-
quirements of the loop computation. OP2 allows the user
to set the mini-partition and thread block size both at com-
pile and run-time for each loop, allowing for exploring the
best values for these parameters for a given application. We
investigate the performance impact of choosing the correct
mini-partition and thread-block size quantitatively in Sec-
tion 3.

2.3 Data Dependencies
One key design issue in parallelizing unstructured mesh com-
putations is managing data dependencies encountered when

0

1

2

3

4

5

6

7

8

2

3

4

7

8

9

0

1

5

6

11

10

 Rank X

Rank Y

Set core export halo import halo
exec non-exec exec non-exec

X edges 0,1,3,4,6 2 - 5,8,9 -
X cells 0,1,2,4,5 - 0,4,5 - 3,7,8
Y edges 7,10,11 5,8,9 - 2 -
Y cells 3,6,7,8 - 3,7,8 - 0,4,5

Figure 2: OP2 partitioning over two MPI ranks and
resulting halos on each rank

incrementing indirectly referenced arrays [24, 25]. For ex-
ample, in a mesh with cells and edges, with a loop over edges
updating cells (as in the op_par_loop example above) a po-
tential problem arises when multiple edges update the same
cell.

At the higher distributed-memory level, we follow the
OPlus approach [17, 19] in using an “owner compute” model
in which the partition which “owns” a cell is responsible for
performing the edge computations which will update it. If
the computations for a particular edge will update cells in
different partitions, then each of those partitions will need
to carry out the edge computation. This redundant com-
putation is the cost of this approach. However, we assume
that the distributed-memory partitions are very large such
that the proportion of redundant computation becomes very
small.

The current implementation is based on MPI. OP2 par-
titions the data so that the partition within each MPI pro-
cess owns some of the set elements e.g. some of the cells
and edges. These partitions only perform the calculations
required to update their own elements. However, it is pos-
sible that one partition may need to access data which be-
longs to another partition; in that case a copy of the re-
quired data is provided by the other partition. This follows
the standard “halo” exchange mechanism used in distributed
memory message passing parallel implementations. Figure 2
illustrates OP2’s distributed memory partitioning strategy
for a mesh with edges and cells and a mapping between two
cells to one edge.

The core elements do not require any halo data and thus
can be computed without any MPI communications. This
allows for overlapping of computation with communications
using non-blocking MPI primitives for higher performance.
The elements in the import and export halos are further
separated into two groups depending on whether redundant
computations will be performed on them. For example edges
5, 8 and 9 on rank Y forms part of the import halo on
rank X and a loop over edges will require these edges to be
executed by rank X, in order for values held on cells 4 and 5
on rank X to be correctly updated/calculated. The import
non-exec elements are, on the other hand a read-only halo
that will not be executed, but is referenced by other elements
during their execution. Thus, for example when edges 5, 8
and 9 are to be executed on rank X as part of the import

Mini-partition 1
(color 1)

Mini-partition 2
(color 2)

Mini-partition 3
(color 1)

Figure 3: OP2 coloring of a mesh - each edge of the
same color can be evaluated in parallel

execute block they need to reference cells 3, 7 and 8. Thus
cells 3, 7 and 8 forms the import non-exec halo on X and
correspondingly the export non-exec halo on Y. The export
non-exec elements are a subset of the core elements.

Within a single GPU, the size of the mini-partitions is
very small, and so the proportion of redundant computation
would be unacceptably large if we used the owner-compute
approach. Instead we use the approach previously described
in [24, 25], in which we adopt the “coloring” idea used in
vector computing [32]. The mini-partitions are colored so
that no two mini-partitions of the same color will update the
same cell. This allows for parallel execution for each color
using a separate CUDA kernel, with implicit synchronization
between different colors. Key to the success of this approach
is the fact that the number of mini-partitions is very large
and so even if 10-20 colors are required there are still enough
mini-partitions of each color to ensure good load-balancing.

There is also the potential for threads within a single
thread block, working on a single mini-partition, to be in
conflict when trying to update the same cell. One solution
to this is to use atomic operations, but the necessary hard-
ware support (especially for doubles) is not present on all
the hardware platforms we are interested in. Instead, we
again use the coloring approach, assigning colors to individ-
ual edges so that no two edges of the same color update
the same cell, as illustrated in Figure 3. When increment-
ing the cells, the thread block first computes the increments
for each edge, and then loops over the diferent edge colors
applying the increments by color, with thread synchroni-
sation between each color. This results in a slight loss of
performance during the incrementing process due to warp
divergence, but the cost is minimal.

A similar technique is used for multi-core processors. The
only difference is that now each mini-partition is executed
by a single OpenMP thread. The mini-partitions are col-
ored to stop multiple mini-partitions attempting to update
the same data in the main memory simultaneously. This
technique is simpler than the GPU version as there is no
need for global-local renumbering (for GPU global memory
to shared memory transfer) and no need for low level thread
coloring. Using the mini-partitioning strategy on CPUs (and
by selecting the correct mini-partition size) good cache uti-
lization can also be achieved.

2.4 Data Layout in Memory
Another key design issue in generating efficient code for dif-
ferent processor architectures is the layout in which data
should be organized when there are multiple components
for each element. For example, a set element such as a cell
or an edge can have more than one data variable; if there
are 4 values per cell should these 4 components be stored
contiguously for each cell (a layout which is referred to as

0

1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

(a) Array-of-Structs (AoS)

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

(b) Struct-of-Arrays (SoA)
Figure 4: AoS vs SoA data layouts

an array-of-structs, AoS) or should all of the first compo-
nents be stored contiguously, then all of the second compo-
nents, and so on (a layout which is referred to as a struct-
of-arrays, SoA)? Figure 4 illustrates the two options. The
array-of-structs (AoS) approach views the 4 components as
a contiguous item, and holds an array of these. The struct-
of-arrays (SoA) approach has a separate array for each one
of the components.

In [25] we qualitatively discussed OP2’s design of data lay-
outs. In this section we present a more detailed evaluation
of the pros and cons of the AoS and SoA data layouts. Our
assessment enables us to quantitatively estimate the ben-
efits of the data layouts for a concrete application in Sec-
tion 3.1. The SoA layout was natural in the past for vector
supercomputers which streamed data to vector processors,
but the AoS layout is natural for conventional cache-based
CPU architectures for two reasons. Firstly, if there is a very
large number of elements then in the SoA approach each
component for a particular element will be on a different
virtual page, and if there are a lot of components this leads
to poor performance1. The second is due to the fact that
an entire cache line must be transferred from the memory
to the CPU even if only one word is actually used. This
is a particular problem for unstructured grids with indirect
addressing; even with renumbering of the elements to try
to ensure that neighboring elements in the grid have similar
indices, it is often the case that only a small fraction of the
cache line is used (vector supercomputers circumvented this
problem by adding gather/scatter hardware to the memory
sub-system). This problem is worse for SoA compared to
AoS, because each cache line in the SoA layout contains
many more elements than in the AoS layout. In an extreme
case, with the AoS layout each cache line may contain all of
the components for just one element, ensuring perfect cache
efficiency, assuming that all of the components are required
for the computation being performed. For these reasons, the
OP2 back-ends for x86 based CPUs use the AoS data layout
for both direct and indirectly accessed data.

Until recently, NVIDIA GPUs did not have caches and
most applications have used structured grids. Therefore,
most researchers have preferred the SoA data layout which
leads to natural memory transfer “coalescence” giving high
throughput. However, the current NVIDIA GPUs based on
the Fermi architecture have L1/L2 caches with a cache line
size of 128 bytes, twice as large as used by Intel’s Westmere
and the Sandy Bridge CPUs [15]. This leads to significant
problems with cache efficiency, especially since there is only
48kB of local shared memory and so not many elements are
worked on at the same time by a single thread-block. For
example, in the benchmark application used in Section 3
(Airfoil), in one of the indirect loops (res_calc) there are
four floating-point values to be computed on. Within the
Fermi architecture with a 128 bytes cache line, this corre-

1On an IBM RS/6000 workstation in the 1990’s, one of the
authors experienced a factor 10 drop in performance due to
the limited size of the Translation Look-aside Buffer which
holds a cache of the virtual memory address tables.

sponds to 32 floating-point values in single precision. When
data is accessed indirectly, the SoA layout can lead to a
worst-case scenario in which only 1/32 of the cache line is
used. But with the AoS layout the worst case is only 1/8.
Hence, in extreme cases with almost random addressing, the
AoS layout could be 4 times more efficient than the SoA lay-
out. The savings could be even larger for applications with
more data per set element. Consequently, the AoS layout
is used in OP2 for indirectly accessed data. Because indi-
rect datasets are staged in shared memory and their transfer
from global memory takes place before executing the user’s
kernel, cache efficiency is maximized.

For directly accessed data, on the other hand, if AoS is
used, then if there are N components in the data array then
a warp of 32 threads uses 32N pieces of data. This is N
number of cache lines when working with floats. Given the
very constrained cache size per thread, not all cache lines
using AoS can fit into the cache, resulting in a high ratio of
misses. For large N (e.g. for LMA matrices [29]) this will be
significant. But if SoA is used instead in this case, then the
same cache line will be reused N times. Furthermore, within
direct loops where all data arrays are directly accessed, SoA
gives perfectly coalesced access as the array allocation is
cache aligned. Currently OP2 uses AoS for all arrays on
GPUs but we plan to change this to SoA for arrays only
accessed directly.

Currently for indirectly accessed data, OP2 does on-the-
fly data transposition. The following code segment demon-
strates this for an AoS with four elements similar to Figure 4:

float arg_l[4]; \\ register array
__shared__ float arg_s[4*32]; \\ shared memory

for (int m=0; m<4; m++)
arg_s[tid+m*32] = arg_d[tid+m*32];

for (int m=0; m<4; m++)
arg_l[m] = arg_s[m+tid*4];

The first loop does a coalesced transfer from the global mem-
ory array arg_d into the shared memory array arg_s for each
tid thread. By using a separate shared memory “scratch-
pad” for each warp, we can generalize this without needing
thread synchronization. However, this method may utilize
too much shared memory and could increase register pres-
sure for future applications; hence the plan to implement
SoA layout for solely directly accessed data.

2.5 Multi-GPU Systems
The latest addition to OP2’s multi-platform capabilities is
the ability to execute an OP2 application on a cluster of
GPUs. The design of OP2 for such a back-end involved two
primary considerations; (1) combining the owner compute
strategy across nodes and coloring strategy within a node
and (2) implementing overlapping of computation with com-
munication within the “plan” construction phase of OP2.

The OP2 multi-GPU design assumes that one MPI process
will have access to only one GPU. Thus MPI will be used
across nodes (where each node is interconnected by a com-
munication network such as InfiniBand) and CUDA within
each GPU node. For clusters with each node consisting of
multiple GPUs, OP2 assigns one MPI process per GPU. This
simplifies the execution on heterogeneous cluster systems by
allowing separate processes (and not threads) to manage any
multiple GPUs on a single node. At runtime, on each node,

Algorithm
1. for each op dat requiring a halo exchange {
2. execute CUDA kernel to gather export halo data
3. copy export halo data from GPU to host
4. start non-blocking MPI communication }
5. execute CUDA kernel with op plan for core elements
6. wait for all MPI communications to complete
7. for each op dat requiring a halo exchange
8. { copy import halo data from host to GPU }
9. execute CUDA kernel with op plan for non-core ele-

ments

Figure 5: Multi-GPU non-blocking communication

each MPI process will select any available GPU device. Code
generation with such a strategy reuses the single node code
generation with only a few minor modifications as there is
no extra level of thread management/partitioning within a
node for multiple GPUs.

Recall that the MPI back-end achieves overlapping of com-
putation with communication by separating the set-elements
into two groups where the core elements can be computed
over without accessing any halo data. To achieve the same
objective on a cluster of GPUs, for each op_par_loop that
does halo exchanges, OP2 creates two separate plans, one for
executing only the core elements and the second for all other
elements (including redundant computation). As such the
pseudo-code for executing an op_par_loop on a single GPU
within a GPU cluster is detailed in Figure 5. The op_plan

for the core elements will be computed while non-blocking
communications are in-flight. Each op_plan consists of a
mini-partitioning and coloring strategy optimized for their
respective loop and number of elements. The halos are trans-
fered via MPI by first copying it to the host over the PCIe
bus. As such the current implementation does not utilize
NVIDIA’s new GPUDirect [7] technology for transferring
data directly between GPUs. This will be implemented in
future work for the OP2 MPI+CUDA back-end.

3. PERFORMANCE
In this section, we present quantitative results exploring the
performance portability and scaling of the OP2 design. An
industrial representative CFD code, Airfoil, written using
OP2’s C/C++ API is used in this performance analysis and
benchmarking. Airfoil is a non-linear 2D inviscid airfoil code
that uses an unstructured grid. It is a finite volume applica-
tion that solves the 2D Euler equations using a scalar numer-
ical dissipation. The algorithm iterates towards the steady
state solution, in each iteration using a control volume ap-
proach - for example the rate at which the mass changes
within a control volume is equal to the net flux of mass
into the control volume across the four faces around the
cell. This is representative of the 3D viscous flow calcula-
tions OP2 aims to eventually support for production-grade
CFD applications (such as the Hydra [22, 23] CFD code at
Rolls Royce plc.). The Airfoil code consists of five parallel
loops: save_soln, adt_calc, res_calc, bres_calc and up-

date. Out of these, save_soln and update are direct loops
while the other three are indirect loops. We use two mesh
sizes (1.5M and 26M edges) in this analysis. When solv-
ing the 1.5M edge mesh, the most compute intensive loop,
res_calc, is called 2000 times during the total execution of
the application and performs about 100 floating-point oper-
ations per mesh edge. All results presented are from execu-

Table 1: Single node CPU system specifications
Node System Cores /node Mem. Compiler

(Clock/core) /node [flags]
2×Intel Xeon 12 [24 SMT] 24 GB ICC 11.1

X5650 (Westmere) (2.67GHz) [-O2 -xSSE4.2]
Intel Core 4 [8 SMT] 8 GB ICC 12.0.4
i7-2600K (3.4GHz) [-O2 -xAVX]

(Sandy Bridge)
2×AMD Opteron 16 12 GB ICC 12.0.4

6128 (MagnyCours) (2.0GHz) [-O2 -xSSE2]

Table 2: Single node GPU system specifications
GPU Cores Clk Glob.Mem Driver ver.

(ECC) (Comp.Cap.)
GeForce 384 1.6 GHz 1.0 GB 4.0

GTX560Ti (off) (2.1)
Tesla C2070 448 1.15 GHz 6.0 GB (off) 4.0 (2.0)

tion in double-precision floating-point arithmetic.

3.1 Single Node Systems
Table 1 and 2 detail the key hardware and software specifi-
cations of the CPU and GPU nodes used in our benchmark-
ing study. The Intel Xeon E5650 (based on the Westmere
micro-architecture) node consist of two Intel Xeon E5462
hex-core (total of 12 cores) processors operating at 2.67GHz
and 24GB of main memory. The Intel Core i7-2600K proces-
sor node (based on Intel’s Sandy Bridge micro-architecture),
consists of a single 3.4GHz quad-core processor and 8GB
of main memory. Both have simultaneous multi-threading
(SMT) enabled for the execution of 24 and 8 SMT threads
respectively. The AMD processor node (based on the Magny-
Cours architecture) consist of two 8-core (total of 16 cores)
2.0GHz processors and 12GB of main memory. On each pro-
cessor we set compiler flags to utilize the latest SSE/AVX in-
struction sets. For brevity and to avoid confusion for the rest
of this paper, we refer to these processor nodes as Westmere,
Sandy Bridge and Magny-Cours. The GPU systems consist
of a consumer grade GPU (GTX560Ti) and the high perfor-
mance computing NVIDIA C2070 GPU. Both are based on
NVIDIA’s Fermi architecture.

Recall that the thread-blocks and mini-partitions are key
features in the OP2 design for efficiently distributing work
and operating in parallel over the mesh elements. The first
set of results explores the performance trends due to select-
ing different mini-partition and thread block sizes on these
single node systems. The thread-block and mini-partition
sizes for the overall application can be set at run-time using
command-line arguments or a different value for each indi-
vidual loop could be set at compile time. Figure 6 illustrates
the typical performance trends we observe when the overall
application level thread-block and mini-partition sizes are
varied on the Westmere and C2070 nodes. These results
follow the performance trends that was observed previously
in [24, 25] for older multi-core CPUs (Intel Penryn, Intel
Nehalem) and GPUs (GTX260, C2050).

Qualitatively all three CPUs and GPUs showed perfor-
mance behaviors similar to the trends seen in Figure 6 (a)
and (b) respectively, when the mini-partition and thread-
block sizes are varied. On the CPU nodes, only mini-partitions
are used, where each mini-partition of the same color is
solved in parallel by an OpenMP thread. Increasing the
number of OpenMP threads appear to give diminishing re-
turns and different mini-partition sizes give only a minor
variation in performance. In contrast, on the GPUs there
is significant variation in performance due to using different

0

20

40

60

80

100

64 96 128 192 256 512 1024

Ti
m

e
(s

ec
on

ds
)

Mini-Partition size

OMP-Threads 6
12
24

(a) Westmere

0

20

40

60

80

100

64 96 128 192 256

Ti
m

e
(s

ec
on

ds
)

Mini-Partition size

Block Size 64
96

128
192
256
512

(b) Tesla C2070

Figure 6: Runtime of Airfoil (1.5M edges, 1000 iterations) on the Westmere and C2070 node on a range of
mini-partition and thread-block size configurations

Table 3: Airfoil single node results: 1.5M edges,
1000 iterations

System Num. Time res calc res calc res calc
OMP (sec) GFlops GB/sec GB/sec

/sec (useful) (cache)
Westmere 24 37.85 16.83 15.10 15.39

Sandy Bridge 8 62.80 9.39 13.71 13.90
Magny-Cours 16 46.30 12.70 11.40 11.61
GTX560Ti - 19.63 23.01 24.17 40.30

C2070 - 13.20 35.50 34.38 46.51

mini-partition and thread block size configurations.
In general, on the GPUs we see that using a thread-block

size equal to the mini-partition size gets close to the best
performance achievable for each mini-partition size. How-
ever in some cases having a number of spare threads may be
useful for carrying out more memory loads simultaneously
with computation, but only when the GPU occupancy lim-
its [14] are exceeded. Thus for example if having a larger
thread-block size than the mini-partition size utilizes more
registers than the maximum available number of registers
per SM, then we see a performance degradation due to reg-
ister spillage into global memory. Given a thread-block size
equal to the mini-partition size, reducing the mini-partition
size decreases the amount of shared memory used and thus
the GPU is able to execute multiple thread-blocks at the
same time on each SM. This is advantageous as now one
thread-block can be loading data into shared memory while
another block is doing the computation. On the other hand,
smaller mini-partitions result in less data re-use as the ra-
tio of boundary/interior nodes and cells increases. Smaller
mini-partitions also decrease cache efficiency. We believe
that these conflicting trends account for the run times we
see in the above figure. However, there is no straightfor-
ward way of knowing the best parameters for a new applica-
tion from the outset. Thus, on GPUs, incorrectly “guessing”
these values can lead to significantly poorer performance.

Table 3 presents the best run-times gained on each single-
node system. The optimum mini-partition size, thread block
size and OpenMP number of threads (Num. OMP) were ob-
tained using a recently developed auto-tuning framework [5].
In this case we auto-tuned both mini-partition and thread-
block sizes for each of the five parallel loops to obtain the
best run-times for each system. The final two columns presents
the achieved floating-point rate (in DP) and effective band-
width between main-memory or global-memory on the CPUs
and GPUs respectively for the res_calc loop in Airfoil. As
mentioned before, this loop is the most compute intensive

Table 4: Ratio of data transfer rates (SoA/AoS) on
the Tesla C2070 : 1.5M edges, 1000 iterations

Loop Mini-partition size
64 128 256 512

adt_calc 1.04 1.02 1.01 1.01
res_calc 1.99 1.65 1.39 1.22
bres_calc 2.49 2.48 2.48 2.47

loop in Airfoil and also the most time consuming one. When
solving the 1.5M edge mesh, it performs about 30 × 1010

floating-point operations during the total runtime (i.e. 1000
iterations) of the application. The bandwidth figure was
computed by counting the total amount of useful data bytes
transferred from/to global memory during the execution of
a parallel loop and dividing it by the runtime of the loop.
The bandwidth is higher if we account for the size of the
whole cache line loaded from main-memory/global-memory
(see column 6).

We see that, for Airfoil, only a fraction of the advertised
peak floating-point rates are achieved by any CPU or GPU.
For example, only about 16 GFlops/sec out of a peak of
about 127 GFlops/s (10.64 GFlops/s per core × 12 cores) on
the Westmere is achieved. Similarly only about 30 GFlop-
s/s out of a peak of 515 GFlops/s [13] is achieved on the
C2070. On the other hand, the achieved bandwidth on the
Westmere is close to half of its peak (32GB/s) which indi-
cates that on CPUs the problem is much more constrained
by bandwidth. Our experiments also showed that for direct
loops such as save_sol, the memory bandwidth utilized on
the GPUs gets closer to 70% of the peak bandwidth due
to its low computational intensity. The trends on achieved
computational intensity and bandwidth utilization remain
very similar to the observed results from previous work [25]
with about 25%-30% improvement over the previous CPUs
(Intel Nehalem) and GPUs (C2050).

Next, we attempt to quantify and compare the amount of
data transferred with GPU global memory due to the two
different data layouts discussed in Section 2.4 for indirect
data sets. We compute the amount of data transfered during
each indirect loop (adt_calc, res_calc and bres_calc) as
follows. Consider the case when a loop over elements (each
containing a number of variables) of an indirectly accessed
set is performed; for example the loop over cells (each with
4 flow variables) in res_calc. Then if the AoS data layout
is used, we can compute the total number of bytes trans-
ferred from global memory to shared memory by counting
the number of times a new cache line is loaded (assuming

Table 5: Cluster systems specifications
System HECToR SKYNET

(Cray XE6) (GPU Cluster)
Node 2×12-core AMD 2×Tesla C2050

Architecture Opteron 2.1GHz + 2×Intel Xeon E5440
(Magny-Cours) 2.83GHz

Memory/Node 32GB 2.6 GB/GPU (ECC on)
Interconnect Cray Gemini DDR InfiniBand

O/S CLE 3.1.29 CentOS 5.6, Rocks 5.1
Compilers PGI CC 11.3 ICC 12.0.0

Cray MPI OpenMPI 1.4.3
Compiler flags -Minline=levels:10 -O2 -xSSE4.1

-Mipa=fast -arch=sm 20
-use fast math

that the first element of each array is cache-aligned). For
each new cache line loaded, the amount of data transferred
is incremented by the cache line size if the access is only a
read operation. If the access is a write operation then we
increment the amount of data transferred by two cache line
sizes to account for the write back. The number of cache
lines loaded will need to be increased if the variables mak-
ing up an element takes more storage space than a single
cache line size. Thus for example an element with 28 flow
variables (each a double precision floating point value, i.e
each of 8 bytes) will require 224 bytes of memory space in
total. This is larger than the 128 byte cache line size on the
NVIDIA Fermi architecture.

Alternatively consider the SoA data layout. Now, given
a set with N elements each with v variables, then the dis-
tance between the first variable and the second variable (and
so on) of each element will be N× sizeof(double) bytes.
This number of bytes is significantly larger than a cache line
of a GPU (or CPU), due to the size of N . Thus loading
each element will mean that v number of new cache lines
may need to be transferred from global memory to access
all the variables for that element. In addition to the data
values transferred, we also include in our calculation the
bytes transferred due to loading mapping tables that are
used to perform the indirect accessing of data. The ratio of
data transfer rates (SoA/AoS) calculated in this method are
given in Table 4. The results indicate that for indirect loops
the AoS data layout is always better and for a number of
cases reduces the data transfer between global memory and
the GPU by over 50%.

3.2 Distributed Memory Systems
The single node results show that there are considerable
performance gains to be made on GPU platforms. However,
execution on large distributed memory clusters is needed
for production-grade applications, due to higher computa-
tional and memory requirements. In this section we present
OP2’s performance on distributed memory platforms. We
report run-time results and scaling behavior of Airfoil on
two cluster systems: a traditional CPU cluster and a GPU
cluster. Table 5 notes the key details of these systems. The
first system, HECToR [6], is a large-scale proprietary Cray
XE6 system which we use to investigate the scalability of
the MPI implementation. The second system, SKYNET is
a small C2050/InfiniBand cluster that we use to benchmark
OP2’s latest MPI+CUDA back-end. For this application we
observed that PT-Scotch gave marginally better performing
partitions (i.e smaller halo sizes and fewer MPI neighbors
per process) and as such in all results presented we used
PT-Scotch to partition the mesh.

1

2

4

8

16

32

64

128

256

64 128 256 512 1024 2048 4096

E
xe

cu
tio

n
tim

e
(S

ec
on

ds
)

Number of cores

26M Edges
1.5M Edges

Figure 7: Airfoil strong scaling on HECToR (1.5M
and 26M edges)

Table 6: CPU cluster vs. GPU cluster
System Nodes 1.5M 26M

(sec) (sec)
5 (120 cores) 7.86 157.65
10 (240 cores) 4.02 78.73

HECToR 20 (480 cores) 2.09 39.31
40 (960 cores) 1.12 19.15
60 (1440 cores) 1.41 13.07
80 (1920 cores) 1.28 9.72
1/2 (1 × C2050) 22.08 -

SKYNET 1 (2 × C2050) 12.22 186.83
2 (4 × C2050) 7.44 93.57
4 (8 × C2050) 5.25 53.06
8 (16 × C2050) 4.28 27.39

Figure 7 reports the strong-scaled run-times of the appli-
cation solving a mesh with 1.5M and 26M edges respectively
on HECToR up to 3840 cores. The run-times given here are
averaged from 5 runs for each processor core count. The
standard deviation in run times was significantly less than
10% and thus we limited the number of times that each test
was repeated to save time on the system. The figure shows
excellent scalability for both problem sizes until it collapses
due to over partitioning the mesh, leading to an increase in
redundant computation at the halo regions (compared to the
core elements per partition) and an increase in communi-
cation time spent during halo exchanges. For instance, the
increase in runtime at 1440 cores for the 1.5M edges is due to
an unusually large halo region created by the partitioner for
that number of MPI processes. The best run-time for 1.5M
edges is 1.12 seconds at 960 processor cores. As expected
the 26M edge mesh continues to scale up further, giving a
best runtime of about 9.72 at 1920 cores. We also observed
up to 30% performance gains due to the use of non-blocking
communications overlapped with computation during halo
exchanges.

Comparing performance on HECToR to that of the GPU
cluster SKYNET (See Table 6) reveals that for the 1.5M
edge mesh both systems gives approximately similar per-
formance at scale. For example five HECToR nodes (i.e.
120 Opteron cores) gives an equivalent runtime to 4×C2050
GPUs on SKYNET. However, for the larger 26M edge mesh,
the performance gains are considerably higher on the GPU
cluster. For instance four GPU nodes gives about 1.5 times
the performance on five HECToR nodes. Our observation
was that the GPU/CPU speedups are larger if we compare
run-times from small machine sizes on these systems. How-
ever due to the limited memory resources on the GPU, larger
mesh sizes may not fit on smaller systems (e.g. one C2050
GPU could not fit the the 26M edge mesh in global mem-
ory). The scalability on the GPU cluster is poorer than on
HECToR for the 1.5M edge mesh. We believe that this is

8

16

32

64

128

256

512

1.5M 26M

sp
ee

du
p

(v
s

1
W

es
tm

er
e

co
re

)

Westmere - 24 OMP
SandyBridge - 8 OMP

MagnyCours - 16 OMP
GTX560Ti

C2070

SKYNET - 4 GPUs
SKYNET - 8 GPUs

SKYNET - 16 GPUs
HECToR - 5 Nodes

HECToR - 10 Nodes

Figure 8: Airfoil speedups summary

due to the increasingly smaller amount of work assigned to
each GPU at increasing scale. However, the 26M edge mesh
scales well up to 16 GPUs, where the runtime is almost
halved each time we double the number of GPUs.

We believe that a single node consisting of multiple GPUs
will perform/scale in a similar (or even better) manner to
SKYNET. The reason being that on a singe node with mul-
tiple GPUs the MPI messages will be transfered over PCIe
while on a distributed memory GPU cluster (e.g. SKYNET)
there is a much slower InfiniBand interconnect between inter-
node GPUs. We will explore this further in future work.

A summary of the speedups gained on both single node
and distributed memory systems is presented in Figure 8.
The speedups are calculated compared to a single Westmere
core. On the smaller mesh, the high-end C2070 GPU gives
close to about 3× speedup over the 12-core Westmere node
(running 24 OpenMP threads). It is surprising to see that
notable performance gains can be achieved even on a single
consumer-grade GTX560Ti for this application, especially
as its double-precision performance is much poorer than the
C2070. On the larger mesh, the GPU cluster gives higher
performance gains than on the traditional cluster system.

4. RELATED WORK
There are several well established conventional libraries sup-
porting unstructured mesh based application development
on traditional distributed memory architectures. These in-
clude the popular PETSc [9], Sierra [34] libraries as well as
others such as Deal.II [2], Dune [3] and FEATFLOW [4].
There are also conventional libraries such as the computa-
tional fluid dynamics (CFD) solver TAU [27] which attempts
to extend its capabilities to heterogeneous hardware for ac-
celerating applications. In contrast to these libraries, OP2’s
objective is to support multiple back-ends (particularly for
emerging multi-core/many-core technologies) for the solu-
tion of mesh based applications without the intervention of
the application programmer.

OP2 can be viewed as an instantiation of the AEcute
(access-execute descriptor) [26] programming model that sep-
arates the specification of a computational kernel with its
parallel iteration space, from a declarative specification of
how each iteration accesses its data. The decoupled Ac-
cess/Execute specification in turn creates the opportunity
to apply powerful optimizations targeting the underlying
hardware. A number of research projects have implemented
similar or related programming frameworks. Liszt [20] and
FEniCS [30] specifically target mesh based computations.

The FEniCS [30] project defines a high-level language

UFL for the specification of finite element algorithms. The
FEniCS abstraction allows the user to express the prob-
lem in terms of differential equations, leaving the details
of the implementation to a lower-library. Although well es-
tablished finite element methods could be supported by such
a declarative abstraction, it lacks the flexibility offered by
frameworks such as OP2 for developing new applications/al-
gorithms. Currently, a compiler for UFL is being developed
at Imperial College London to translate the FEniCS dec-
larations down to code that uses the OP2 API. Thus, the
performance results in this paper will directly relate to per-
formance of code written using FEniCS in the future.

While OP2 uses an“active” library approach utilizing code
transformation, Liszt [20] from Stanford University imple-
ments a domain specific language (embedded in Scala [11])
for the solution of unstructured mesh based partial differ-
ential equations (PDEs). A Liszt application is translated
to an intermediate representation which is then compiled
by the Liszt compiler to generate native code for multiple
platforms. The aim, as with OP2, is to exploit informa-
tion about the structure of data and the nature of the al-
gorithms in the code and to apply aggressive and platform
specific optimizations. Performance results from a range
of systems (GPU, multi-core CPU, and MPI based cluster)
executing a number of applications written using Liszt have
been presented in [20]. The Navier-Stokes application in [20]
is most comparable to the Airfoil application and shows sim-
ilar speedups to those gained with OP2 in our work. Ap-
plication performance on heterogeneous clusters such as on
clusters of GPUs is not considered in [20] and is noted as
future work.

5. CONCLUSION
In this paper, we presented the OP2 abstraction framework
for the solution of unstructured mesh-based applications. A
key contribution detailed in this work is OP2’s recent exten-
sions facilitating the development and execution of applica-
tions on a distributed memory cluster of GPUs.

We discussed OP2’s key design strategies in parallelizing
unstructured mesh based applications on a range of con-
trasting back-end platforms. These consisted of handling
data dependencies in accessing indirectly referenced data,
the impact of unstructured mesh data layouts (AoS vs. SoA)
and design considerations in generating code for execution
on a cluster of GPUs. OP2 currently supports generating
code for execution on a single-threaded CPU, multi-threaded
SMP/CMP node consisting of multi-core CPUs, a single
NVIDIA GPU, a traditional CPU cluster and a GPU clus-
ter. We benchmarked and analyzed the performance of an
industrial representative CFD application written using the
OP2 API on a range of modern flagship platforms to inves-
tigate OP2’s performance portability and scaling.

Performance results show that for GPU platforms vary-
ing the thread-block and mini-partition size gives significant
performance differences compared to CPU platforms. We
also observed that indirectly accessed data should be for-
matted in the Array-of-Structs (AoS) layout for processors
utilizing a cache. However, due to the limited cache size on
NVIDIA GPUs, solely directly referenced arrays should be
organized in the Struct-of-Arrays (SoA) format for higher
performance.

The achieved floating-point performance on both GPU
and CPU single node systems were only a small fraction of

the peak rates advertised by vendors. Bandwidth appears to
become a bottleneck where, on some cases, over half of the
peak bandwidth is utilized. We expect bandwidth to be a
significant restriction for future processors where increased
number of cores demands more data to be exchanged be-
tween main-memory and processor.

On distributed memory platforms, OP2’s MPI back-end
showed excellent scaling until the mesh was too small to
be partitioned further. The performance gains on a GPU
cluster were more significant on larger unstructured meshes
compared to a traditional CPU cluster. Performance is af-
fected considerably by the amount of parallelism available
per partition to be exploited by each GPU at scale. Thus
a balance must be achieved to not overload the resources of
individual GPUs but at the same time have enough compu-
tation that can be parallelized within a node to gain good
performance.

As future work we note that the OP2 multi-GPU back-
end requires further benchmarking and analysis, particularly
on a larger GPU cluster with better QDR InfiniBand net-
working. It will also need modifications to utilize NVIDIA’s
new GPUDirect technology. We are also aiming to complete
development of other back-ends for OP2 including OpenCL
and Intel AVX. Once completed, these will enable us to in-
vestigate performance on several other novel hardware plat-
forms including heterogeneous processors such as the AMD
fusion CPUs and the upcoming Intel MIC processor.

We believe that the future of numerical simulation soft-
ware development is in the specification of algorithms trans-
lated to low-level code by a framework such as OP2. Such
an approach will, we believe, offer revolutionary potential in
delivering performance portability and increased developer
productivity. This we predict will be an essential paradigm
shift for utilizing the ever-increasing complexity of novel
hardware/software technologies.

6. REFERENCES
[1] AMD Fusion APUs. http://fusion.amd.com/.

[2] Deal.II: A Finite Element Differential Equations
Analysis Library. http://www.dealii.org/.

[3] DUNE - Distributed and Unified Numerics
Environment. http://www.dune-project.org/.

[4] FEATFLOW - High Performance Finite Elements.
http://www.featflow.de/en/index.html.

[5] Flamingo: A Flexible, Automatic Method for
Independence-Guided Optimisation.
http://mistymountain.co.uk/flamingo/.

[6] HECToR - hardware.
http://www.hector.ac.uk/service/hardware/.

[7] NVIDIA GPUDirect.
http://developer.nvidia.com/gpudirect.

[8] ParMETIS. http://glaros.dtc.umn.edu/gkhome/
metis/parmetis/overview.

[9] PETSc. http://www.mcs.anl.gov/petsc/petsc-as/.

[10] The ROSE Compiler.
http://www.rosecompiler.org/.

[11] The SCALA Programming Language.
http://www.scala-lang.org/.

[12] Scotch and PT-Scotch.
http://www.labri.fr/perso/pelegrin/scotch/.

[13] TESLA C2050/C2070 GPU Computing Processor.

http://www.nvidia.com/docs/IO/43395/NV_DS_

Tesla_C2050_C2070_jul10_lores.pdf.

[14] CUDA C Programming Guide 4.0, May 2011. http://
developer.download.nvidia.com/compute/DevZone/

docs/html/C/doc/CUDA_C_Programming_Guide.pdf.

[15] Intel Xeon X5650 processor, 2011.
http://www.cpu-world.com/sspec/SL/SLBV3.html.

[16] Bertolli, C., Betts, A., Mudalige, G. R., Giles,
M. B., and Kelly, P. H. J. Design and Performance
of the OP2 Library for Unstructured Mesh
Applications. Euro-Par 2011 Parallel Processing
Workshops, Lecture Notes in Computer Science.

[17] Burgess, D. A., Crumpton, P. I., and Giles,
M. B. A Parallel Framework for Unstructured Grid
Solvers. In Computational Fluid
Dynamics’94:Proceedings of the Second European
Computational Fluid Dynamics Conference (1994),
S. Wagner, E. Hirschel, J. Periaux, and R. Piva, Eds.,
John Wiley and Sons, pp. 391–396.

[18] Burgess, D. A., and Giles, M. B. Renumbering
unstructured grids to improve the performance of
codes on hierarchical memory machines. Adv. Eng.
Softw. 28 (April 1997), 189–201.

[19] Crumpton, P. I., and Giles, M. B. Multigrid
Aircraft Computations Using the OPlus Parallel
Library. Parallel Computational Fluid Dynamics:
Implementations and Results Using Parallel
Computers -, 339–346. A. Ecer, J. Periaux, N.
Satofuka, and S. Taylor, (eds.), North-Holland, 1996.

[20] DeVito, Z., Joubert, N., Palacios, F., Oakley,
S., Medina, M., Barrientos, M., Elsen, E., Ham,
F., Aiken, A., Duraisamy, K., Darve, E., Alonso,
J., and Hanrahan., P. Liszt: A domain specific
language for building portable mesh-based PDE
solvers. In Proceedings of Supercomputing ((to appear)
2011).

[21] Frigo, M., and Johnson, S. The Design and
Implementation of FFTW3. Proceedings of the IEEE
93, 2 (feb. 2005), 216 –231.

[22] Giles, M. Hydra.
http://people.maths.ox.ac.uk/gilesm/hydra.html.

[23] Giles, M. B., Duta, M. C., Muller, J. D., and
Pierce, N. A. Algorithm Developments for Discrete
Adjoint Methods. AIAA Journal 42, 2 (2003),
198–205.

[24] Giles, M. B., Mudalige, G. R., Sharif, Z.,
Markall, G., and Kelly, P. H. J. Performance
analysis and optimization of the OP2 framework on
many-core architectures. The Computer Journal In
Press, In Press (2011).

[25] Giles, M. B., Mudalige, G. R., Sharif, Z.,
Markall, G., and Kelly, P. H. J. Performance
analysis of the OP2 framework on many-core
architectures. SIGMETRICS Perform. Eval. Rev. 38,
4 (March 2011), 9–15.

[26] Howes, L. W., Lokhmotov, A., Donaldson,
A. F., and Kelly, P. H. J. Deriving efficient data
movement from decoupled access/execute
specifications. In Proceedings of the 4th International
Conference on High Performance Embedded
Architectures and Compilers (Berlin, Heidelberg,
2009), HiPEAC ’09, Springer-Verlag, pp. 168–182.

[27] Jägersküpper, J., and Simmendinger, C. A novel
shared-memory thread-pool implementation for hybrid
parallel CFD solvers. In Euro-Par 2011 Parallel
Processing, E. Jeannot, R. Namyst, and J. Roman,
Eds., vol. 6853 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2011, pp. 182–193.

[28] Kahan, W. Pracniques: Further Remarks on
Reducing Truncation Errors. Commun. ACM 8
(January 1965), 40.

[29] Markall, G. R., Ham, D. A., and Kelly, P. H. J.
Towards Generating Optimised Finite Element Solvers
for GPUs from High-Level Specifications. Procedia CS
1, 1 (2010), 1815–1823.

[30] Ølgaard, K. B., Logg, A., and Wells, G. N.
Automated code generation for discontinuous Galerkin
methods. CoRR abs/1104.0628 (2011).

[31] Pennycook, S., Hammond, S., Mudalige, G.,
Wright, S., and Jarvis, S. On the Acceleration of
Wavefront Applications using Distributed Many-Core
Architectures. The Computer Journal (2011).

[32] Poole, E. L., and Ortega, J. M. Multicolor ICCG
Methods for Vector Computers. SIAM J. Numer.
Anal. 24, 6 (1987), pp. 1394–1418.

[33] Skaugen, K. Petascale to Exascale: Extending Intel’s
HPC Commitment, June 2011. ISC 2010 keynote.
http://download.intel.com/pressroom/archive/

reference/ISC_2010_Skaugen_keynote.pdf.

[34] Stewart, J. R., and Edwards, H. C. A framework
approach for developing parallel adaptive multiphysics
applications. Finite Elem. Anal. Des. 40 (July 2004),
1599–1617.

