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Abstract

Unstructured-mesh based numerical algorithms such as finite volume and finite

element algorithms form an important class of applications for many scientific

and engineering domains. The key difficulty in achieving higher performance

from these applications is the indirect accesses that lead to data-races when

parallelized. Current methods for handling such data-races lead to reduced par-

allelism and suboptimal performance. Particularly on modern many-core archi-

tectures, such as GPUs, that has increasing core/thread counts, reducing data

movement and exploiting memory locality is vital for gaining good performance.

In this work we present novel locality-exploiting optimizations for the ef-

ficient execution of unstructured-mesh algorithms on GPUs. Building on a

two-layered coloring strategy for handling data races, we introduce novel re-

ordering and partitioning techniques to further improve efficient execution. The

new optimizations are then applied to several well established unstructured-

mesh applications, investigating their performance on NVIDIA’s latest P100

and V100 GPUs. We demonstrate significant speedups (1.1–1.75×) compared

to the state-of-the-art. A range of performance metrics are benchmarked in-

cluding runtime, memory transactions, achieved bandwidth performance, GPU
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occupancy and data reuse factors and are used to understand and explain the

key factors impacting performance. The optimized algorithms are implemented

as an open-source software library and we illustrate its use for improving per-

formance of existing or new unstructured-mesh applications.

Keywords: finite volume, finite element, race condition, GPU

1. Introduction

Unstructured mesh solvers, particularly applied to the solution of finite differ-

ence, finite volume or finite element algorithms, form the basis of numerical

simulation applications in a vast area of important scientific domains, from

modeling the flow of blood in the body, the flow past an aircraft, to ocean cir-

culation and the simulation of Tsunamis. Significant computational resources

are required for the execution of numerical algorithms on these highly detailed

(usually three-dimensional) meshes. The solution involves repeatedly iterating

over millions of elements (such as mesh edges, nodes, etc.) to reach the desired

accuracy or resolution. The key distinguishing feature of these applications is

that operations over mesh elements make use of explicit connectivity informa-

tion between elements to access data defined on neighboring elements. This is in

contrast to the use of stencils in structured-mesh applications where the regular

geometry of the mesh implicitly provides the connectivity information. As such,

iterations over unstructured-meshes lead to highly irregular patterns of data ac-

cesses over the mesh, characterized by indirect array accesses. For example,

computations over the mesh involve iterating over elements of a set (e.g. faces),

performing the same computations, on different data, accessing/modifying data

on the set which they operate on (e.g. fluxes defined on the faces), or, using

indirections accessing/modifying data defined on other sets (such as coordinate

data on connected vertices). These indirect accesses are particularly difficult to
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parallelize when multiple threads may try to modify the same data, leading to

data races.

Previous work has utilized one of three approaches for handling data races

during parallelization [1, 2]: (1) use coloring where the iteration set is “colored”

such that no two iterations of the same color modify the same mesh element

indirectly, followed by parallel execution of the iterations with the same color,

(2) use large temporary datasets to stage increments without race conditions,

and a separate step to gather the increments, or (3) use atomics to handle race

conditions. However, the amount of parallelism, and especially the data local-

ity available to be exploited with the above methods have become increasingly

limited on modern and emerging massively parallel multi-core and many-core ar-

chitectures. The performance gains have been limited particularly on many-core

processors such as GPUs with thousands of low-power cores, but with modest

memory-bandwidth. Thus, reducing data movement and exploiting memory

locality during execution is vital on such devices. On GPUs, the first two tech-

niques, coloring or using temporary datasets, end up with poor data locality

as one cannot have good data reuse in both reading data as well as writing

data without conflicts. The third method, atomics, are much more expensive

operations than regular memory transactions and therefore usually lead to low

throughput.

In this paper we explore novel data-movement avoiding and locality exploit-

ing algorithms for improving performance of unstructured-mesh applications on

GPUs. Identifying that the throughput of memory transactions is the main

bottleneck, we demonstrate how superior execution strategies can be obtained

by utilizing a combination of techniques from (1) element reordering at thread-

block level, (2) use of GPU shared memory as an explicitly managed cache and

(3) use of partitioning algorithms for thread-block formation. We show how
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these allow us to maximize data re-use to the higher-bandwidth shared mem-

ory, and optimize access patterns to both shared and GPU global memory. More

specifically, we make the following contributions:

1. We adopt a caching mechanism on the GPU that loads indirectly accessed

elements into GPU shared memory. Then use a two-level “hierarchical col-

oring” approach to avoid data races, but improve locality over traditional

global coloring.

2. We design a reordering algorithm based on graph partitioning that in-

creases data reuse within a thread block, also further increasing shared

memory utilization.

3. Finally, we apply the above techniques and optimizations to a number of

representative unstructured-mesh applications to investigate performance

on modern GPUs, contrasting performance improvements over the state-

of-the-art.

We demonstrate how the above locality-exploiting algorithms provide perfor-

mance improvements of up to 75% compared to the state-of-the-art on the

latest NVIDIA Pascal and Volta GPUs. The algorithms are implemented as an

open-source software library [3] which can be used for improving performance

of existing or new unstructured-mesh applications.

The rest of the paper is organized as follows: the remainder of Section 1

introduces the basic concepts of unstructured meshes, numerical methods based

on them and a discussion on related works, Section 2 describes our optimized

algorithms and the motivation leading to the design. Section 3 presents the

performance analysis of the algorithms with experimental results. Finally, in

Section 4, we present conclusions from this research.
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1.1. Background

1.1.1. Unstructured meshes

Unstructured meshes can be abstractly viewed as a collection of sets (e.g. nodes,

edges, cells, etc.), data defined on these sets (e.g. fluxes, coordinates, velocities),

and explicit connectivity information between sets. The connectivity informa-

tion, declared as mapping tables are required for determining the neighbors of

a set element. If we represent sets as consecutive indices from zero to the size

of the set, then the mapping between two sets is represented as an array which

stores the index of set elements in the second set of the mapping (referred to

as the to-set) for every set element of the first set (known as the from-set). For

the majority of such applications, the number of to-set elements connected to

each from-set element is fixed (e.g. all edges have two vertices). For example

consider the mesh illustrated in Figure 1. Part of the mappings from edges to

cells for this mesh is detailed in Figure 2. Given such a mapping, we can access

the index of those elements that are connected to the current element of the

from-set from other sets (the to-sets of the mappings).

The computations on the mesh are declared as a loop over the elements

of a set, executing some block of computation on each set element (i.e. an

elemental kernel), while accessing data directly on the iteration set or indirectly

through a mapping. If a loop over a set only writes to data defined on that set

during the elemental kernel, then each iteration of the loop could run in parallel.

However, for kernels that indirectly increment data, there may be multiple from-

set iterations that update the same to-set element. Such indirect-loops are

common in finite volume and finite element applications over unstructured-

meshes: e.g. when updating state variables in cells using fluxes across faces,

or when doing matrix assembly. The parallelization of indirect loops are non-

trivial as the exact elements leading to data races cannot be determined from
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Figure 1: Unstructured mesh, the arrow represents the mapping tells ei is connected to cj
and ck.
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Figure 2: A part of the mapping from edges to cells.

compile time information, given that they are driven by the structure of the

mesh in general and the mapping tables in particular, which are read in during

run-time.

Some restrictions that apply is also worth noting here. The first is the use

of only a single level of mappings. This means that every piece of data that is

accessed during an iteration over a set is either defined directly on that set, or is

accessed through at most one level of indirection. However, this restriction does

not exclude applications using nested indirections, since a mapping table can

be created to contain the indexes that we access through multiple mappings.

The second restriction is that the result of the operations on the sets are inde-

pendent from the order of processing the elements of the sets (within machine

precision). This restriction enables to exploit the maximum opportunities for

parallelization given that the accuracy of the algorithms do not depend on the

order of execution. Finally, only mappings with a fixed number of connections

(or arity) are considered; such as edges to vertices (where the degree is always

2), unlike for a vertices to vertices mapping, where this will vary. The natural

formalization of most FEM and FV algorithm uses mappings with fixed number
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of connections.

In spite of the above restrictions, the contributions of the research detailed

in this paper is sufficiently general to be applicable to applications that has a

computational steps described as an iteration on a set, accessing data on the set

and indirectly via a mapping (with a fixed arity). Examples include assembly,

certain types of linear algebra algorithms, flux computations, etc.

1.2. Related Work

Algorithms defined on unstructured meshes form an important class of ap-

plications at many organizations. It is one of the seven dwarfs – common

computation-communication patterns or motifs occurring in parallel numeri-

cal applications – identified by Colella in 2004 [4]. Discretizations such as finite

volumes (FV) or finite elements (FE) often rely on these meshes to deliver

high-quality results. Indeed there is a large number of papers detailing such al-

gorithms, and a wide range of commercial, government, and academic research

codes (e.g. OpenFOAM [5], Rolls-Royce Hydra [6], FUN3D [7]). All such ap-

plications use unstructured meshes in some shape or form, and are often used

for large experiments, consisting of millions or even billions of mesh elements.

These codes are generally critical to production and consume large portions of

high-performance computing systems time. As such, the efficient execution of

these applications on the parallel architectures of the day has been and continues

to be crucial to the organizations and stake-holders that have invested in them

for continued scientific delivery. Over the years, many works have discussed and

presented techniques for efficient implementations, initially focusing on tradi-

tional CPU architectures [8, 9], then many-core processors such as GPUs (as we

discuss below), and even architectures such as FPGAs [10, 11]. Many libraries

have also been developed targeting unstructured-mesh solvers, from classical

libraries [12, 13] to domain specific languages [14, 15, 16].
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The adoption of GPUs for these kind of computations has already led to

considerable speedups over traditional CPU architectures due to the massive

parallelism available on GPUs [17, 18, 19]. Other notable works have further

looked at improving performance. Remacle et al. [20], explores efficiently solv-

ing elliptic problems on unstructured hexahedral meshes on GPUs. They use

shared memory for improving data locality, but advanced techniques, such as

reordering and partitioning are not utilized. Work done by Castro et al. [21]

on implementing path-conservative Roe type high-order finite volume schemes

to simulate shallow flows uses auxiliary accumulators to avoid data races while

indirectly incrementing. Wu et al. [22] introduce caching using the shared mem-

ory with partitioning (clustering), but do not use coloring. Instead they use a

duplication method similar to that of LULESH and miniAero, as described be-

low. Fu et al. [23] also create contiguous patches (blocks) in the mesh to be

loaded into shared memory, although they partition the nodes (the to-set) but

not the elements (the from-set of the mapping). Furthermore, they do not load

all data into shared memory, only what is inside the patch. Writing the result

back to shared memory is done by a binary search for the column index and

atomic adds, which leads to inefficiencies on the GPU.

Parallel to the above work, the US Department of Energy labs have re-

leased a set of proxy applications that represent large internal production codes,

showing some of the computational and algorithmic challenges to be overcome

on novel and emerging architectures Lulesh [24], miniAero [2], BookLeaf [25],

MiniFE [26], PENNANT [27]. Out of this suite of codes there are three key

approaches to handling data races: (1) allocate large temporary arrays where

the intermediate results (i.e. the increments) are placed, avoiding any race con-

ditions, followed by the use of a separate kernel to gather the results, (2) use

atomics, (3) use coloring. These all lead to increased warp divergence and high
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data access latencies on GPUs; and the use of the temporary array also leads

to more data allocations and movement, further constraining bandwidth.

The research detailed in the present work is based on previous work in [28],

where the OP2 library’s GPU parallelization use shared memory on GPUs us-

ing CUDA for caching with a two level “hierarchical” coloring. However, we

demonstrate superior execution strategies on GPUs with reordering of threads

and data, to increase data reuse and maximize data locality. Instead of directly

porting a specific application to use these techniques we present our meth-

ods as general strategies to accelerate unstructured mesh applications, and in

particular the indirect increment algorithmic pattern, on GPUs. We have cre-

ated a classical library as open source software [3] incorporating these optimiza-

tions. The library can be used for improving performance of existing or new

unstructured-mesh applications.

Most applications of interest for our work implements finite volume algo-

rithms, and low order finite element algorithms, which has a lower computational

intensity compared to the number of memory transactions. Thus our optimiza-

tions are targeted to avoid data movement, exploiting locality. In contrast high

order finite element methods usually have significantly higher computational

intensity, where there is a higher number of computations per data element ac-

cessed that can hide the cost of the memory access. While our techniques could

potentially improve locality, memory bandwidth is less of a concern for such

applications.

2. Parallelization on GPUs

We begin by outlining the techniques used to effectively optimize unstructured

mesh applications on GPUs – some of which are well established and commonly

used. We briefly show a naïve solution, then continue with describing various
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improvements found in the literature, and then present our contributions.

2.1. Traditional parallelization approaches

On a GPU, groups of threads (warps) run at the same time, in lockstep. As such

it is not efficient to execute computations of different length on different threads.

Consequently, the usual practice is for each thread to take responsibility for the

computation on one element of the set. This can be viewed as running one

iteration per thread in the loop over a given set, also known as the iteration

set or from-set. This allows the number of computations to be fixed, where the

amount of data involved is fixed in the dimension of the mapping and the data

arrays.

As mentioned before, care must be taken when writing parallel code to avoid

data races when different threads modify the same data. There are three ap-

proaches discussed in the literature. The first is to color each thread according

to the indirect data it writes, so that no two threads with the same color write

the same data, and enforce ordering between colors using synchronization [29].

On the GPU, one would do multiple kernel launches corresponding to the colors,

so there is no concurrent writes between threads in the same kernel. We call this

the global coloring approach (Figure 3). The disadvantage here is that there is

virtually no data reuse: when multiple elements write the same data, they are

scheduled for execution in different launches. Since these operations also tend

to read data through the same mappings, there is no data reuse in the reads

either. Compounding the issue is low cache line utilization where elements of

the same color are not neighbors in the mesh, and therefore unlikely to be stored

in consecutive memory locations.

The second approach is to serialize the indirect updates by means of locks

or atomic additions [30]. This is considerably expensive on the GPU, since the

whole warp has to wait at the synchronization step leading to warp divergence.
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Figure 3: Schematic figure of the global coloring approach. In each kernel launch, the kernels
work on edges of the same color. The arrows represent the individual pieces of data loaded
indirectly when executing the color red.

The third solution is the use of a large temporary array that stores the

results for each thread separately, avoiding race conditions by formulation [1, 2].

However, after the computation finishes, a further kernel is required to gather

the results corresponding to one data point. This suffers from the problem of

not knowing how many values one thread has to gather, and as a result warps

could diverge significantly, and memory access patterns are less than ideal. They

can be good either for the write or the read, but not for both. Also, the size

of the temporary array is the number of elements multiplied by the dimension

of the mapping. As a result, it can be large, for example, in LULESH, it is

8×3×numElem in our measurements (where numElem is the size of the from-

set in LULESH), compared to the array defined on nodes where these values

will ultimately end up, which is roughly the same as the number of elements

themselves.

2.1.1. Array-of-Structures (AoS) vs Structure-of-Arrays (SoA)

Due to the lockstep execution, consecutive threads in a warp read memory at

the same time. Therefore, the layout of the data in the memory is an important

factor for performance. There are two commonly used layouts [31]: (1) Array-

of-Structures (AoS) layout, where the data associated with one element is in

consecutive places in the array (and thus in memory) and (2) Structure-of-

Arrays (SoA) where the components of elements are stored consecutively e.g.
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the first data component of the elements are in the beginning of the array

followed by the second, etc.

Although in most cases the SoA gives better performance on GPUs and

better vectorization on CPUs, the AoS layout is still commonly used on CPU

architectures with large caches. In the case of the AoS layout, consecutive

threads read data from strided addresses in memory and thus more cache lines

are required to satisfy one transaction. This would be compensated by sub-

sequently reading the other components, but may have a negative effect on

GPUs due to their small caches. Conversely, with the SoA layout, the threads

read data next to each other, which means that the data needed by consecutive

threads are most probably in the same cache line resulting in coalesced memory

transactions. However, when indirections are involved, these access patterns

become more complicated — even with the SoA pattern, consecutive threads

may not be reading consecutive values in memory, and therefore cache line uti-

lization degrades. The choice of data layout in unstructured mesh computations

is therefore highly non-trivial, as we show later.

2.2. Shared memory approach

Considering the three data race avoiding approaches, we see that they all only

make use of the GPU global memory. As such one technique to further improve

performance is by reducing memory accesses to the GPU global memory. To this

end, the OP2 library [28] targets the use of the shared memory on the GPUs.

Shared memory is only shared within thread blocks, but has much lower access

latency and higher bandwidth than the global memory. The idea is to collect

the data required to perform the computations and load it into shared memory.

Then, during computation, the indirect accesses are to the shared memory, and

the result can also be stored there. After computations by all threads in the

block have completed, the contents of the shared memory can be written back to
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Figure 4: Schematic figure of the two levels of coloring.

Figure 5: Schematic figure of the hierarchical coloring approach. The thread blocks are circled
with dashed lines. The arrows represent the individual data points loaded.

global memory. One immediate advantage of this approach is that the fetching

and writing back of data from/to the global memory can be done by the threads

independently of the actual threads that will be carrying out the computations

on them. Particularly, reading/writing can be done in the order in which the

data is laid out in memory, ensuring maximum utilization of cache lines. With

the AoS layout, data can be read in contiguous chunks as large as the number

of components in the structure.

The use of shared memory of course leads to one additional complication.

Writing back the updated patches of shared-memory to GPU global memory

may lead to data races. This leads to the use of a two-layered coloring or

hierarchical coloring [28] scheme. The two levels of coloring are illustrated in

Figure 4, and the associated data accesses are shown in Figure 5. The first level

of coloring is to avoid data races when thread blocks write the result back to

global memory and the second level is to avoid threads writing their results into

shared memory at the same time.
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Algorithm 1 details the steps carried out by a CUDA kernel for executing

within this two-level coloring scheme. All indirect data accessed by the block

(which is identified during a preprocessing phase) is fetched from global to shared

memory to shared memory. As noted in Section 2.1.1, data is usually composed

of data points with multiple components (for example, x-y-z coordinates), so this

operation consists of two nested loops: (1) an iteration over the data points, and

within that, (2) an iteration over the data corresponding to the data point. For

the SoA layout, only the outer loop needs to be parallelized, as this will cause

parallel read operations to access memory addresses next to each other. For the

same reason, if the AoS layout is used, both parallel loops need to be parallelized

(i.e. collapsed into one). The data layout in shared memory is best be set to

SoA: our measurements showed a consistent degradation in performance when

switching to AoS layout, due to the spatial locality described in Section 2.1.1:

it leads to fewer bank conflicts.

After the data is loaded into shared memory, each thread executes the main

body of the kernel, and outputs are placed into registers. Next, the threads

update the result in shared memory with their increments. Finally the updated

data is written back to global memory.

One other benefit from using shared memory with hierarchical coloring is

the improved data reuse within the block. Each piece of data has to be loaded

from global memory only once, but can be used by multiple threads (e.g. data

on a shared edge between two triangles). However, the greater the reuse, the

more thread colors we have: the number of colors is no less than the number of

threads writing the same data. Since the number of synchronizations also grows

with the number of thread colors (more precisely, it is the number of colors plus

two, one before and one after the computation if the input and the increment are

stored separately in shared memory), there is a trade-off between the number of
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Algorithm 1 Algorithm to use the shared memory to preload indirect data
accessed within a thread block. global_indirect holds the data indirectly
read, global_indirect_out holds the result of the iteration.
tid = blockIdx.x * blockDim.x + threadIdx.x
bid = blockIdx.x
for all data_point ∈ indirect_data do

for all d ∈ data_point do
shared[shared_ind(d)] = global_indirect[d]

end for
end for
__syncthreads()
result = computation(shared[mapping[tid]], global_direct[tid])
__syncthreads()
fill shared memory with zeros
__syncthreads()
for c = 1 . . . num_thread_colours do

if c == thread_colours[tid] then
increment shared with result

end if
__syncthreads()

end for
for all data_point ∈ indirect_data do

for all d ∈ data_point do
increment global_indirect_out with shared

end for
end for



synchronizations and data reuse. Our measurements showed that if the kernel

is memory-bound, the greater data reuse leads to increased performance, but

the trade-off is non-trivial, as we will demonstrate in Section 3.

2.3. Increasing data reuse

Building on the shared-memory with hierarchical coloring, the first contribu-

tion of our work attempts to further increase data reuse through reordering of

elements. Specifically, reordering of the elements in the from-set (which map di-

rectly to the threads), allows us to control how CUDA thread blocks are formed

and how much data reuse can be achieved. With the shared-memory approach,

the benefit of data reuse is twofold: it decreases the number of global memory

transactions and decreases the size of shared memory needed, which leads to

greater occupancy. Two different approaches to re-ordering is explored (1) the

sparse matrix bandwidth reducing Gibbs-Poole-Stockmeyer algorithm [32] and

(2) graph partitioning.

2.3.1. Gibbs-Poole-Stockmeyer-based reordering

For serial implementations of computations on graphs (typically on CPUs),

the Gibbs-Poole-Stockmeyer algorithm (GPS, [32]) is a heuristic algorithm that

increases spatial and temporal locality when traversing the nodes. For example,

considering a mesh with edges and nodes, where the edges are the elements

of the from-set of the mapping, and the nodes form the to-set, GPS would

renumber the nodes and change the order of traversal. The renumbering is

done by going through the nodes in a breadth-first manner from two distant

starting points, and then renumbers the nodes so that the levels of the resulting

spanning trees will constitute contiguous blocks in the new permutation. After

renumbering its points, which by design improves spatial locality, we order the

edges of the graph lexicographically, so that consecutive threads (or spatial
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Figure 6: An example of converting a mesh (shown in (a), with mapping dimension 4) to a
graph (on Figure (b)) for the GPS algorithm.

iterations in serial implementations) have a higher chance of accessing the same

points, which improves temporal locality (data reuse). The algorithm can be

generalized to meshes by transforming each element into a fully connected graph

of its points and then taking the union of these. An example of this is shown

on Figure 6.

There are several straightforward generalizations to handle multiple sets and

mappings (e.g. vertices, edges, cells and their connections). The first is to as-

sume that all the mappings describe a similar topology, so the elements can

be reordered based on only one of the mappings (as described above), then re-

order the points accessed through the other mappings by, for example, a greedy

method. Another approach could be to reorder every data set separately, and

then reorder the elements based on the new order of the accessed points, com-

bining the separate data sets (and corresponding mappings) in some way. Since

the mappings in the applications we measured are very similar topologically

(in fact, except for one of the applications we tested, Airfoil, there is only one

mapping in each application), we used the first method. However, the algorithm

fails to take into account that on the GPU the threads are grouped into blocks,

and data reuse can only realistically be exploited within blocks. This results in

blocks that are “pencil-shaped”. The next algorithm addresses this limitation.
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Figure 7: Schematic figure of the hierarchical coloring approach with partitioning. The thread
blocks are circled with dashed lines. The arrows represent the individual pieces of data loaded;
note that this is less than in Figure 5.

2.3.2. Partitioning based reordering

To increase data reuse within a block is equivalent to decreasing data shared

between the blocks, more specifically, to decrease the number of times the same

data is loaded in different blocks (see Figure 7). With the shared memory

approach, data needs to be loaded only once per block. So the task is to partition

the elements into blocks of approximately the same size in such a way that when

these blocks are assigned to CUDA thread blocks, the common data used (loaded

into shared memory) by different blocks is minimized.

Let GM be a graph constructed from the original mapping, where the points

are the threads, and there is an edge between them if and only if they access

the same data, and let PGM
= {B1, . . . , Bn} be a partition of this graph with

n blocks. This works even with multiple mappings. If there is a set of blocks

Bd1
, . . . , Bdk

that access the same piece of data, then they form a clique in GM

in the sense that between any pair of blocks Bdi and Bdj (where 1 ≤ i, j ≤

k), there is an edge of GM between u and v such that u ∈ Bdi
∧ v ∈ Bdj

.

Note that the cliques have 0.5 · (k2 − k) edges, which is a monotone increasing

function in k, since k ≥ 1 (there is at least one block writing each data point,

otherwise it is of no relevance). That means that partitioning using the usual

objective of minimizing the number of edges between blocks is a good heuristic

for maximizing data reuse within the blocks.
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We chose the k-way recursive partitioning algorithm used by the METIS [33]

library to partition the graph GM . It is a hierarchical partitioning algorithm,

where it first coarsens the graph by collapsing nodes, then partitions using the

recursive bisection algorithm, and then finally while progressively un-coarsening

the graph, locally optimizes the cuts. The algorithm attempts to maintain equal

block sizes in the resulting partition, however, it is not always possible because

of the underlying algorithm. Since CUDA launches thread blocks with equal

size, this must be the maximum of the block sizes in the created partition.

Consequently some threads do not do any work, lowering occupancy. One of

the tuning parameters for the algorithm is the the load imbalance factor, which

can be used to specify the tolerance for this difference. It is called load imbalance

because METIS was originally used for distributing computation, ie. load, in

a distributed memory system. The Load imbalance factor is defined as l =

nmaxj {size(Bj)}, where n is the number of blocks and size(Bj) is the size of

the jth block. Due to the local optimization in the un-coarsening phase, it is

impractical to set this parameter to 1 (meaning the block sizes must be exactly

the same). We found that a tolerance of 1.001 works well in practice for our

needs.

We design the block size to be a tuning parameter, which specifies the actual

block size of the launched GPU kernels. The number of working threads cannot

exceed the block size. To account for this in partitioning, we calculate a new

block size (S′) and tolerance (l′) with margins for the imbalance:

S′ =

⌊
S

l

⌋
(1)

l′ =
S + ε

S′
, (2)

where S is the original block size, l is the original load imbalance parameter
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and ε is an empirical tuning parameter to create as large blocks (within the

limit) as possible. This support for a variable number of working threads (ie. to

determine if the current thread should do any actual computation) also incurs

a slight overhead of having to load the start and end index for each block. We

found this overhead to be minimal in practice.

Due to the way loads and stores work on the GPU, what actually affects

performance is not the number of data points accessed, but rather the number

of cache lines (of size 32 bytes on the hardware used) that are accessed. A

simple heuristic reordering of data points is used to account for this.

The idea is to group data points together (in a contiguous chunk of memory)

that are read/written by the same set of blocks: this makes them more likely

to be loaded in the same cache line. This is even more important when more

blocks access the same group of data points (set elements on the boundary),

since then inefficiencies will worsen performance for each of these blocks. As

a simple heuristic, we group data points with the same number of blocks that

access them together (by sorting), and within these groups, we sort by the

indices of the accessing blocks lexicographically.

It must be noted that GPS and METIS were developed for distributing

workloads on computing clusters that typically have much larger block size to

total size ratio. This also caused the reordering (partitioning) phase, running

on a single CPU core, to be quite long: for example, the GPS reordering took

5 seconds, the partitioning 60–90 seconds and the hierarchical coloring 5–9 sec-

onds (depending on the block size and whether the mesh was partitioned) on

the mesh used by Airfoil. However, this is a one-off cost: the reordering can

be reused many times later. Further improvement could be achieved by using

the parallel versions of the METIS library: ParMETIS[34] and the alpha ver-

sion mt-METIS[35] libraries. Partitioning algorithms targeting specifically small
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partition sizes required for CUDA thread blocks, and improving its performance

were out of scope for this work.

2.4. Further optimizations

There are a number of further optimizations we introduced to improve perfor-

mance. We can increase the number of loads or stores in flight to/from global

memory by using CUDA’s built-in vector types (float2, float4 and double2).

This way, each thread will load multiple consecutive values from memory during

a single transaction. This is useful to increase the efficiently of loads that are

already coalesced.

When updating the shared memory with increments, the threads within a

block can be sorted by their color. Then threads with the same color will be

next to each other, so warps will have fewer threads of different colors. This

results in reduced warp divergence on average.

Marking pointers to data on the GPU with __restrict__ and const where

applicable enables the compiler to apply further reordering optimizations, which

it would not have deemed safe to do otherwise. __restrict__ instructs the

compiler that the pointers do not alias one another, ie. do not point to the

same memory space. The const enables the compiler to place the data in

texture cache that has lower latency than the global memory.

3. Performance

For the remainder of the paper, we present a detailed investigation into the

performance implications of the locality-exploiting optimizations on a number

of representative unstructured-mesh applications. The applications are all well

established in literature and are representative of several domains that make use

of unstructured mesh codes. Our aim is to present the performance of the state-
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P100 (GP100) V100 (GV100)
Streaming Multiprocessors (SM) 56 80
Max Thread Block Size 1024 1024
Max Warps / Multiprocessor 64 64
Max Threads / Multiprocessor 2048 2048
Max Thread Blocks / Multiprocessor 32 32
Max Registers / Thread 255 255
Shared Memory Size / SM 64 KB 96 KB
Max 32 - bit Registers / SM 65536 65536
Memory Size 16 GB 16 GB
L2 Cache Size 4096 KB 6144 KB
Peak Stream Bandwidth 495 GB/s 742 GB/s

Table 1: Important informations about the NVIDIA Tesla P100 and V100 GPUs [36, 37]

of-the-art on GPUs with these applications and then contrast the performance

gained with our contributions.

3.1. Experimental setup

The GPU systems used in performance analysis is detailed in Table 1. These

consist of two of NVIDIAs latest high-performance computing Tesla GPUs,

namely the P100 and V100. The GPUs are hosted in a server with an Intel

Xeon CPU E5-1660 (3.20GHz base frequency, 1 socket with 8 cores) running

Ubuntu 16.04. The nvcc compiler with CUDA version 9.0 (V9.0.176) is used.

Both runtime performance as well as low-level metrics on the GPUs such

as achieved bandwidth and occupancy is utilized to understand the bottlenecks

affecting performance. There are three key factors of interest: (1) the coloring

approach (global or hierarchical) giving the best performance, (2) method of

data reordering (no-reordering, GPS-based, or graph partitioning-based) and

(3) data layout (AoS or SoA). All combinations of these are evaluated and

compared to each other and a state-of-the-art reference implementation.

When comparing performance of different versions, we use the achieved

bandwidth as the key performance metric. Emphasis on bandwidth is justified
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given that all of the test applications, as we demonstrate, are memory-bound.

Achieved bandwidth is calculated by the formula:

∑
d wdSd

T
· I,

where d iterates over the datasets, wd is 2 if the data is read and written, 1

otherwise, Sd is the size of the dataset (in bytes), T is the overall runtime of the

kernel and I is the number of iterations. A number of additional metrics were

also collected, these include:

• data reuse factor (the average number of times an indirectly accessed data

point is accessed),

• the number of read/write transactions from/to global memory, which is

closely related to the data reuse factor but is affected by memory access

patterns, and therefore cache line utilization,

• the occupancy reflecting the number of threads resident on the SM versus

the maximum - the higher this is, the better chance of hiding the latency

of compute/memory operations and synchronization

• the percentage of stalls occurring because of data requests, execution de-

pendencies, or synchronization,

• the number of block colors; the higher it is, the less work in a single kernel

launch, which tends to lead to lower utilization of the GPU,

• the number of thread colors; the higher this is the more synchronizations

are required to apply the increments in shared memory — but also strongly

correlates with data reuse,

• warp execution efficiency (ratio of the average active threads per warp to

the maximum number of threads per warp).
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Studying runtime performance and the above metrics enables us to understand

and explain why certain variants are better than others.

3.1.1. Airfoil

Airfoil, implemented using the OP2 DSL [28] is the smallest, best understood

and most thoroughly studied among the applications we explored. It is repre-

sentative of large industrial Finite Volume CFD applications and implements a

non-linear 2D inviscid airfoil code using an unstructured grid. A finite-volume

discretization is used to solve the 2D Euler equations with a scalar numerical

dissipation. The algorithm iterates towards the steady state solution, in each

iteration using a control volume approach, meaning the change in the mass of

a cell is equal to the net flux along the four edges of the cell, which requires

indirect connections between cells and edges. Two versions of the code exists,

one implemented with OP2’s C/C++ API and the other using OP2’s Fortran

API [15, 38].

The application consists of five parallel loops in total: save_soln, adt_calc,

res_calc, bres_calc and update. Here we focus on res_calc, as it has indirect

increments and about 70% of the total runtime of the application is spent in

this parallel loop on GPUs when using a global coloring. The loop contains

both indirect reads and writes. It iterates through edges (i.e. the from-set),

and computes the flux through edges using data accessed indirectly on the two

cells adjacent to each edge. The res_calc loop is called 2000 times during the

execution of the application and performs about 100 floating-point operations

per mesh edge. In each iteration, it reads 5 and increments 4 double values from

each of the 2 indirectly accessed cells, and reads 2 double values from each of

the 2 indirectly accessed nodes.

Table 2 show the effect of various optimizations on the Airfoil application’s

res_calc kernel, during the execution on a mesh with 2.8 million cells.
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Coloring Global Hierarchical Original
Hierarchical

Reordering none GPS partition none partition none
Data layout AOS SOA SOA SOA AOS SOA AOS SOA SOA

Bandwidth (GB/s) 72 94 106 66 211 215 228 239 233
Runtime (ms) 6.12 4.65 4.15 6.64 2.07 2.03 1.92 1.83 1.91

Achieved
Occupancy 0.63 0.45 0.45 0.45 0.44 0.43 0.44 0.43 0.42

Global Memory
Read Transactions 52 424k 45 781k 41 246k 66 775k 21 142k 21 275k 13 885k 14 325k 21 866k

Global Memory
Write Transactions 14 007k 14 737k 13 773k 20 733k 5807k 5871k 3429k 3628k 6384k

Number of (Block)
Colours 5 5 5 7 4 4 8 8 5

Number of Thread
Colours - - - - 3 3 4 4 3

Reuse Factor - - - - 2 2 3.6 3.6 2
Issue Stall Reasons
(Synchronization) - - - - 11% 10% 15% 14% 14%

Issue Stall Reasons
(Data Request) - - - - 69% 70% 62% 64% 55%

Block Size 480 128

Table 2: Low-level performance metrics of Airfoil’s res_calc kernel - global coloring vs hier-
archical coloring (2.8 million mesh cells). The last column details the measured performance
of the original code.

Global coloring : We see that using the SoA layout improves performance.

As discussed in Section 2.1.1, with SoA threads in a warp access data addresses

that are near each other. The improvement can also be seen in the number of

global memory read transactions as it is roughly 87% of that with AoS layout.

Adding the GPS renumbering improves performance further by placing data

points that are accessed in consecutive threads close to each other. Now there is

a 19% reduction in global read transactions compared to the baseline AoS. Given

that the partition based reordering is primarily intended for the hierarchical

coloring, it does not improve on the Global coloring. The reason being that

partitioning groups threads that access the same data together, while the global

coloring puts them into different kernel launches, eliminating any chance for

spatial reuse.

Hierarchical coloring: The key goal of this strategy is to better exploit data

reuse by using the GPU shared memory. The effectiveness of the approach show

immediately due to the significant reduction in the number of global transactions

in Table 2. At block size 480, there is roughly a 60% decrease in global read
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and write transactions, leading to three times the performance. Throughput for

different block sizes is shown in Figure 8.

We also see that reordering using partitioning is indeed more effective. With

a block size of 448, data reuse increases from 2 on the reference version, to 3.6,

leading to the 19% performance gain over the version without reordering (AoS

layout). This is also consistent with the number of global transactions: there is a

35% decrease in the number of reads and 41% decrease in the number of writes,

and a decrease in the percentage of stalls occurring because of data requests:

61% with partitioning, 68% without.

With the increased reuse, the number of thread colors is also larger (4 versus

2.2) and this leads to more synchronization. With reordering, 14% of the stalls

were caused by synchronization, up from 9%. This is further illustrated by

Figure 9 that shows the relative speedup compared to the original OP2 version

(its low-level metrics are detailed in the final column of Table 2). In this case,

the original version also used the shared memory approach, so the performance

gains are caused by the reordering. In the original version (hierarchical coloring,

SOA layout) 56% of the total time is spent in res_calc. The best original

version used the SOA data layout, with reordering we achieved 19% speedup on

res_calc with AOS layout. However with AOS layout we lose performance in

direct kernels, therefore regarding the whole application one can reach better

performance with the SOA layout. The best performing setting of airfoil reached

about 3.3% speedup on the whole application. The useful bandwidth of the best

performing version of res_calc (our implementation) reached 55% of the peak

stream bandwidth of the P100 GPU.

Similar results were obtained on the newer Volta GPUs (V100) as illus-

trated in Figure 10). The absolute value of the bandwidths are (understandably)

higher. On the V100, AOS achieved 28% speedup in the kernel compared to the
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Figure 8: Airfoil’s res_calc bandwidth on a dataset with 2880000 cells with hierarchical
coloring.
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Figure 10: Airfoil’s res_calc bandwidth on a dataset with 2880000 cells with hierarchical
colouring, on Volta architecture.



original code with 446 GB/s bandwidth (60% of the peak bandwidth), but the

it still lacks behind SOA regarding the whole application. The best SOA version

achieved 21% speedup. Since res_calc takes around 54% of the total run time

this speedup lead to 11% performance increase on the whole application.

3.1.2. Volna

The next application we explore here, Volna, is in fact a production/research

code for shallow water simulation capable of handling the complete life-cycle

of a tsunami (generation, propagation and run-up along the coast) [39]. The

simulation algorithm works on unstructured triangular meshes and uses the

finite volume method. Volna is written in C/C++ and is converted to use the

OP2 library [40]. Volna spends most time in three kernels: computeFluxes,

SpaceDiscretization and NumericalFluxes. Out of these, we focus on the

SpaceDiscretization kernel that iterates on edges accessing data indirectly

on cells, 60% of total execution time is spent in this kernel. In each iteration,

SpaceDiscretization reads 1 and increments 4 float values from each of the

2 indirectly accessed cells, and reads 7 float and 1 integer values directly. A

notable difference in Volna is that the execution with single precision is adequate

for solution accuracy. As such we benchmark it with single precision floating-

point mathematics, on a mesh containing 2.4 million triangular cells, simulating

a tsunami run-up to the US pacific coast.

Figure 11 and Table 3 details the performance metrics observed for the

SpaceDiscretization kernel in Volna. We concentrate solely on the hierarchi-

cal coloring variants given their superior performance to global coloring. The

reordering by partitioning again improves performance. It increases reuse from

1.5 to 2.8 and decreases the number of global transactions by 18% for reads and

37% for writes. The larger reduction in writes can be explained by the fact that

the calculation only reads data defined on the iteration set directly.
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Figure 11: Volna’s SpaceDiscretization kernel bandwidth on a mesh with 3589735 edges
using hierarchical coloring.

Again, recall that the AoS version uses adjacent threads to load adjacent

components of data points. Additionally, given the use of single precision values

for Volna, one thread loads 4 single precision values into shared memory using

the built-in vector type float4. Consequently, more data is transferred at

the same time, providing a 2% and 4% reduction in global memory transfers

for reads and writes, respectively. This leads to performance improvements of

292GB/s versus 268GB/s.

Low register counts (28–32) and single-precision data types also resulted in

achieving a higher occupancy on the GPU compared to Airfoil. This, we believe

explains why performance appears to be independent of the block size as shown

in the Figure 11.

We also see that using partitioning does not increase the number of thread

colors significantly, as we observed on Airfoil. The increase of colors are from

3 to 4. As such the overall synchronization overhead is also smaller. The

percentage of stalls caused by synchronization increases from 12% to just 15%.

Of course, with high occupancy, the latency caused by synchronization can be

better hidden by running warps from other blocks.

As can be seen in Figure 12, the locality exploiting optimizations make the
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Reordering none partition original
Data layout AOS SOA AOS SOA SOA

Bandwidth (GB/s) 133 120 146 134 119
Runtime (ms) 0.87 0.95 0.77 0.85 0.93

Achieved Occupancy 0.82 0.81 0.80 0.80 0.68
Global Memory Read Transactions 9114k 9166k 7493k 7617k 9504k
Global Memory Write Transactions 2438k 2512k 1542k 1640k 2809k

Number of Block Colours 5 5 9 9 6
Number of Thread Colours 3 3 4 4 3

Reuse factor 1.5 1.5 2.8 2.8 1.48
Issue Stall Reasons (Synchronization) 11% 12% 15% 15% 14%

Issue Stall Reasons (Data Request) 51% 50% 46% 46% 47%
Average cache lines/block 300 307 165 184 -
Warp Execution Efficiency 98% 98% 97% 97% 65%

Block size 307 128

Table 3: Low-level performance metrics of Volna’s SpaceDiscretization kernel - hierarchical
coloring. The last column details the measured performance of the original code.

kernel 20% faster than the original OP2 version. Again the best performance for

SpaceDiscretization was reached with hte AOS layout, which is not optimal

for the whole application – overall the best total performance can be reached

with SOA layout. Notably, ComputeFluxes also benefits significantly from the

locality optimization, since this kernel also iterates on the edges and read data

from cells; we experienced 5% speed increase in ComputeFluxes. The increased

speed of the two kernels results in a 13% increase for the whole application. The

useful bandwidth also increases and reached 30% of the peak stream bandwidth

of the P100 GPU.

On the V100, the performance of the kernel was 462 GB/s (62% of the peak

bandwidth) with 18% (AOS) speedup compared to the original implementation.

Running the whole application with the reordered mesh, SOA achieved 11%

speedup on SpaceDiscretization while improving ComputeFluxes with 10%

as well, leading to a 8% speedup on the whole application compared to the

original implementation.
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Figure 12: Volna’s SpaceDiscretization kernel speedup compared to the original code, done
on a mesh with 3589735 edges. The block sizes are shown in parentheses, the reordering
algorithms are: the original reordering (NR), GPS reordering and partitioning (part.)

3.1.3. BookLeaf

The third application we explore is BookLeaf. It is a 2D unstructured mesh

Lagrangian hydrodynamics application from the UK Mini-App Consortium [41].

It uses a low order finite element method with an arbitrary Lagrangian-Eulerian

method. BookLeaf is written entirely in Fortran 90 and has been ported to

use the OP2 API and library. BookLeaf has a large number of kernels with

different access patterns such as indirect increments similar to increments inside

res_calc in Airfoil. For benchmarking we used the SOD test case with a mesh

of 4 million cells. The top time consuming kernel with indirect increments is

getacc_scatter, which iterates on cells while incrementing data indirectly on

vertices, 6% of total execution time is spent in this kernel. This kernel reads 17

double values directly, and increments 4 double values on each of the 4 indirectly

accessed nodes in each iteration.

Runtime performance of BookLeaf and specifically the low-level performance

of the getacc_scatter kernel are detailed in Figures 13 and 14. Again we see

benefits from partitioning. The register count and occupancy are also similar to

those with Airfoil (64 registers, achieving occupancy around 40%), this now leads
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Figure 13: Bookleaf’s getacc_scatter kernel bandwidth on a mesh with 4000000 edges using
hierarchical colouring.

to the variations in performance for different block sizes. With partitioning, the

number of thread colors increases from 2 to 5, this leads to increased stalls from

synchronizations: from 9% to 20%, while the reuse factor increases (from 2 to

3.5). This is comparable to that of Airfoil, and explains the smaller increase in

performance (only 15%, compared to the 19% increase in Airfoil). The higher

data reuse leads to 14% and 41% decrease of the number of global transactions,

for reads and writes, respectively. Such a large difference between reads and

writes is also due to getacc_scatter having no indirect reads, similar to like

SpaceDiscretization in Volna.

The best performance we achieved with getacc_scatter (1.15× speedup)

results in about 1% performance increase for the the whole application. The

useful bandwidth also increased and reached 83% of the peak stream bandwidth

of the P100 GPU. On the V100, the performance of the kernel was 631 GB/s

(85% of the peak bandwidth) which results in 0.5% runtime speedup on the

whole application compared to the original.
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Figure 14: Bookleaf’s getacc_scatter kernel speedup compared to the original code, done
on a mesh with 4000000 edges. The block sizes are shown in parentheses, the reordering
algorithms are: the original reordering (NR), GPS reordering and partitioning (part.)

3.1.4. LULESH

LULESH (Livermore Unstructured Lagrangian Explicit Shock Hydrodynam-

ics [24]) application represents a typical hydrocode representing the Shock Hy-

drodynamics Challenge Problem that was originally defined and implemented

by Lawrence Livermore National Lab as one of five challenge problems in the

DARPA UHPC program. It has since become a widely studied proxy application

in DOE co-design efforts for exascale.

LULESH is a highly simplified application, hard-coded to only solve a sim-

ple Sedov blast problem that has an analytic solution [1] – but represents the

numerical algorithms, data motion, and programming style typical in scientific

C/C++ based applications at the Lawrence Livermore National Laboratory.

LULESH approximates the hydrodynamics equations discretely by partition-

ing the spatial problem domain into a collection of volumetric elements defined

by a mesh. The mesh itself is structured (and generated in the code), but

the algorithm doesn’t take this into account and accesses the data through an

eight-dimensional mapping for the hex8 (brick) elements.

We explore the IntegrateStressForElems kernel that calculates the forces
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in the nodes. Iterating over cells, it reads 3 double values from each of the 8

indirectly accessed nodes, increments 3 double values for each node, reads 3 dou-

ble values directly and writes 1 double value directly. In our measurements, we

used a mesh with 4 913 000 cells and 5 000 211 nodes. The original CUDA ver-

sion of the code contracted this kernel with CalcFBHourglassForceForElems;

the only modifications we applied to this code for our tests was to remove these

parts from the kernel.

The IntegrateStressForElems kernel uses a mapping with 8 neighbors for

the brick elements (compared to the 2–4 as in the case of the previous application

kernels). As a result, the number of block colors is quite high: 8, 16 and 24

in the global coloring versions (for the different reorderings), and 4, 5 and 15

in the hierarchical coloring versions. The number of thread colors was also

quite high: 4 in the non-reordered (4.5 in the GPS) and 11.6 in the partitioned

version. The non-reordered and GPS versions yield blocks that have “pencil

shape”, thus requiring fewer thread colors, whereas the partitioned version yields

more cubical shaped blocks, leading to the higher number of thread colors. This

is a much larger increase compared to the previous applications (Table 4). At

the same time of course, data reuse is higher compared to 2D applications -

between 2.6 and 4.8.

The other aspect in which LULESH is differs is that it uses a high amount of

registers (96), which significantly decreases occupancy: with block size 320, the

AoS version achieved 15% and the SoA version achieved around 30%. Because

of these two reasons, the synchronization overhead (39% stalls were from syn-

chronization on the partitioned mesh) couldn’t be hidden: there were no warps

from other blocks to be scheduled in place of the stalled ones because there

was only one block running on each multiprocessor. The difference in achieved

occupancy also means that the SoA version with two blocks per multiprocessor
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Figure 15: LULESH’s IntegrateStressForElems kernel bandwidth on a mesh with 4913000
cells using hierarchical colouring.

gives better performance.

The original implementation used either atomics or helper arrays as a means

of avoiding data races. As shown in Figure 16, the hierarchical coloring algo-

rithm performs significantly better (giving a 49% speedup) than the original

two-step implementation (and also uses much less memory), but it is worse

than the original atomics implementation by 17%.

In the original application version 37% out of the total time is spent in the

IntagrateStressForElems kernel, therefore the achieved 49% speedup on the

kernel over the two-step implementation gives about 11% (for our best result)

or 8% (for our partitioned version) speedup on the whole application. This was

measured by reading back the reordered mesh in the original code for all kernels.

The useful bandwidth in case of the best version of IntegrateStressForElems

reached 35% of the peak stream bandwidth on the P100 GPU.

On the V100, we achieved 51% speedup for this kernel compared to the orig-

inal two-step implementation with 270 GB/s bandwidth (36% of the peak band-

width). In the original version 38% of the total time is spent in IntegrateStressForElems,

therefore this achieved kernel speedup results in about 16% speedup on the

whole application. Again, the atomics version performed best with a bandwidth
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Figure 16: LULESH’s IntegrateStressForElems kernel speedup compared to the original
(gathering) code, done on a mesh with 4913000 cells. The block sizes are shown in parentheses,
the reordering algorithms are: the original reordering (NR), GPS reordering and partitioning
(part.) The last bar shows the relative performance of the original code with the helper array
approach.

of 561 GB/s (76% of peak bandwidth), two times faster than our version.

3.1.5. miniAero

The final application we explore is miniAero [2], which is a mini-application

from the Mantevo suite [42]. MiniAero is an explicit (4th order Runge-Kutta)

unstructured finite volume code that solves the compressible Navier-Stokes equa-

tions. Both inviscid and viscous terms are included. The viscous terms can be

optionally included or excluded. For miniAero, meshes are created within the

code and are simple 3D hex8 meshes. These meshes are generated on the CPU

and then moved to the GPU. While the meshes generated in code are structured,

the code itself uses unstructured mesh data structures and access patterns. This

mini-application uses the Kokkos library [43].

For miniAero we study the compute_face_flux kernel that computes the

flux contributions of the faces and increments it with the appropriate cell flux

values. The kernel iterates over the faces of the mesh, and accesses the cells

indirectly. In each iteration, it reads 28 and increments 5 double values from

each of the 2 indirectly accessed cells, and reads 12 double values directly. The

36



Reordering none partition original
Data layout AOS SOA AOS SOA SOA

Bandwidth (GB/s) 80 172 83 157 97
Runtime (ms) 8.48 3.90 8.10 4.31 6.98

Achieved Occupancy 0.15 0.29 0.15 0.30 0.24
Global Memory Read Transactions (total) 33 546k 35 395k 22 883k 25 006k 16 072k
Global Memory Write Transactions (total) 12 674k 12 706k 8052k 8703k 32 689k

Number of Block Colours 4 4 15 15 -
Number of Thread Colours 4 4 9.8 9.8 -

Reuse Factor 2.6 2.6 4.8 4.8 -
Issue Stall Reasons (Synchronization) 13% 19% 36% 39% 0%

Issue Stall Reasons (Data Request) 63% 56% 38% 34% 26%
Average Cache Lines/Block 744 747 427 474 -
Warp Execution Efficiency 98% 98% 94% 93% 100%

Block size 320 64

Table 4: Low-level performance metrics of LULESH’s IntegrateStressForElems kernel - hi-
erarchical coloring. The last column details the measured performance of the original kernel.

original code, depending on a compile time parameter, either uses the auxiliary

apply_cell_flux kernel that does the actual incrementing by gathering the

intermediate results from a large temporary array, or uses atomics to do it

within the kernel. Both the atomics and the work of the auxiliary kernel was

substituted in our code by coloring.

The compute_face_flux kernel is the most computationally intensive among

the ones we tested: it uses 165 registers in hierarchical coloring (166 in SoA

layout). Also, it achieves, with a block size of 384 and reordered by GPS, 15%

of peak double precision efficiency, compared to the 6–7% in Airfoil (Table 5).

It also uses 8 square root operations and several divides that can’t efficiently fill

the pipelines at such low occupancy.

The amount of data indirectly accessed by the kernel is also significant:

each thread accesses 2 data points indirectly, each holding 32 double precision

values. If all of these values are loaded into shared memory, the size exceeds the

hardware limits with block sizes larger than 288; it didn’t run with the original

mesh numbering with any block size, and only with smaller block sizes on the

reordered meshes (Figure 17). The other measurements were carried out by

only loading the incremented data into shared memory.
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Figure 17: miniAero’s compute_face_flux kernel bandwidth on a mesh with 6242304 faces.
The kernel didn’t run in the cases where the data reuse was not high enough because the large
amount of shared memory needed; these are shown here with 0 bandwidth.

The mesh also has a complex structure. 18 and 15 block colors for the GPS

reordered and partitioned versions, respectively. The original ordering was far

from optimal, we couldn’t run the non-reordered version, because the number of

block colors exceeded the implementation limit of the library, which is 256. As

with LULESH, only one block was running at a time on each multiprocessor.

Although the synchronization overhead was lower (3 and 6 thread colors in

the GPS reordered and partitioned versions, respectively), the costly operations

prevented high performance gains in the case of the partitioned version (Figure

18).

The original Kokkos implementation either used atomic adds or the two-step

gathering approach depending on compilation parameters. Our implementation

outperformed both with a 75% speedup (Figure 19). The useful bandwidth in

case of the best version of compute_face_flux (168 GB/s) reached 34% of the

peak stream bandwidth of the P100 GPU.

On Volta, we achieved 158% (compared to the atomic version) and 92%

(compared to the two-step version) speedups in the kernel 268 GB/s bandwidth

(36% of the peak bandwidth).
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Figure 18: miniAero’s compute_face_flux kernel bandwidth on a mesh with 6242304 faces.
The shared memory was only used to cache the increments, reducing the need for large shared
memory size. The kernel didn’t fit into the shared memory with block sizes larger than 384
or if not reordered because the large amount of shared memory needed; these are shown here
with 0 bandwidth.
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Reordering GPS partition original
Data layout AOS SOA AOS SOA SOA

Bandwidth (GB/s) 67 84 117 113 96
Runtime (ms) 19.09 15.38 11.04 11.38 13.39

Achieved Occupancy 0.06 0.06 0.12 0.12 0.23
Global Memory Read Transactions 73561k 82028k 53403k 77091k 87368k
Global Memory Write Transactions 9153k 10390k 6694k 9008k 5934k

Number of Block Colours 18 18 15 15 -
Number of Thread Colours 3 3 6 6 -

Reuse Factor 2.2 2.2 3.9 3.9 -
Issue Stall Reasons (Synchronization) 4% 9% 15% 21% 0%

Issue Stall Reasons (Data Request) 61% 35% 47% 35% 49%
Issue Stall Reasons (Execution Dependency) 23% 33% 23% 23% 13%

Average Cache Lines/Block 452 471 269 344 -
Warp Execution Efficiency 91% 84% 88% 85% 91%

FLOP Efficiency(Peak Double) 5% 8% 10% 12% 8%

Block size 128 256

Table 5: Low-level performance metrics of the miniAero’s compute_face_flux kernel - hierar-
chical coloring. The last column details the measured performance of the original code.

3.1.6. Analysis of structured meshes

Recalling that the meshes of miniAero and LULESH are actually structured

meshes, generated by the code itself allows us to use their structured nature

to create partitions with better shapes as opposed to partitions produced by

METIS. This in turn allows us to understand the trade-off between high data

reuse and number of thread colors. We create 1D (straight line), 2D (rectangles)

and 3D (bricks) shape partitions such that these will have an increasing amount

of reuse, and with that, number of colors.

While both kernels operate on 3D Cartesian (hex8) meshes, the LULESH

kernel IntegrateStressForElems uses a mapping from cells to their connected

vertices, and the compute_face_flux kernel in miniAero maps from (internal)

faces to cells. We created a number of different partition shapes - 1D lines, 2D

rectangles and 3D bricks. Figures 20 and 21 show the bandwidths, reuse factors

and the number of thread colors across different block-shapes, along with the

result of partitioning the same mesh using METIS. The size of the blocks is

128. The results are from meshes with specifically tailored shapes so that the

handcrafted blocks can cover them without any gaps.

40



In IntegrateStressForElems, the achieved bandwidth of the original or-

dering is 134GB/s - it uses a row major order. This is similar to what we

use for a line block shape that is 128 cells long and only 1 cell thin in the

other dimensions. The partitioned mesh (as detailed in Section 3.1.4) achieved

132GB/s, and we achieved 167GB/s bandwidth using our handcrafted blocks,

for the same block size (128). Note that using regular shapes is better for the

thread coloring algorithm as well. With METIS partitioning, the number of

colors needed is higher than in the other cases.

For compute_face_flux, we achieved 167GB/s bandwidth, compared to

101GB/s achieved with METIS partitioning. Of course, using these handcrafted

blocks can only be done on meshes that are actually structured, therefore this is

not representative of realistic cases. However, these results illustrate clearly that

when the number of thread colors are the same, increased reuse leads to better

performance. Also, there is an optimal trade off between reuse and the number

of thread colors for each application, and performance will suffer above/below

that. As an alternative to METIS, we explored using SCOTCH [44] to cre-

ate the required partitions. However SCOTCH also did not produce a better

partitioning for these applications. The challenge lies in finding a partition-

ing algorithm that can either find the middle ground, or can be tuned along

the amount of reuse it aims to achieve. Such partitioning algorithms are not

currently available, but the evidence here clearly demonstrate their usefulness.

4. Conclusion

In this work we presented a number of novel locality-exploiting optimizations for

the efficient execution of unstructured-mesh algorithms on GPUs. The key fo-

cus was to improve performance of kernels with indirect increment data-access

patterns. We build on well known techniques such as data-layouts (AoS and
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Figure 20: LULESH’s IntegrateStressForElems kernel with explicitly controlled partitioning.
For comparison, the last column shows the result on the same mesh, partitioned by METIS.
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Figure 21: miniAero’s compute_face_flux kernel with explicitly controlled partitioning. For
comparison, the last column shows the result on the same mesh, partitioned by METIS.



SoA), graph bandwidth minimizing algorithms, global and hierarchical coloring

approaches for exploring efficient execution strategies. A novel reordering algo-

rithm which uses k-way recursive partitioning, together with the use of GPU

shared memory implementing a hierarchical coloring method is designed to sig-

nificantly improve data reuse within CUDA thread blocks.

The new optimizations are then applied to several well established unstruc-

tured mesh applications, investigating their performance on NVIDIA’s latest

P100 and V100 GPUs. A range of performance metrics were benchmarked in-

cluding runtime, memory transactions, achieved bandwidth performance, GPU

occupancy and data reuse factors and are used to understand and explain the

key factors impacting performance.

When comparing the performance of global coloring to that of hierarchical

coloring (with shared memory), we demonstrated that the latter approach con-

sistently performed better. This was due to its ability to exploit the temporal

locality in indirectly accessed data by avoiding data races in shared memory

with synchronization within thread blocks rather than different kernel launches.

Analyzing the performance of reordering based on GPS renumbering and

partitioning showed that former improves global coloring with increasing spatial

reuse, while the latter can significantly improve the shared memory approach by

increasing data reuse within thread blocks. In this case, we see smaller shared

memory usage and fewer global memory transactions.

We also see that there is a trade-off between high data reuse and large

numbers of thread colors in hierarchical coloring. This is especially pronounced

in 3D applications, and when the achieved occupancy is low: the more thread

colors a block has, the more synchronizations it will need, the latency of which

can be hard to hide when there are few eligible warps.

The locality exploiting optimizations detailed in this paper enable us to im-
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prove performance of indirect kernels by 19% on Airfoil, 20% on Volna, 15%

on Bookleaf, 75% on Lulesh and 75% on miniAero over the original imple-

mentations, on the GPUs tested. These results advances the state of the art,

demonstrating that the algorithmic patterns used in most current implemen-

tations (particularly in case of US DoE codes represented by LULESH and

MiniAero) could be significantly improved upon by the adoption of two-level

coloring schemes and partitioning for increased data reuse.

When carrying out this work, it had become clear that partitioning algo-

rithms in traditional libraries such as METIS and SCOTCH were not particu-

larly well suited for producing such small partition sizes. As potential future

work, we wish to explore algorithms that are better optimized for this purpose.

The performance of these partitioning algorithms was also low - parallelizing

this could be another interesting challenge. Finally, we are planning to integrate

these algorithms into the OP2 library, so they can be automatically deployed on

applications that already use the OP2 library, such as Airfoil, BookLeaf, Volna

or Rolls-Royce Hydra.

The optimized algorithms are implemented as an open-source software li-

brary [3].
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