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Abstract

OP2 is an “active” library framework for the solution of unstructured mesh applications. It aims to decouple the
specification of a scientific application from its parallel implementation to achieve code longevity and near-optimal
performance through re-targeting the back-end to different multi-core/many-core hardware. This paper presents the
design of the current OP2 library for generating efficient code targeting contemporary GPU platforms. In this we
focus on some of the software architecture design choices and low-level optimizations to maximize performance on
NVIDIA’s Fermi architecture GPUs. The performance impact of these design choices is quantified on two NVIDIA
GPUs (GTX560Ti, Tesla C2070) using the end-to-end performance of an industrial representative CFD application
developed using the OP2 API. Results show that for each system, a number of key configuration parameters need to be
set carefully in order to gain good performance. Utilizing a recently developed auto-tuning framework, we explore the
effect of these parameters, their limitations and insights into optimizations for improved performance.
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1. Introduction

OP2 is an “active” library framework for the solution
of unstructured mesh applications. It utilizes code gen-
eration to exploit parallelism on heterogeneous multi-
core/many-core architectures. The “active” library ap-
proach uses program transformation tools, so that a single
application code written using the OP2 API is transformed
into the appropriate form that can be linked against
a target parallel implementation (e.g. OpenMP, CUDA,
OpenCL, AVX, MPI, etc.) enabling execution on different
back-end hardware platforms.

Such an abstraction enables application developers to
focus on solving problems at a higher level and not worry
about architecture specific optimizations. This splits the
problem space into (1) a higher application level where sci-
entists and engineers concentrate on solving domain spe-
cific problems and write code that remains unchanged for
different underlying hardware and (2) a lower implemen-
tation level, that focuses on how a computation can be
executed most efficiently on a given platform by carefully
analyzing the data access patterns. This paves the way
for easily integrating support for any future novel hard-
ware architecture.
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Currently, unstructured mesh applications developed
using the OP2 API can be transformed into code that can
be executed on a single multi-core and/or multi-threaded
CPU node (using OpenMP) or a single GPU (using
NVIDIA CUDA). This paper presents the key design
features of the current OP2 library for generating efficient
code targeting GPUs based on NVIDIA’s current Fermi
architecture. Based on an assessment of the actual
bandwidth relative to the theoretical peak, we show
that we can achieve near-optimal performance for a
significant application. This requires a number of design
optimizations based on a through understanding of the
GPU architecture. The advantage of a library such as
OP2 is that it provides non-expert application developers
with these benefits with minimal extra effort.

More specifically, we make the following contributions:

• We present, and discuss, key design issues in devel-
oping optimized unstructured mesh applications for
GPU architectures. These consists of (1) the impact
of different data layouts (array of structs vs. struct
of arrays) and (2) techniques for managing data de-
pendencies. OP2’s design choices are detailed and
justified, with quantitative insights into their contri-
butions to performance. To our knowledge, this is the
first detailed account of near-optimal code design for
this class of applications on GPUs.

• The performance impact of the above design choices
are quantified on a range of NVIDIA GPUs using
the end-to-end performance of an industrial repre-
sentative CFD application (Airfoil) developed using
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the OP2 API. The OP2 code generation tools are
used to generate NVIDIA CUDA code to execute on
these systems. Benchmarked systems include, two
NVIDIA GPUs; a popular consumer graphics card
(GTX560Ti) and a high performance computing card
(Tesla C2070). The GPU results are also contrasted
with the equivalent multi-core CPU results, generated
through OP2’s OpenMP code generation back-end, on
a CPU node system with two high-end 6-core Intel
Westmere processors.

• Results show that for each system, a number of con-
figuration parameters needs to be set in order to gain
good performance. For GPUs the “optimum point” of
performance falls within a narrow range of parameter
values and thus each needs to be carefully chosen, in
order to avoid significantly sub-optimal performance.
To support this task, we develop a novel auto-tuning
framework to configure an application, and apply it to
explore key performance aspects of the Airfoil code.

The rest of this paper is organized as follows: Section 2
details related work including development of abstrac-
tion frameworks such as OP2 for multi-architecture plat-
forms; Section 3 provides a description of the unstructured
mesh application class and details the OP2 API; Section 4
presents in detail OP2’s current design for generating exe-
cutables for GPUs; Section 5 present performance figures
for the execution of Airfoil on a range of NVIDIA GPU
systems, quantifying the performance impact of key design
choices. Section 6 investigates the optimal configuration of
the Airfoil code using an auto-tuning framework. Finally
Section 7 concludes the paper.

2. Related Work

OP2 is the second iteration of OPlus (Oxford Parallel Li-
brary for Unstructured Solvers) [8], a research project that
had its origins in 1993 at the University of Oxford. OPlus
provided an abstraction framework for performing un-
structured mesh based computations across a distributed-
memory cluster of processors. It is currently used as
the underlying parallelization library for Hydra [19, 14] a
production-grade CFD application used in turbomachin-
ery design at Rolls-Royce plc. OP2 builds upon the fea-
tures provided by its predecessor but develops an “ac-
tive” library approach with code generation to exploit par-
allelism on heterogeneous multi-core/many-core architec-
tures.

Although OPlus pre-dates it, OPlus and OP2 can be
viewed as an instantiation of the AEcute (access-execute
descriptor) [18] programming model that separates the
specification of a computational kernel with its parallel it-
eration space, from a declarative specification of how each
iteration accesses its data. The decoupled Access/Exe-
cute specification in turn creates the opportunity to apply
powerful optimizations targeting the underlying hardware.

A number of related research projects have implemented
similar programming frameworks. The most comparable
of these is LISZT [11] from Stanford University.
LISZT is a domain specific language (embedded in

Scala [6]) specifically targeted to support unstructured
mesh application development. The aim, as with OP2,
is to exploit information about the structure of data and
the nature of the algorithms in the code and to apply ag-
gressive and platform specific optimizations. A Liszt ap-
plication is translated to an intermediate representation
which is then compiled by the Liszt compiler to generate
native code for multiple platforms. Performance results
from a range of systems (GPU, multi-core CPU, and MPI
based cluster) executing a number of applications written
using Liszt have been presented in [11]. The Navier-Stokes
application in [11] is most comparable to the Airfoil appli-
cation and shows similar speed ups to those gained with
OP2 in our work.
Related work in the solution of unstructured mesh ap-

plications on GPUs, particularly in the CFD domain, has
also appeared elsewhere. In [10], techniques to implement
an unstructured mesh inviscid flow solver on GPUs are
described. Average speed-ups of about 9.5× are observed
during the execution of the GPU implementation on an
NVIDIA Tesla 10 series card against an equivalent opti-
mized 4-thread OpenMP implementation on a quad-core
Intel Core 2 Q9450. The authors, later in [9] also de-
scribe a semi-automatic script based method of porting a
large CFD code written in Fortran/OpenMP to NVIDIA
CUDA. Similarly [7] reports the GPU performance of a
Navier-Stokes solver for steady and unsteady turbulent
flows on unstructured/hybrid grids. The computations
were carried out on NVIDIA’s GeForce GTX 285 graphics
cards (in double precision arithmetic) and speed-ups up to
46× (vs a single core of two Quad Core Intel Xeon CPUs
at 2.00 GHz) are reported.
We believe the research in this paper differs from the

above works and advances the state-of-the-art with a num-
ber of novel contributions. Firstly, to our knowledge, this
paper is the first of its kind to quantitatively present the
performance impact of design choices for developing un-
structured mesh applications on GPUs. The insights pre-
sented as part of this work are especially important for
gaining good performance on the NVIDIA Fermi archi-
tecture with its new L1/L2 cache. Secondly, we believe
that the use of auto-tuning methods for optimally config-
uring GPU code is also novel, particularly applied to a non-
trivial unstructured mesh application such as Airfoil. Fi-
nally, research in GPU acceleration often cites speed-ups,
relative to a hand-coded CPU implementation - sometimes
even comparing to a single-core. In this paper we com-
pare the end-to-end performance of a representative ap-
plication on contemporary flagship platforms (GTX560Ti,
NVIDIA C2070, Intel 6-core Westmere). For each archi-
tecture (Fermi and x86) OP2 generates highly-optimized
code, using the same application code, allowing for a direct
performance comparison.
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Figure 1: An example mesh with node and quadrilateral cell indices,
and associated data values in parenthesis

3. Background

Unstructured grids/meshes have been and continue to
be used over a wide range of computational science and
engineering applications. They have been applied in the
solution of partial differential equations (PDEs) in com-
putational fluid dynamics (CFD), computational electro-
magnetics (CEM), structural mechanics and general finite
element methods. Usually, in three dimensions, millions
of elements are often required for the desired solution ac-
curacy, leading to significant computational costs.

Unstructured meshes, unlike structured meshes, use
connectivity information to specify the mesh topology.
The OP2 approach to the solution of unstructured mesh
problems involves breaking down the algorithm into four
distinct parts: (1) sets, (2) data on sets, (3) connectiv-
ity (or mapping) between the sets and (4) operations over
sets. These leads to an API through which any mesh or
graph can be completely and abstractly defined. Depend-
ing on the application, a set can consist of nodes, edges,
triangular faces, quadrilateral faces, or other elements. As-
sociated with these sets are data (e.g. node coordinates,
edge weights) and mappings between sets which define how
elements of one set connect with the elements of another
set.

Figure 1 illustrates a simple quadrilateral mesh that we
will use as an example to describe the OP2 API. The
mesh can be defined by two sets, nodes (vertices) and cells
(quadrilaterals). There are 16 nodes and 9 cells, which can
be defined using the OP2 API as follows:

int nnode = 16;

op_set nodes = op_decl_set(nnode, "set_nodes");

int ncell = 9;

op_set cells = op_decl_set(ncell, "set_cells");

The connectivity is declared through the mappings be-
tween the sets. The integer array cell map can be used
to represent the four nodes that make up each cell.

int cell_map[36] = { 0,1,5,4, 1,2,6,5, 2,3,7,6,

4,5,9,8, 5,6,10,9, 6,7,11,10,

8,9,13,12, 9,10,14,13, 10,11,15,14};

op_map mcell = op_decl_map(cells, nodes, 4,

cell_map,"cell_to_node_map");

Each element of set cells is mapped to four different el-
ements in set nodes. The op map declaration defines this
mapping where mcell has a dimension of 4 and thus its
index 0,1,2,3 maps to nodes 0,1,5,4, index 4,5,6,7 maps to
nodes 1,2,6,5 and so on. When declaring a mapping we
first pass the source set (e.g. cells) then the destination
set (e.g. nodes). Then we pass the dimension of each map
entry (e.g. 4; as mcell maps each cell to 4 nodes).
Once the sets and connectivity are defined, data can

be associated with the sets; the following are some data
arrays that contain double precision data associated with
the cells and the nodes respectively. Note that here a
single double precision value per set element is declared.
A vector of a number of values per set element could also
be declared (e.g. a vector with three doubles per node to
store the X,Y,Z coordinates).

double cell_data[9] = {0.128, 0.345, 0.224, 0.118,

0.246, 0.324, 0.112, 0.928,

0.237};

double cell_data_u;

cell_data_u = (double *)malloc(sizeof(double)*9);

double node_data[16] = {5.3, 6.8, 7.8, 5.4, 2.6, 3.6,

7.5, 6.2, 1.8, 3.9, 2.5, 6.6,

1.3, 2.8, 3.9, 8.8 };

op_dat dcells = op_decl_dat(cells, 1, "double",

cell_data, "data_on_cells");

op_dat dcells_u = op_decl_dat(cells, 1, "double",

cell_data_u, "updated_data_on_cells");

op_dat dnodes = op_decl_set(nodes, 1, "double",

node_data, "data_on_nodes");

All the numerically intensive computations in the un-
structured mesh application can be described as operations
over sets. Within an application code, this corresponds to
loops over a given set, accessing data through the map-
pings (i.e. one level of indirection), performing some cal-
culations, then writing back (possibly through the map-
pings) to the data arrays. If the loop involves indirection
through a mapping we refer to it as an indirect loop; if
not, it is called a direct loop.
The OP2 API provides a parallel loop declaration

syntax which allows the user to declare the computation
over sets in these loops [13]. Consider the following
sequential loop, operating over each cell in the mesh
illustrated in Figure 1. Each of the cells updates its
data value using the data values held on the four nodes
connected to that cell.
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void seq_loop(int ncell, int *cell_map,

double *cell_data_u,

double *cell_data,

double *node_data)

{

for (int i = 0; i<ncell; i++){

cell_data_u[i] = cell_data[i] +

node_data[cell_map[4*i]] +

node_data[cell_map[4*i+1]] +

node_data[cell_map[4*i+2]] +

node_data[cell_map[4*i+3]];

}

}

An application developer declares this loop using the OP2
API as follows, together with the “elemental” kernel func-
tion.

void kernel(double* cell_u, double* cell,

double* n0, double* n1, double* n2, double* n3){

*cell_u = *cell + n0[0] + n1[0] + n2[0] + n3[0];

}

op_par_loop(kernel,"kernel", cells,

op_arg(dcells_u,-1,OP_ID, 1, "double", OP_WRITE),

op_arg(dcells, -1,OP_ID, 1, "double", OP_READ),

op_arg(dnodes, 0, mcell, 1, "double", OP_READ),

op_arg(dnodes, 1, mcell, 1, "double", OP_READ),

op_arg(dnodes, 2, mcell, 1, "double", OP_READ),

op_arg(dnodes, 3, mcell, 1, "double", OP_READ));

OP2 handles the architecture specific code generation and
parallelization. The elemental kernel function takes six
arguments in this case and the parallel loop declara-
tion requires the access method of each to be declared
(OP WRITE, OP READ, etc). OP ID indicates that the
data in dcells and dcells u is to be accessed without any
indirection (i.e. directly). dnodes on the other hand is ac-
cessed through the mcell mapping using the given index
(0, 1, 2, and 3 respectively). The dimension of the data
(in this example 1, for all data) is also declared. Complete
details of the API can be found in [13].

OP2’s general decomposition of unstructured mesh al-
gorithms, imposes no restrictions on the actual algorithms,
it just separates the components of a code. However,
OP2 makes an important restriction that the order in
which elements are processed must not affect the final re-
sult, to within the limits of finite precision floating-point
arithmetic. This constraint allows the program to choose
its own order to obtain maximum parallelism. Moreover
the sets and mappings between sets must be static and
the operands in the set operations cannot be referenced
through a double level of mapping indirection (i.e. a map-
ping to another set which in turn uses another mapping to
access data associated with a third set).

The straightforward programming interface combined
with efficient parallel execution makes it an attractive
prospect for the many algorithms which fall within the
scope of OP2. For example the API could be used for ex-
plicit relaxation methods such as Jacobi iteration; pseudo-
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Figure 2: Rendering of a simple 120x60 mesh used in Airfoil

time-stepping methods; multi-grid methods which use ex-
plicit smoothers; Krylov subspace methods with explicit
preconditioning; semi-implicit methods where the implicit
solve is performed within a set member, for example per-
forming block Jacobi where the block is across a number
of PDE’s at each vertex of a mesh. However, algorithms
based on order dependent relaxation methods, such as
Gauss-Seidel or ILU (incomplete LU decomposition), lie
beyond the capabilities of the API.

The example application used in this paper, Airfoil, is a
non-linear 2D inviscid airfoil code that uses an unstruc-
tured grid [15]. It is a much simpler application than
the Hydra [19, 14] CFD application used at Rolls-Royce
plc. for the simulation of turbomachinery, but is repre-
sentative of a production grade unstructured mesh appli-
cation. A rendering of a smaller (120×60) unstructured
mesh similar to the one used in Airfoil is illustrated in
Figure 2. The actual mesh used in our experiments is
of size 1200×600, which is too dense to be reproduced
here. This consists of over 720K nodes, 720K cells and
about 1.5 million edges. The code consists of five par-
allel loops: save soln, adt calc, res calc, bres calc,
update. The most compute intensive loop res calc has
about 100 floating-point operations performed per mesh
edge and is called 2000 times during total execution of the
application. save soln and update are direct loops while
the other three are indirect loops.

4. OP2

The original OPlus library [8], was developed over 10 years
ago for MPI/PVM based distributed memory execution
of unstructured mesh algorithms written in Fortran. Its
second iteration, OP2, is designed to leverage emerging
multi-core and many-core hardware (GPUs, AVX etc.) on
top of distributed memory parallelism allowing the user
to execute on either a single multi-core/many-core node
(including large shared memory systems), or a cluster of
multi-core/many-core nodes. At the moment OP2 only
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supports code development in C/C++, but a Fortran API
is being developed with similar functionality.

The OP2 strategy for building executables for different
back-end hardware consists of firstly generating the ar-
chitecture specific code by pre-processing the user code,
which is written using the OP2 API, and then secondly
linking the generated code with the appropriate parallel
implementation (e.g. OpenMP, CUDA, MPI, etc.). For
example, when generating back-end code for executing on
NVIDIA GPUs, the user’s main program is parsed through
the code generation tools, producing a modified main pro-
gram and a CUDA file. The CUDA file includes a separate
file for each of the kernel functions. These are then com-
piled and linked to the op lib.cu library using a C com-
piler (e.g. gcc) and the NVIDIA CUDA compiler (nvcc),
controlled by a Makefile. The design of the op lib.cu

library and exploring the performance impact of design
choices forms the main theme of this work. The results
presented in this paper come from code produced by a
pre-processor written in MATLAB which only parses the
individual OP2 routine calls. A new pre-processor is be-
ing developed by collaborators at Imperial College U.K.
using the ROSE compiler framework [5]; this will parse
the entire user code, allowing simplification of the API.

Currently, OP2 only supports generating parallel code
based on CUDA and OpenMP. This will be later extended
to generate code based on OpenCL and Intel AVX, thus
supporting a wide range of CPU and GPU hardware. OP2
will also include support for the above to be executed on
distributed memory CPU and GPU clusters in conjunction
with MPI. To this end, a prototype implementation that
allows to execute a user application on a cluster of CPUs
using MPI is now nearing completion.

4.1. Data Dependencies

A key design issue for developing parallel unstructured
mesh applications is managing data dependencies encoun-
tered when incrementing indirectly referenced arrays. For
example, in a mesh with edges and nodes, with a loop over
edges updating nodes, a potential problem arises when two
edges update the same node. A solution at a coarse grained
level would be to partition the nodes such that the owner
of the nodal data would carry out the computation. The
drawback in this case is redundant computation when the
two nodes for a particular edge have different owners. At
the finer grained level, we could assign a “color” for the
edges so that no two edges of the same color update the
same node. This allows for parallel execution for each
color followed by a synchronization. The disadvantage in
this case is a possible loss of data reuse and loss of some
parallelism. A third method would be to use atomic in-
structions, which combine read/add/write into a single op-
eration.

The first method is applied at the distributed memory
level where OP2 will partition the data so that the par-
tition within each MPI process owns some of the set ele-
ments i.e. some of the nodes and edges. These partitions

only perform the calculations required to update their own
elements. However, it is possible that one partition may
need to access data which belongs to another partition; in
that case a copy of the required data is provided by the
other partition. This follows the standard “halo” exchange
mechanism used in distributed memory message passing
parallel implementations. As the partition size becomes
large, the proportion of “halo” data becomes very small.
At the distributed memory level (such as on clusters

of CPUs and GPUs) the partition size is large. However,
within a CPU or a GPU, operations are to be performed on
a finer granularity on each processing unit. For a multi-
core CPU the processing units are processor cores (each
based on a traditional heavy-weight core architecture such
as x86 or IBM POWER). For NVIDIA GPUs the process-
ing units are a number of relatively lightweight stream mul-
tiprocessors (SMs) each consisting of a number of stream
processors (SPs) that share control logic, an instruction
cache and a block of shared memory [2]. The new NVIDIA
Fermi architecture also provides an L1 cache per SM.
Both coloring and atomics can be used to resolve the

data dependency conflicts within a GPU. However, atomic
operations (especially on doubles) are not present on all
the hardware platforms we are interested in (atomics are
an optional extension in OpenCL), and performance varies
between platforms. Thus the current OP2 design uses
coloring as the general solution. Atomic operations are
available on the current Fermi architecture based NVIDIA
GPUs and we are currently exploring its performance
within OP2.
To resolve the data dependency issues with coloring on

GPUs, indirect data from GPU global memory is loaded
into each SM’s shared memory space forming a local mini-
partition. Each mini-partition is assigned to an SM and
they are executed in parallel. The SPs within an SM,
execute the mini-partition utilizing a number of threads
(called a thread block). The threads are executed 32 at
a time in parallel (called a warp in CUDA). During the
execution of an indirect loop, the loop receives data from
shared memory instead of global memory, maximizing data
reuse and minimizing the traffic between global memory
and shared memory. Thus on the GPU, updating the same
node could occur either (1) by multiple threads within a
single processing unit (an SM) updating data held in its
shared memory (i.e. mini-partition) or (2) when the shared
memory is written back to the GPU global memory which
is used by other processing units. In OP2 thread coloring
is used for the former and a block coloring is used for the
latter.
Figure 3 illustrates coloring of cells for updating nodes

connected to each. Nodes are located at the four corners
of each cell. Cells are colored such that no two cells up-
date the same node at the same time. As a result, the cells
with the same color can be processed in parallel by differ-
ent threads. However, on the GPU, synchronized execu-
tion of the same thread color across mini-partitions (which
are assigned to different SMs) would have very poor per-
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Figure 3: An example coloring of cells

formance. Thus a mini-partition level coloring scheme is
used so that no two mini-partitions that share a common
element gets the same color. In the figure, mini-partition
1 and 3 can be executed in parallel (assigning it the same
color), while mini-partition 2 (which shares boundary val-
ues with mini-partitions 1 and 3) is executed after updated
data from mini-partition 1 and 3 has been written back to
global memory, and there has been a global synchroniza-
tion.

4.2. Data Layout in Memory

The second key design issue for generating efficient GPU
code is the form in which data should be organized when
there are multiple components for each element. For ex-
ample, in our Airfoil test case each cell has 4 variables;
should these 4 components be stored contiguously for each
cell (a layout which is sometimes referred to as an array-
of-structs, AoS) or should all of the first components be
stored contiguously, then all of the second components,
and so on (a layout which is sometimes referred to as a
struct-of-arrays, SOA)? Figure 4 illustrates the two op-
tions. The array-of-structs (AoS) approach views the 4
flow variables as a contiguous item, and holds an array of
these. The struct-of-arrays (SoA) approach has a separate
array for each one of the flow variables.

The SoA layout was natural in the past for vector su-
percomputers which streamed data to vector processors,
but the AoS layout is natural for conventional cache-based
CPU architectures for two reasons. Firstly, if there is a
very large number of elements then each component for a
particular element will be on a different virtual page, and
if there are a lot of components this could be a problem1.

The second is due to the fact that an entire cache line
must be transferred from the memory to the CPU even if
only one word is actually used. This is a particular prob-
lem for unstructured grids with indirect addressing; even
with renumbering of the elements to try to ensure that
neighboring elements in the grid have similar indices, it is
often the case that only a small fraction of the cache line

1On an IBM RS/6000 workstation in the 1990’s, one of the au-
thors experienced a factor 10 drop in performance due to the limited
size of the Translation Look-aside Buffer which holds a cache of the
virtual memory address tables.
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Figure 4: AoS vs SoA data layouts

is used (vector supercomputers circumvented this problem
by adding gather/scatter hardware to the memory sub-
system). This problem is worse for SoA compared to AoS,
because each cache line in the SoA layout contains many
more elements than in the AoS layout. In an extreme
case, with the AoS layout each cache line may contain all
of the components for just one element, ensuring perfect
cache efficiency, assuming that all of the components are
required for the computation being performed.
Until recently, NVIDIA GPUs did not have caches and

most applications have used structured grids. Therefore,
most researchers have preferred the SoA data layout which
leads to natural memory transfer “coalescence” giving high
performance. However, the latest NVIDIA GPUs based on
the Fermi architecture have L1/L2 caches with a cache line
size of 128 bytes, twice as large as used by Intel’s latest
Westmere CPUs [4]. This leads to significant problems
with cache efficiency, especially since there is only 48kB of
local shared memory and so not many elements are worked
on at the same time. For example, in our Airfoil appli-
cation, in the res calc loop four floating-point values are
computed on and within the Fermi architecture with a 128
bytes cache line, this corresponds to 32 floating-point val-
ues in single precision. When data is accessed indirectly,
the SoA layout can lead to a worst-case scenario in which
only 1/32 of the cache line is used. But with the AoS lay-
out the worst case is only 1/8. Hence, in extreme cases
with almost random addressing, the AoS layout could be
4 times more efficient than the SoA layout. The savings
could be even larger for applications with more data per
set element. Consequently, the AoS layout is used in OP2.
To ensure good coalescence in the data transfers re-

quires some more complicated programming [12], but that
is again a benefit of a library; it takes care of the complex-
ity without burdening the application programmer. For
example, during our optimization efforts, different thread
numbering schemes for improved coalesced memory ac-
cesses were implemented for indirect loops. While, per-
formance gains were observed for the Airfoil code, it was
not clear whether a given thread numbering scheme was
better in general for all unstructured mesh applications.
This remains an open optimization that perhaps will be
better implemented as a user configuration option at the
code generation time. We also investigated the use of the
float4 data type to directly load a block of memory in
an SMs registers. However, in this case there were no no-
table performance gains. Memory bank conflicts [2] were
investigated due to the res calc loop accessing shared
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Figure 5: Runtime of Airfoil on NVIDIA GPUs on a range of mini-partition sizes and thread-block size configurations - Single Precision
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Figure 6: Runtime of Airfoil on NVIDIA GPUs on a range of mini-partition sizes and thread-block size configurations - Double Precision

Table 1: GPU specifications

GPU Cores Clock Glob. Shared Driver
Mem. Mem. version

/SM (Comp.
GHz GB kB Cap.)

GeForce 384 1.6 1.0 48 4.0
GTX560Ti (2.1)

Tesla 448 1.15 6.0 48 3.2
C2070 (2.1)

Table 2: CPU system specifications

Node System Cores /node Mem. Compiler
(Clock/core) /node [flags]

2×Intel Xeon 12 [24 SMT] 24 GB ICC 11.1
X5650 (2.67GHz) [-O2 -xSSE4.2]

(Westmere)

memory in four floating-point value blocks. We imple-
mented padding to avoid bank conflicts but again did not
observe significant benefits. We suspect that this is due
to res calc having sufficient computing demand so that
any increased memory access latency is hidden from the
critical path of execution.

5. GPU Performance

In this section, we present quantitative results explor-
ing the performance impact of the above design features
of OP2. Performance results are extracted from exe-
cuting the Airfoil code on two NVIDIA GPUs based on
their current flagship Fermi architecture. The specifica-
tions of these two GPUs - a consumer grade GTX560Ti
and the high performance computing capable Tesla C2070
- are given in Table 1. On both GPUs the NVIDIA
CUDA compiler (nvcc) was built using gcc 4.4.5 and the
CUDA code generated for Airfoil by OP2 was compiled
using -O3 -arch=sm 20 -Xptxas -Xptxas=-v -dlcm=ca

-use fast math compiler flags. On both the GPUs the
error correcting codes (ecc) were switched off.

Recall that the thread-blocks and mini-partitions are
key features in the OP2 design for efficiently distributing
work and operating in parallel over the mesh/grid elements
on a GPU. The first set of results (Figure 5 and Figure 6)
explores the performance trends due to selecting differ-
ent mini-partition and the thread block sizes. The CUDA
code generated by OP2 allows for these to be overridden
at runtime. The thread-block and mini-partition sizes for
the overall application or a different value for each indi-
vidual loop could be set using command-line arguments.
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The above figures presents the performance when the over-
all application’s thread-block and mini-partition sizes are
varied. Optimum configurations for each individual loop
are discussed in Section 6.

In single precision (SP) the best runtime on both GPUs
is just under 8 seconds, in both cases, achieved with a
mini-partition size of 128 and a thread-block size of 128.
In double precision (DP) the GTX560Ti runs in about
20 seconds, while the C2070 takes just under 16 seconds,
when the application on both are configured to run with
a mini-partition size of 64 and a thread-block size of 64.
In DP, both cards failed to execute the application with a
mini-partition size of 1024 as well as a thread block size of
1024 due to the large amount of shared memory required.
Qualitatively both GPUs have similar performance behav-
ior when the mini-partition and thread-block sizes are var-
ied. In general we see that using a thread-block size equal
to the mini-partition size gets close to the best perfor-
mance achievable for each mini-partition size. However
in some cases having a number of spare threads may be
useful for carrying out more memory loads simultaneously
with computation, but only when the GPU occupancy lim-
its [2] are not overrun. Thus for example if having a larger
thread-block size than the mini-partition size utilizes more
registers than the maximum available number of registers
per SM, then we see a performance degradation due to
register spillage into global memory.

Given a thread-block size equal to the mini-partition size
reducing the mini-partition size, decreases the amount of
shared memory used and thus the GPU is able to execute
multiple thread-blocks at the same time on each SM. This
is advantageous as now one thread-block can be loading
data into shared memory while another block is doing the
computation. On the other hand, smaller mini-partitions
results in less data re-use as the ratio of boundary/interior
nodes and cells increases. Smaller mini-partitions also de-
creases cache efficiency. These conflicting trends gives rise
to the run times we see in the above figures.

Next, we attempt to quantify and compare the amount
of data transferred with GPU global memory due to
the two different data layouts discussed in Section 4.2.
The amount of data transfered during each indirect loop
(adt calc, res calc and bres calc) can be calculated as
follows. Consider the case when a loop over elements (each
containing a number of variables) of an indirectly accessed
set is performed; for example the loop over cells (each with
4 flow variables) in res calc. Then if the AoS data layout
is used, we can compute the total number of bytes trans-
ferred from global memory to shared memory by counting
the number of times a new cache line is loaded (assuming
that the first element of each array is cache-aligned). For
each new cache line loaded, the amount of data transferred
is incremented by the cache line size if the access is only
a read operation. If the access is a write operation then,
we increment the amount of data transferred by two cache
line sizes to account for the write back. The number of
cache lines loaded will need to be increased if the variables

Table 3: Ratio of data transfer rates (SoA/AoS)

Single Precision
Loop Mini-partition size

64 128 256 512 1024
adt calc 1.07 1.03 1.02 1.01 1.00
res calc 2.21 1.87 1.56 1.33 1.18
bres calc 2.65 2.64 2.63 2.62 2.62

Double Precision
Loop Mini-partition size

64 128 256 512 1024
adt calc 1.04 1.02 1.01 1.01 -
res calc 1.99 1.65 1.39 1.22 -
bres calc 2.49 2.48 2.48 2.47 -

making up an element takes more storage space than a
single cache line size. Thus for example an element with
28 flow variables (each a double precision floating point
value, i.e each of 8 bytes) will require 224 bytes of memory
space in total. This is larger than the 128 byte cache line
size on the NVIDIA Fermi architecture.
Alternatively consider the SoA data layout. Now, given

a set with N elements each with v variables, then the dis-
tance between the first variable and the second variable
(and so on) of each element will be N× sizeof(double)

bytes. This number of bytes is significantly larger than a
cache line of a GPU (or CPU), due to the size of N . Thus
loading each element will mean that v number of new cache
lines needs to be transferred from global memory to access
all the variables for that element. In addition to the data
values transferred, we also include in our calculation the
bytes transferred due to loading mapping tables that are
used to perform the indirect accessing of data.
The ratio of data transfer rates (SoA/AoS) for both SP

and DP are given in Table3. The results indicate that
the AoS data layout is always better and for a number
of cases reduces the data transfer between global memory
and the GPU by over 50%. The ratios for the DP runs are
less than the ratios from the SP runs, as the number of
elements held within a cache line is smaller in DP for each
cache line, if the data is organized in the AoS format.

6. Performance Analysis with Auto-tuning

Breaking down the runtime into the time taken by the five
parallel loops reveals that the optimum mini-partition size
and the thread-block size differs for each loop. For ex-
ample, in DP, res calc runs best when configured with a
mini-partition size of 64 and a thread-block of 64 on the
C2070, while adt is optimized at a mini-partition size of
128 and a thread-block of 64. Thus it is apparent that
further runtime improvements could be gained by simply
configuring each parallel loop to be executed on its op-
timum mini-partition size and thread-block size settings.
However it is also apparent that incorrectly “guessing” the
mini-partition and thread-block size could result in a sig-
nificant performance loss.
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Table 4: Auto-tuned results from a Tesla C2070

Single Precision
Loop Mini block Time BW BW

part size (sec) useful cache
size (GB/s) (GB/s)

save soln n/a 512 0.22 104.30
adt calc 256 128 1.07 75.44 76.69
res calc 128 128 4.85 37.64 61.81
bres calc 64 256 0.07 7.38 27.94
update n/a 128 0.95 103.11

Total min time (sec) 7.16
STD (sec) 3.58× 10−3

CV 4.99× 10−4

Double Precision
Loop Mini block Time BW BW

part size (sec) useful cache
size (GB/s) (GB/s)

save soln n/a 512 0.44 104.94
adt calc 128 64 2.62 52.87 53.83
res calc 64 64 10.35 30.45 50.77
bres calc 64 128 0.08 11.05 27.61
update n/a 256 1.88 104.33

Total min time (sec) 15.36
STD (sec) 5.11× 10−3

CV 3.32× 10−4

Our observations has been that the scarce resources on
the GPUs and their conflicting utilizations have signifi-
cantly narrowed the “optimum-spot” of performance. Re-
sults illustrated on Figure 5 and Figure 6 also display
an increased complexity in identifying the best parame-
ter values. On the one hand there appear to be multi-
ple optimums, while on the other hand straying even a
little away from these points will result in considerably
poor performance. The above issue could become further
complicated by having to choose values/settings for other
parameters such as compiler options, environmental vari-
ables and hardware configurations (e.g. whether to use
a 16/48 or 48/16 split for the L1 cache/shared memory).
Even the underlying design/implementation could be pa-
rameterized in the future (e.g. options to choose between
the AoS or SoA data layouts) to allow the user to gen-
erate code with greater flexibility for a range of contrast-
ing CPU/GPU architectures. Thus it is important that
a flexible and efficient mechanism is used to arrive at the
optimum configuration.

For the remainder of this paper, we use one such system
- an auto-tuning framework - to further investigate the per-
formance of the Airfoil application under optimum config-
uration on NVIDIA GPUs. Given a number of parameters
and possible values for each, our auto-tuning framework
(written in Python) selects the optimum combination of
parameters by an exhaustive “brute force” search of the
state space. However, the system allows to indicate which

Table 5: Auto-tuned results from two, 6-core Intel Westmere CPUs

Single Precision - 24 OMP threads
Loop Mini Time BW BW

part (sec) useful cache
size (GB/s) (GB/s)

save soln n/a 1.15 20.09
adt calc 128 7.54 10.73 10.89
res calc 512 12.21 14.13 15.21
bres calc 128 0.10 4.81 10.80
update n/a 3.61 27.10

Total min time (sec) 24.62
STD (sec) 3.45
CV 0.12

Double Precision - 24 OMP threads
Loop Mini Time BW BW

part (sec) useful cache
size (GB/s) (GB/s)

save soln n/a 2.35 19.57
adt calc 512 8.95 15.46 15.49
res calc 1024 17.93 15.01 15.30
bres calc 64 0.14 5.94 9.36
update n/a 8.51 23.01

Total min time (sec) 37.89
STD (sec) 1.97
CV 0.05

parameters can be optimized independently (e.g. the pa-
rameters for one parallel loop do not affect the execution
of another parallel loop). This information is exploited to
greatly reduce the number of configurations which need to
be tested and is essential to making such an exhaustive
search viable. Input specification for auto-tuning includes
parameters and possible values, a mechanism to compile
the code, perhaps using some of the parameter values and
a mechanism to run the code, again perhaps using some of
the parameter values. By default, the run-time is used as
the “figure-of-merit” to be optimized. This can be over-
ridden by other figures of merit as required. The frame-
work can run the application under auto-tuning multiple
times for each combination of parameter values and report
the average, minimum and maximum together with other
statistics such as the standard deviation (STD).

Table 4 presents the auto-tuned results for the C2070
GPU in both SP and DP. These results were obtained by
configuring the auto-tuning framework to execute 10 runs
for each parameter combination, selecting the minimum
out of the 10 runs as the figure of merit for choosing the
overall optimum parameter combination. The STD sug-
gests that the run times were extremely consistent across
multiple runs and executions on the C2070 GPU had neg-
ligible noise and/or other perturbations.

The last two columns of the table indicate the memory
bandwidth utilization of the GPU. The first bandwidth
column figures were obtained by counting the total amount
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of useful data bytes transferred with global memory dur-
ing the execution of a parallel loop and dividing it by the
runtime of the loop. The second column takes into ac-
count the size of the whole cache line for the C2070 in the
memory bandwidth calculation of indirect loops. For both
SP and DP runs, the useful memory bandwidth utilization
on the C2070, is up to 70% of the available upper limit of
144GB/s [3] on save sol, but remains relatively low on
res calc. However the memory bandwidth figures taking
in the cache line loading is considerably higher, with be-
tween 30% to 50% of the 144GB/s utilized for the indirect
loops.

Given the mesh size, we can approximately compute
the SP floating-point performance achieved on the C2070
during the most compute intensive loop, res calc. The
mesh consists of approximately 1.5 million edges, each re-
sponsible for 100 floating-point operations in res calc.
This routine is in turn called 2000 times giving 30 × 1010

floating-point operations in total. The total time spent
in the res calc loop is about 4.85 seconds. This is
about 60 GFlops/sec. In DP, the total run times spent
in the res calc loop is 10 seconds. This translates to a
double precision floating-point performance of about 29
GFlops/sec on the C2070. Thus we see that only a frac-
tion of the peak SP and DP floating-point performance on
the GPU is achieved [3].

A key concern in determining whether GPUs are
suitable for main-stream high performance computing
and production scientific work is how their performance
compares against the traditional mainstream processors.
Thus, for comparison, the performance of the equiva-
lent auto-tuned OpenMP version of the Airfoil application
(also generated by OP2) on two 6-core Intel Westmere
(2.67 GHz with SMT) processors is given in Table 5. The
specifications of the CPU node system is detailed in Table
2. The key parameters for auto-tuning in this case were
the number of OpenMP threads (OMP NUM THREADS
= 12, 16, 18, 20, 24) and the mini-partition size. Each
mini-partition is executed by a single OpenMP thread and
mini-partitions are colored to stop multiple blocks trying
to update the same data in the main memory simultane-
ously [17]. The optimum number of OpenMP threads for
both SP and DP executions on this system was 24. The
higher standard deviations observed on the CPU runs, are
believed to be due to operating system noise and other
perturbations that affect the system’s CPU more readily
than a discretely attached GPU. The observed memory
bandwidth figures on the Westmere system is close to 50%
of the maximum available bandwidth (32 GB/s [1]) dur-
ing the most time consuming res calc loop. Other loops
such as update get much closer to saturating the available
memory bandwidth (particularly in SP) on the CPU. Thus
we suspect that the memory bandwidth of the single node
system may become the bottleneck limiting future thread
scalability of multi-core CPUs. Comparing Table 4 and
Table 5 we see that the C2070 provides a 3.5× and 2.5×
speed-up in SP and DP respectively. These results sug-

gests competitive performance by the GPUs for this class
of applications at a production level.

7. Conclusions

The OP2 “active” library framework, for the development
of unstructured mesh applications, aims to decouple the
scientific specification of an application from its paral-
lel implementation to achieve code longevity and near-
optimal performance through re-targeting the back-end to
different hardware. This paper presented key design fea-
tures of the current OP2 library for generating efficient
code to be executed on contemporary GPUs.
Unlike in structured meshes, in unstructured meshes

connectivity information is needed to specify the mesh
topology. The majority of the solution is then spent in
looping over indirect data. Thus two important design
considerations is the data layout for efficient indirect data
access and managing data dependencies during these ac-
cesses. This paper presented OP2’s design to address these
key issues and quantified the performance impact of our
choices during the execution of a representative industrial
CFD application (Airfoil) written using the OP2 API.
Benchmarked systems consisted of two NVIDIA Fermi
based GPUs - a GTX560Ti and a Tesla C2070.
Results show that utilizing an array of structs (AoS)

data layout, as opposed to the struct of arrays data lay-
out (SoA) reduces (in some cases by over 50%) the total
amount of memory transferred to and from GPU global
memory. We believe that these design insights and their
relative performance merits will be applicable not only to
cache-based GPUs but also to emerging CPU architectures
as they become more SIMD-like with longer vector units.
We also investigated the performance trends due to se-

lecting different mini-partition and thread-block sizes. We
see that the scarce resources on the GPUs and their con-
flicting utilizations have significantly narrowed the “op-
timum spot” of performance on these devices. Guessing
the right combination is not entirely straightforward and
a bad set of selected values can lead to significantly sub-
optimal performance. To obtain the best configurations
we developed a novel auto-tuning framework and applied
it to explore key performance aspects of the Airfoil code.
Comparing the auto-tuned runtime of the Airfoil code

on the C2070 with the equivalent auto-tuned runtime of
the OpenMP version of the code on two 6-core Intel West-
mere processors show that the GPU executes 3.5× and
2.5× faster in single precision and double precision arith-
metic respectively. These results suggest competitive per-
formance by the GPUs for this class of applications at a
production level.
The OP2 framework is currently being extended to sup-

port execution on distributed memory clusters based on
MPI. GPU clusters using MPI across nodes and CUDA
(or OpenCL) within GPUs will be supported as well as
single and multi-threaded CPU clusters using MPI and
OpenMP. The global mesh will be partitioned using stan-
dard graph partitioning techniques among the compute
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nodes of a cluster, and import/export halos will be con-
structed for MPI message-passing. The respective CUDA
(and in the future OpenCL) and OpenMP back-ends will
be utilized for parallelizing the execution within each MPI
process. Additionally extensions to the library will include
AVX vectorization for future multi-processors supporting
longer vector units for higher performance.

With reference to methods that are useful for obtaining
a near-optimal configuration, such as auto-tuning used in
this paper, we note that in the future it may be possi-
ble to recall previous configurations to provide improved
starting points which should reduce the time for the auto
tuning. Additionally techniques of machine learning and
performance modeling could also be employed.

The full OP2 source, the Airfoil test case code and the
auto-tuning framework are available as open source soft-
ware [16] and the developers would welcome new partici-
pants in the OP2 project.
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porting of a large-scale fortran cfd code to gpus, International
Journal for Numerical Methods in Fluids 69 (2012) 314–331.

[10] A. Corrigan, F. Camelli, R. Löhner, J. Wallin, Running unstruc-
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