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Abstract
Traditionally, (nonmasking and masking) fault-tolerance has focused on ensuring that after the occurrence of faults, the
program recovers to states from where it continues to satisfy its original specification. However, a problem with this limited
notion is that, in some cases, it may be impossible to recover to states from where the entire original specification is satisfied.
For this reason, one can consider a fault-tolerant graceful-degradation program that ensures that upon the occurrence of faults,
the program recovers to states from where a (given) subset of its specification is satisfied. Typically, the subset of specification
satisfied thus would be the critical/important requirements. In this paper, we initially focus on automatically revising a given
fault-intolerant program into a fault-tolerant gracefully degrading program. Specifically, we propose a two-step approach: In
the first step, we transform the fault-intolerant program into a graceful program. This program is guaranteed to satisfy only
the given subset of specification (e.g., critical requirements). In particular, this step involves adding new behaviors that will
satisfy the given subset of the specification. The second step involves utilizing the original program and the graceful program
to obtain a fault-tolerant gracefully degrading program. We also develop an algorithm to transform the gracefully degrading
program into a distributed gracefully degrading program. Afterwards, the second phase of our transformation can be applied to
generate a distributed fault-tolerant gracefully degrading program. We showcase the algorithm with three different non-trivial
case studies. Finally, we formalize the problem of multi-graceful degradation and propose an algorithm that solves it and we
use a complex case study to showcase the viability of the approach. All the algorithms have polynomial time complexity in
the size of the state space of the original program.

1 Introduction

We are increasingly dependent on highly available computer
systems to provide fully functional and stable services. How-
ever, these programs are often subjected to new types of faults
that are not considered in the original design. Thismay occur,
for example, due to changing user requirements or due to
deployment of the program in a new environment. It is espe-
cially important that the addition of such fault-tolerance be
done correctly, i.e., the addition indeed provides the required
resilience and preserves the original functionality.
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Some of the existing approaches for automated addition
of fault-tolerance include [1–3], where three different levels
of fault-tolerance, namely nonmasking, masking and stabi-
lizing, are considered. The common requirement for these
levels of tolerance can be succinctly described with Fig.
1a, where S denotes the states where the program oper-
ates in the absence of faults and T denotes the states where
the program may operate in the presence of faults. Fault-
tolerance requires that if the program is perturbed to a state
in T then it recovers to a state in S so that the subsequent
behavior satisfies the program specification. (Masking fault-
tolerance has an additional requirement that recovery from
T to S must be safe whereas stabilizing fault-tolerance has
an additional requirement that T must include all possible
states.)

However, one limitation of these approaches is that in
many scenarios, it is impossible for the program to recover to
the original program behavior after faults occur, i.e., it may
be impossible for the program to recover to states in S. In
such scenarios, it is desirable that the program recovers to
an acceptable state (cf. S′ in Fig. 1b) from where it satis-
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Fig. 1 Relationship between addition of graceful degradation and addition of fault-tolerant graceful degradation

fies some gracefully degraded behavior, i.e., behavior that is
close to its original behavior.

The goal of this work is to develop algorithms where we
begin with a program that satisfies its specification in the
absence of faults (while being in states in S) and the desired
relaxed specification in the presence of faults. The goal of the
algorithm is to first identify a suitable S′ and then construct a
fault-tolerant program that (1) preserves the specification in
the absence of faults and (2) recovers to states in S′ after the
occurrence of faults from where it satisfies the given relaxed
specification.

To illustrate this goal further, consider a canonical exam-
ple of a graceful behavior program where the original
program provides core services and auxiliary services. How-
ever, after recovery, the program guarantees core services.
In this context, the goal of the algorithm would be to begin
with a program that satisfies the original specification in the
absence of faults and desired requirements in the presence
of faults (critical requirements) and construct a program that
will (1) satisfy both critical and auxiliary requirements in the
absence of faults and (2) provide recovery to states where it
satisfies critical requirements.

The idea of such graceful degradation has been introduced
in [4], where authors consider the specification to consist of a
set ofn properties. Subsequently, they consider desirable sub-
sets (which are typically much less than 2n subsets) of these
n properties. To further illustrate the application of graceful
degradation, we use the printer example considered in [4]. A
printer system consists of computers sending printing tasks
to a collection of printers. The tasks are organized in a queue
and each printer executes a transaction in which it dequeues
only one task and then prints it. In an ideal scenario (S in Fig.
1) , onemay prefer FIFO order for print requests, i.e., the task
that is dequeued first is printed first. Thus, in an ideal setting,
the specification requires that at most one dequeue operation
can occur at a time. And, the next dequeue operation occurs
only after the current task is printed.

For the sake of discussion, assume that in the presence of
faults such as network delays or computer crashes, it may
not be possible to guarantee that the program can recover
to states from where this specification would be satisfied.
Hence, one possible weaker specification (considered in [4])
is to allow a limited out-of-order printing. For example, one
simple specification is that Task n is printed only after Task
n − 2 is printed although Task n may be printed before Task
n − 1.

In this example, the original program provides FIFO order
for print requests. The desired fault-tolerant graceful degra-
dation program has the following properties. In the absence
of faults (states S in Fig. 1), the program provides FIFO
ordering. However, if faults occur then the program recovers
to states (S′ in Fig. 1) from where it satisfies the degraded
(weaker) specification (i.e., limited out-of-order printing).

One of the difficulties in generating the fault-tolerant pro-
gram that provides graceful degradation lies in the fact that
the input does not contain a program that satisfies the weaker
specification (i.e., a program that satisfies out-of-order print-
ing). Asking the designer to specify such a program is
undesirable, since it increases the overhead for the designer.
With this motivation, our approach for adding fault-tolerant
graceful-degradation consists of two steps. The first step
(Fig. 2) focuses on the automated addition of graceful degra-
dation to the fault-intolerant program in the absence of faults.

In particular, this step begins with a program, say p, that
satisfies the original specification (FIFO order for the printer
example) and constructs a program, say pg , that satisfies the
weaker, degraded specification (limited out-of-order print-
ing). The program pg is obtained by adding new behaviors
to p, outside of S but within S′ (e.g., to provide out-of-order
printing in the printer example). Thus, in the case of the
printer example, the generated program will provide FIFO
behavior from the original states as well as limited out-of-
order printing from additional states.

In the second step (Fig. 3), we begin with program p
and pg to construct a fault-tolerant gracefully degrading
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program p f . Program p f ensures that in the absence of
faults, it behaves like p and, hence, it will satisfy the origi-
nal specification in the absence of faults. Moreover, if faults
occur then p f recovers to states from where pg satisfies
the degraded specification. Depending upon what p f does
during the recovery process, we can get different variations.
For example, one variation can be similar to masking fault-
tolerance where some safety properties are satisfied during
the recovery process. Another variation can be similar to
stabilizing fault-tolerance where recovery must be provided
from an arbitrary state.1

Subsequently, we extend the problem of fault-tolerant
graceful degradation to address the problem of fault-tolerant
multi-graceful degradation. Intuitively, fault-tolerant multi-
graceful degradation allows a hierarchy of severe faults and
require that the program satisfy corresponding hierarchy of
weaker specifications. After formalizing the problemof addi-
tion of fault-tolerantmulti-graceful degradation to a program,
we provide an algorithm, based on the two-step approach,
that solves the problem.We illustrate theworking of the algo-
rithm through a detailed case study associatedwithOhioCoal
Research Center (OCRC).

1 Note that these variations are not the same as masking and/or sta-
bilizing tolerance since p f may not satisfy its original specification
after recovery is complete. Moreover, if we utilize existing algorithms
[5] where the input consists of program p then those algorithms will
declare failure to add masking fault-tolerance if it is impossible to guar-
antee recovery to behaviors of program p.

Contributions of the paper The contributions of the paper
are as follows:

– We define the problem of automated addition of graceful
degradation and present a polynomial-time algorithm in
the size of the state space of the fault-intolerant program
to solve it. Unlike previous algorithms [5] that focus on
removing behaviors in the absence of faults, this algo-
rithm focuses on adding new behaviors while ensuring
that these behaviors still satisfy the weaker specification.

– We provide an algorithm that transforms a graceful pro-
gram into a distributed graceful program.

– We adapt existing algorithms for adding fault-tolerance
to design fault-tolerant graceful degradation.

– We illustrate our algorithm with three case studies,
namely (i) the printer system, (ii) resource constraint
problemmotivated by channel assignment in cellular net-
works and (iii) the classic byzantine agreement problem.

– We extend the problem of adding graceful fault-tolerance
to the case where we have a hierarchy of increasingly
severe faults and we need to satisfy decreasing level
of specification in their presence. For this purpose, we
define the problemof automated addition of fault-tolerant
multi-graceful degradation and present a polynomial-
time algorithm, based on the two-step approach, with
complexity in the size of the state space of the fault-
intolerant program to solve it.

– We illustrate the multi-graceful degradation addition
algorithm through a detailed case study of the Ohio Coal
Research Center (OCRC) [6].

Organization of paper The rest of paper is organized as fol-
lows: We define the notion of program, specification and
specification relaxation in Sect. 2. In Sect. 3, we formally
state the problem of automated generation of the graceful
program. In Sect. 4, we present the algorithm to generate the
graceful program from the original program and the specifi-
cation (original and relaxed). In Sect. 5, we present two case
studies to demonstrate the graceful program generation step
by step. In Sect. 6, we discuss how to extend the algorithm
for generating graceful programs to distributed programs. In
Sect. 7, we use byzantine agreement as an example to fur-
ther illustrate the technique of generating graceful distributed
programs. In Sect. 8, we define the problem of adding fault-
tolerant graceful degradation and continuewith the three case
studies to add fault-tolerance to the programs generated in
Sects. 5 and 7. We then present and formalize the problem of
automated addition of multi-graceful degradation in Sect. 9
and present a polynomial-time algorithm that solves it. To
show the working of the multi-graceful degradation addition
algorithm, we present the OCRC system in detail in Sect. 10,
present a model of the system and then show the application
of themulti-graceful degradation algorithm to theOCRCsys-
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tem. Finally, we discuss related work in Sect. 11 and provide
further insights and a summarize the paper in Sect. 12, where
we also provide insights of our ongoing work.

2 Preliminary

In this section, we give formal definitions of programs, pro-
gram specifications, and graceful degradation. The program
is specified in terms of its state space and transitions. The
definition of specification is adapted from [7]. The notion of
graceful degradation is adapted from [4].

2.1 Program

A program p, specified as a tuple 〈Sp, δp〉, consists of its
finite state space Sp and transitions δp, where δp ⊆ Sp × Sp.
A state predicate of p is any subset of Sp. A state predicate
S is closed in p (respectively, δp) iff (∀(s0, s1) ∈ δp : (s0 ∈
S ⇒ s1 ∈ S)). A sequence of states, 〈s0, s1, · · ·〉 (denoted by
σ ), is a computation of p iff(1) ∀ j : 0 < j < length(σ ) :
(s j−1, s j ) ∈ δp, and (2) if σ is finite and terminates in state
sl then there does not exist state s such that (sl , s) ∈ δp.
In other words, in each step of the computation of p, some
transition of p is executed. And, the computation is finite iff
p does not have any transition in the final state.

The projection of program p on state predicate S, denoted
as p|S is the program 〈Sp, {(s0, s1) ∈ δp ∧ s0, s1 ∈ S}〉. In
other words, p|S includes transitions of p that begin and end
in S.

Notation If the context is clear, we use p and δp (transitions
of p) interchangeably. Also, we say that a state predicate S
is true in state s iff s ∈ S.

2.2 Program syntax

To model the state space and transitions concisely, we use
processes, variables (associated with a finite domain) and
actions. The state space Sp of p is obtained by assign-
ing each variable a value from its respective domain. Thus,
the use of variables allows us to represent the state space
compactly. Additionally, to compactly represent δp, we use
actions of the form: guard −→ statement where guard
is a constraint (predicate) involving program variables and
statement updates program variables [8]. We denote vari-
able x of a process j by x . j . An action guard −→
statement denotes the set of transitions {(s0, s1) : guard
is true in s0 and s1 is obtained by changing s0 as prescribed
by statement}. We use x(s) to denote the value of variable x
in state s. This compact representation has been used in sev-
eral past works to represent distributed algorithms, e.g., [8].

As an example, consider a triple modular redundancy
(TMR) system, with three inputs x, y and z to the voter and
an output out from the voter. One action of the TMR system
is as follows:

out = ⊥ ∧ x = y = z → out :=x

This action basically states that when all three inputs are the
same, the voter chooses one of them as output. To further
illustrate that an action provides a concise representation of
transitions, consider the domain of x, y and z to be {0, 1} and
out is defined over {0, 1,⊥}, where ⊥ denotes an undefined
value. The state space of the TMR program will contain 24
states. The above action will represent the following set of
transitions:

{(s, t)| ((x(s) = y(s) = z(s) = 0 ∧ out(s) = ⊥)∧
(x(t) = y(t) = z(t) = 0 ∧ out(t) = 0))

∨
((x(s) = y(s) = z(s) = 1 ∧ out(s) = ⊥)∧
(x(t) = y(t) = z(t) = 1 ∧ out(t) = 1))

}

2.3 Specification

Following Alpern and Schneider [7], we let the specification
of program consist of a safety specification and a live-
ness specification. The safety specification is specified in
terms of a set of bad states, say specbs , that program is
not allowed to reach, and a set of bad transitions, specbt ,
that the program is not allowed to execute. Thus, a sequence
〈s0, s1, · · ·〉 (denoted by σ ) satisfies the safety specification
iff (1) ∀ j : 0 ≤ j < length(σ ) : s j /∈ specbs , and (2)
∀ j : 0 < j < length(σ ) : (s j−1, s j ) /∈ specbt .

The liveness specification, on the other hand, denotes
“good thing” happens during program execution. We use
leadsto property (L �T ) to denote liveness specification,
where both L and T are state predicates. Thus, a sequence
〈s0, s1, · · ·〉 (denoted by σ ) satisfies the liveness specification
iff ∀ j : (L is true in s j ⇒ ∃k : j ≤ k < length(σ ) :T is
true in sk).

A specification, say spec, is a tuple 〈S f p , Lvp〉, where
S f p is a safety specification and Lvp is a liveness specifi-
cation. A sequence σ satisfies spec iff it satisfies S f p and
Lvp . Hence, for brevity, we say that the program specifica-
tion is an intersection of a safety specification and a liveness
specification.

Given a program p, a state predicate S, and specification
spec, we say S is an invariant of p iff (1) S is closed in p;
(2) Every computation of p that starts in a state, say s, where
s ∈ S satisfies spec; and (3) S �= ∅.
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2.4 Graceful degradation

In graceful degradation, it is expected that the program will
satisfy a stronger specification under normal circumstances.
And, it will satisfy a weaker specification under some other
circumstances (e.g., in the presence of faults). Let spec =
〈S f , Lv〉 and specr = 〈S fr , Lvr 〉 be two specifications. We
say that specr is weaker than spec iff for any sequence σ if
σ satisfies spec then σ satisfies specr .

3 Problem statement for graceful
degradation design

In this section, we formally define the problem of generat-
ing a program that satisfies the weaker specification (cf. Fig.
2). We begin with a program p that satisfies the specifica-
tion spec from invariant I . We derive a graceful degrading
program, say pg , and its invariant Ig such that pg satisfies a
weaker specification, say specr from Ig . Next, we consider
the relation between p and pg as well as I and Ig to identify
the problem statement. One requirement on pg is that pg is
supposed to add new behaviors that potentially violate spec
while satisfying specr . And, it is not allowed to remove any
behaviors of p that satisfy spec. Since the correctness of p is
known from its invariant I , based on this requirement, it fol-
lows that I should be a subset of Ig . Additionally, pg cannot
remove any behaviors (respectively, transitions) within the
original invariant I . Thus, the problem statement is shown as
follows:

Problem Statement III.1 :
Given p, I , spec and specr such that p satisfies
spec from I . Identify pg and Ig such that:
A1: pg|I = p|I , I ⊆ Ig ,
A2: pg satisfies specr from Ig ,
A3: pg|I satisfies spec from I .

Remark The above problem statement has a requirement that
I be a subset of Ig . This requirement differs from [5] in that
this enlarges the invariant by adding new states from where
the new specification can be satisfied. By contrast, in [5], the
problem statement requires that the generated invariant be
a subset of the original invariant. For this reason, existing
algorithms cannot be used to solve the above problem.

4 Algorithm for generating graceful
program

Webeginwith the given program p, its invariant I and its two
specifications (stronger) spec and (weaker) specr . In turn,
spec and specr are specified in terms of the corresponding

safety and liveness specification. Our goal is to construct pg
and Ig such that they satisfy constraints of Problem III.1.

Algorithm 1 also takes an additional input which is a state
predicate, namely Sa . The intuition for Sa arises from the
fact that the program is expected to satisfy the specification
specr under certain constraints. Predicate Sa is used to char-
acterize these constraints. If such constraints are not easily
identifiable, Sa can be instantiated to be Sp − I , i.e., all states
except those in I .

First, Algorithm 1 computes I� to be the set of states in
Sa except those that violate safety (i.e., those in specrbs ). The
first guess for Ig , the invariant for the graceful program, is
then set to I ∪ I� (Line 2). Then, Algorithm 1 computes
the first guess for pg . Specifically, in pg , we reuse all the
transitions in p that begin in I . We also include all transitions
that begin in I� unless they violate safety specrbt (Line 3).
Starting from Line 4, the algorithm revises the program by
ensuring the liveness specification is satisfied. In Lines 6-
9, we exclude the deadlock states, i.e., states from where
no transitions originates from Ig . Then we recompute pg
such that all the reachable states by pg starting from I ′(or I )
remains in I ′(or I respectively). To ensure liveness,we define
a function rank that assigns each state an integer value that
represents the length of the shortest path from that state to
reach a target state predicate T . Then, on Lines 11 and 12, we
exclude states and transitions where rank does not decrease.
Removal of such transitions ensures that there will be no
cycles that prevent the program from reaching T . To resolve
deadlock states, we repeat the loop starting at Line 4. Finally,
this process stops once a fixpoint is reached.

We now prove the correctness of Algorithm 1.

Lemma 1 (Correctness ofAlgorithm1)Let the input to Algo-
rithm 1 be:

– program p
– invariant I
– spec (original specification)
– specr (relaxed specification)
– Sa (state predicate)

Let the output of Algorithm 1 be:

– graceful program pg
– weaker invariant Ig

Then

1) I ⊆ I ′,
2) p′ | I = p | I ,
3) p′ | I satisfies spec from I ,
4) p′ satisfies specr from I ′.
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Algorithm 1 Graceful Program Generation
Input: state predicate Sa , program transitions p, invariant I , weaker

safety specification S fr (consisting of S frbs and S frbt ), liveness spec-
ification Lv(consisting n leads-to properties of the form Fi � Ti ,
i ∈ 1 · · · n).

Output: graceful program pg and invariant Ig with weaker specifica-
tion.

1: I�:=Sa − S frbs
2: I ′:=I ∪ I�
3: p′:={(s0, s1)|s0, s1 ∈ I ′ :: (s0 ∈ I ∧ (s0, s1) ∈ p) ∨ (s0 ∈ I� ∧

(s0, s1) /∈ SPECrbt )}
4: repeat
5: Iold :=I ′, pold :=p′
6: repeat
7: Iold :=I ′
8: p′:=maxp(p′, I , I ′)
9: I ′:=I ′ − deadlock(I ′, p′)
10: until Iold = I ′
11: p′:=p′ − ⋃

i∈1···n{(s0, s1)|s0 ∈ I ′ ∧ rank(s0, Ti , p′) >

rank(s1, Ti , p′) ∧ rank(s0, Ti , p′) �= 0
∧rank(s1, Ti , p′) �= ∞}

12: I ′:=I ′ − ⋃
i∈1···n{s|rank(s, Ti , p′) = ∞ ∧ s ∈ Fi ∧ s /∈ I }

13: until Iold = I ′ ∧ pold = p′
14: return p′ as pg , I ′ as Ig if I ′ �= ∅, otherwise declare no graceful

program generated.

Function: maxp(t : transition predicate, S1,S2,. . .:set of state predi-
cates where S1 ⊆ S2 ⊆ · · · )
return {(s0, s1)|t∩(s0 ∈ S1 ⇒ s1 ∈ S1)∧(s0 ∈ S2 ⇒ s1 ∈ S2)∧· · · }

Function: deadlock(S: state predicate , t : transition predicate)
return {s0|s0 ∈ S ∧ (∀s1 ∈ S : (s0, s1) /∈ t)}

Function: rank(s: state , T : state predicate , t : transition predicate)
return the shortest path length from s to one of the state in T , if the
path(consisting only transitions in t) exists; or ∞, otherwise.

Proof We proceed by proving each case.

1) I ⊆ I ′: From Line 2, there are two cases to consider: (a)
I ′ = I and (b) I ⊂ I ′.

a) I ′ = I : On Line 9, I ′ remains the same since there is
no deadlock state in the invariant of the program. On
Line 12, I ′ does not change. Hence, I ′ = I through
out.

b) I ⊂ I ′: On Line 9, I ⊆ I ′ since deadlock states ⊆
(I ′ − I ). On Line 12, only states s ∈ I ′ − I are
removed. Hence, I ⊆ I ′.

From 1a and 1b, I ⊆ I ′.
2) p′ | I = p | I : From Line 3, (s0 ∈ I ∧ (s0, s1) ∈ p)

implies that p′ | I = p | I . On Line 8, computation
of maxp does not result in any state or transition in the
invariant being removed. Hence, the predicate p′ | I =
p | I holds. On Line 11, the set of transitions that are
removed are not in I . Hence, the condition holds through
out.

3) p′ | I satisfies spec from I: Since p satisfies spec from I
and none of the transitions that begin in I are removed,
then p′|I = p|I . Hence, p′ satisfies spec from I .

4) p′ satisfies specr from I ′ : Closure of I ′ follows from
Line 8, where transitions that can potentially violate the
closure are removed in maxp. Also, by construction, p′
cannot reach a state in specrbs and cannot execute a tran-
sition in specrbt (Lines 3, 8 and 11). Finally, by Lines 11
and 12, the liveness property is also satisfied. Hence, p′
satisfies specr from I ′. ��

It can be noted that Algorithm 1 has a state predicate Sa
as input. The above lemma is valid for any input value of
Sa as it is only used to constrain the search space, if the
designer is already aware of constraints that would be met
even during graceful behavior. If the designer is not aware
of such constraints, Sa cannot be constrained and the whole
state space needs to be searched, i.e., Sa can be set to be equal
to Sp − I . Next, we prove that Algorithm 1 terminates.

Lemma 2 (TerminationofAlgorithm1)Let the input toAlgo-
rithm 1 be:

– program p
– invariant I
– spec (original specification)
– specr (relaxed specification)
– Sa (state predicate)

Then, Algorithm 1 terminates in polynomial time in the
state space of p.

Proof We need to show that the two loops (Lines 6–10 and
4–13) terminate. We prove this by showing the existence of
a least fixpoint for both loops.

– Inner loop (Lines 6–10): The loop terminates when
Iold = I ′. As I ′ becomes smaller with each iteration
(Lines 8 and 9) and since I ′ ⊆ Iold , the loop will defi-
nitely terminate when I ′ = ∅.

– Outer loop (Lines 4–13): The loop terminates when
(Iold = I ′) ∧ (pold = p′). As I ′ and p′ become
smaller with each iteration (Lines 11 and 12) and since
(I ′ ⊆ Iold) ∧ (p′ ⊆ pold), the loop will terminate. ��

Theorem 1 Let the input to Algorithm 1 be: (i) program p,
(ii) invariant I , (iii) original specification spec, (iv) specr
(relaxed specification) and (v) Sa (state predicate)

Then, Algorithm 1 solves problem III.1 in polynomial time.

Proof It follows directly from Lemmas 1 and 2. ��

5 Graceful degradation design: case studies

In this section, we demonstrate the process of generating
the gracefully degrading programs through two case stud-
ies, namely (1) a printer system and (2) a resource constraint
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problem motivated by cellular networks. In each case study,
we first define the program with its specification (includ-
ing the original and the graceful specification). Then, we
simulate the algorithm on each case study. Subsequently
in Sect. 8, we revisit them in the context of adding fault-
tolerance.

5.1 Printer system

In the first case study, we focus on the printer system consid-
ered in [4]. In the original specification, the printer system
is required to satisfy the F I FO specification. However, as
argued in [4], it may be necessary to relax this require-
ment under certain constraints. In particular, the weaker
requirement considered in [4] requires that someout-of-order
printing is permitted.

Original program. The program in [4] consists of several
clients and print servers. Using the transaction semantics,
the clients ‘enqueue’ their print requests in a central queue.
A print server then removes a task from this non-empty
queue and prints the task. Please observe that the queue is
of bounded length as we assume finite state programs. For
simplicity, we do not model the transactions used for con-
currency control and the enqueue operation since it does not
affect the behavior we are interested in. The original pro-
gram, say printolerant , consists of two parts (1) once i th task
has been dequeued (di = 1) and it has not been printed
(pi = 0), then print it (pi :=1) and (2) if the i th task has
been printed (pi = 1), then the next Task (i + 1) in queue
gets a chance to be dequeued (di+1:=1). Thus actions are as
follows:

di = 1 ∧ pi = 0 −→ pi :=1

pi = 1 −→ di+1:=1

For sake of simplicity, in this paper, we consider the case
where the number of jobs is enumerated explicitly. To make
this more generic, one can utilize approaches for parametric
synthesis where the number of jobs is left as a parameter.
Examples of such parametric approaches are discussed in
[9,10].

Safety specification. Recall that the safety specification
is in terms of a set of bad states that the program should not
reach and a set of bad transitions that the program should
not execute. The first specification S fbs_1 is satisfied by the
original program and requires that the printing must occur in
order and, hence, Task j cannot be dequeued until Task j−1
is printed. The graceful specification permits the possibility
that Task j can be dequeued even if Task j −1 is not printed.
However, it requires that Task j cannot be dequeued until
Task j − 2 is printed. Thus, the safety specification (origi-

nal and graceful) that identifies the states that should not be
reached is specified as follows:

S fbs_1:=∃i, j ∈ 1 · · · n, pi (s) = 0 ∧ d j (s) = 1 ∧ j > i

S fbs_2:=∃i, j ∈ 1 · · · n, pi (s) = 0 ∧ d j (s) = 1 ∧ j > i + 1

Observe that S fbs_1 is the stronger specification capturing
the notion of FIFO, and S fbs_2 is a weaker specification since
it allows at most two tasks be dequeued without finishing
the pending printing. One could consider further relaxation
that allows more out-of-order printing. Our algorithm can
be applied in this context by applying Algorithm 1 to the
program described at the end of this section. However, the
detailed analysis of this generation is outside the scope of
this paper.

In addition to bad states, safety specification can include
bad transitions that the program is not allowed to execute.
The bad transitions, S fbt_c, describe structural constraints
that have to be satisfied by the printer system. In particular,
S fbt_c states that a printed task cannot be reset to unprinted.
Likewise, once the task has been dequeued it cannot be re-
enqueued. And, a task cannot be printed until it is dequeued.
Note that the structural constraints have to be satisfied in the
original as well as the graceful program. Also, at most one
variable can be changed in any transition. Thus,

S fbt_c:={(s, s′)|∃i, j ∈ 1 · · · n,

(pi (s) = 1 ∧ pi (s
′) = 0)

∨ (di (s) = 1 ∧ di (s
′) = 0)

∨ (di (s
′) = 0 ∧ pi (s

′) = 1)

∨ (i �= j ∧ di (s) �= di (s
′) ∧ d j (s) �= d j (s

′))
∨ (i �= j ∧ pi (s) �= pi (s

′) ∧ p j (s) �= p j (s
′))

∨ (di (s) �= di (s
′) ∧ p j (s) �= p j (s

′))}
We use safety specification for original program as S fbs_1

and S fbt_c; for graceful program as S fbs_2 and S fbt_c. Note
that although the set of bad transitions are the same here, it
is not a requirement for Algorithm 1.

Liveness specification. The liveness specification requires
that eventually all tasks are printed. Thus,

Lv:=true � SL , where SL :=∀i ∈ 1 · · · n, di = pi (s) = 1 .

Application of Algorithm 1. We instantiate Algorithm 1
with following inputs:

– program p: is instantiated to be transitions corresponding
to program printolerant . For simplicity, we assume that
there are three tasks in the system. Hence, the state of
the program is represented as (d1d2d3, p1 p2 p3), where
di (respectively, pi ) denotes whether Task i has been
dequeued (respectively printed).
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8 Y. Lin et al.

– The safety specification is instantiated so that the set of
bad states is S fbs_2 and the set of bad transitions is S fbt_c .

– Liveness specification is specified to be Lv.
– Invariant I is instantiated to be the states reached in the
computation of printolerant by starting from the initial
state (000, 000).

– State predicate Sa is instantiated to be Sp − I

Consider the candidate states generated outside I from
Line 1 that also exclude those violate S fbs_2 . Recall that
S fbs_2 allows two tasks to be dequeued at once and allows
one task to be printed before the previous task is completed.
Thus, we have

I� = {(110, 000), (110, 010), (111, 010), (111, 011),
(110, 110), (111, 100), (111, 101), (010, 000),

(010, 010), (011, 010), (011, 011)}
The new program transitions generated are all possible

pairs of states in I� plus those that provide recovery from I�
to I provided that they do not violate S fbt_c. There are no
deadlock states on Line 8. Moreover, since every state in I
or I� has a path to a state where all tasks are completed, no
state and transition are removed on Lines 11 and 12.

Now,we evaluate the newbehavior of the printer system in
pg provided in Fig. 4. Ideally, the program stays in invariant
I while satisfying S fbs_1, S fbt_c and Lv. However, if the
program is perturbed to be outside I then itwill satisfy S fbs_2,
S fbt_c and Lv. Figure 4 shows the behavior of the graceful
program.Note that in this program, the tasks being printed are
not totally out of order, though it is not FIFO. For example,
Task 3 can be printed before Task 2 but Task 3 cannot be
printed before Task 1.

5.2 Resource constraint problem: channel
assignment

In this section, we model the problem of resource constraints
in a wireless cellular network [11]. When a call is made, a
number of channels are assigned to it. However, due to the

000,000 100,000 100,100 110,100 110,110 111,110 111,111

111,100 111,101

110,000 110,010 111,010 111,011

101,100 101,101

010,000 010,010 011,010 011,011

Fig. 4 Printer system with original invariant I = {(000,000),(100,000),
(100,100),(110,100),(110,110),(111,110),(111,111)} and invariant (under weaker
specification) Ig = I ∪ {(110,000),(110,010),(111,010),(111,011),(110,110),(111,
100),(111,101),(010,000),(010,010),(011,010),(011,011)}

finite number of channels available, these have to be shared
among a finite number of calls, and call degradation can be
incorporated to maximize the revenue by maximizing the
number of admitted calls. For brevity, we consider a simpli-
fied version of this problem and describe how Algorithm 1
can be applied to generate a graceful program.

In such a network, each cell is associated with a set of
frequencies. Each frequency can be used by a single call.
However, to improve quality of the call, one call may be
assigned several frequencies. Clearly, if a call is assigned 0
channels/frequencies then the call cannot be completed and
the call fails. As the number of assigned channels increases
the call quality improves. There is a minimum number of
channels (MI N ) that must be allocated to a call so that the
call quality is at an acceptable level. Also, there is a maxi-
mumnumber of channels (MAX ) that should be allocated, as
allocating subsequent channels does not lead to improvement
in call quality.

From a user perspective, to keep user satisfaction at higher
levels, it is desirable to assign asmany channels as possible to
every call, up toMAX channels.And, froma systemperspec-
tive, it is desirable to assign as few channels as possible so
that the probability of a call failure (where the call is dropped
due to unavailable channels) is kept very low. To simplify the
modeling of this system,we consider the casewhere themax-
imum channels allocated to a call is 3 (MAX = 3) and the
minimum number of channels allocated is 2 (MI N = 2).

Normally, each call in such a system is defined by the
following parameters:

– Channel requirements: Each call defines its preferred (or
maximum) number of channels.

– Priority: This determines the class/type of the call.
– Degradation tolerance: The (maximum) number of chan-
nels that can be reclaimed from the call.

– Admission policy: If a cell becomes saturated, it can
either reject an incoming call or degrade ongoing calls
to accommodate new calls.

– Revenue: Each admitted call generates a revenue based
on the agreed QoS (i.e., number of channels).

For the purpose of keeping the case study simple, we
consider all calls to be of the same priority and all calls
have a degradation tolerance of 1 (MAX − MI N ). For the
admission policy, we consider call degradation (for grace-
fully degrading calls). We do not model revenue as such,
but try to maximize the number of admitted calls. Further-
more, we also assume that there is a finite number of channels
and calls and that calls are of infinite duration, i.e., reclama-
tion of channels is omitted for simplicity. We note that these
assumptions are only for simplicity and Algorithm 1 can be
easily applied in cases where these assumptions are omit-
ted.
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Automation of fault-tolerant graceful degradation 9

Original program The system begins with a given number
(MAXC) of available channels. A call is admitted to the
system only if it can be allocated MAX (3) channels. Other-
wise, the call fails. Tomodel such a program, for each call, we
maintain a variable ci that denotes whether call i is current
(i.e., admitted) and variable ai that denotes the number of
channels allocated to call i . Instead, we assume that actions
for allocating channels to call i are executed only when call
i is requesting them. We also use variable av to denote the
number of available channels. This variable is initialized to
MAXC in the initial state.

ci = 0 ∧ av ≥ 3 −→ ci , ai , av = 1, 3, av − 3

Original safety property
The original safety specification requires that each admit-

ted call is either allocated three channels or no channel. It also
requires that the total number of allocated and unallocated
channels equal to MAXC . Thus, the safety specification of
the original program is:

S fbs_1:= (∃i : ci = 0 ∧ ai �= 0)
∨ (∃i : ci = 1 ∧ ai �= 3)
∨ (

∑n
i=1 ai + av �= MAXC)

where n is the number of admitted calls.

Also, since we are not modeling release of channels, we
say that the following transitions – where we start in a state
where a call has been assigned some channels and end up in
a state where the call has been assigned less channels – also
violate safety.

S fbt_c:=(∃i ::ci = 1 ∧ c′
i = 0) ∨ (av′ > av)

Original liveness specification
The liveness specification requires that all calls are ser-

viced when channels are available. Thus, the liveness speci-
fication is as follows

Lv:=true � ((∀i ::ci = 1) ∨ av < 3)

Relaxed safety property
Observe that the original program requires that each active

call is assigned three channels. Based on the earlier discus-
sion, the relaxed program is permitted to assign two channels
to a call or 1 channel can be reclaimed from ongoing calls.
However, since the goal of the channel assignment program
is to assign two channels only if required, we capture this
with the following relaxed safety property. Intuitively, this
relaxed safety property requires that if some call is assigned
two channels, it is due to the fact that it could not be assigned
the three possible channels. Hence, the states that should not
be reached in the graceful program are

S fbs_2:=(∃i ::ci = 1 ∧ ((ai �= 3) ∨ (ai = 2 ∧ av > 0)))

∨
(

n∑

i=1

ai + av �= MAXC

)

Application of Algorithm 1.
We instantiate Algorithm 1 with the following inputs:

– The set of program transitions is instantiated with those
associated with the original program, denoted by Pc in
subsequent description. For illustration, we assume that
the total available channels is MAXC = 7. We repre-
sent the state of Pc as (av, c1c2c3 · · · cn, a1a2a3 · · · an),
where ci denotes whether call i is admitted, ai denotes
the number of channels allocated to call i and av denotes
the number of remaining channels. For illustration pur-
pose, we consider the case where the number of calls is
3, i.e., n = 3.

– The invariant I is instantiated to be states reached from
the initial state where all (7) channels are available and
no channel is allocated to any call. Thus, I is the set of
states reached from the state (7, 000, 000) in the original
program.

– The state predicate Sa , is instantiated to be SPc − I (set
of states of Pc except the states in the invariant).

– We instantiate the safety specification with S fbs_2, the
set of bad states for the graceful program, and S fbt_c, the
set of bad transitions.

– The liveness specification is instantiated with Lv.

Since the relaxed safety specification requires that a call is
assigned two channels only if no free channels are available,
the only states in Sa from where two channels are allocated
to a process are those where the number of free channels
is either 0, 1 or 2. Moreover, since the sum of the assigned
and free channels is equal to MAXC , any action added to
the relaxed program can only redistribute channels among
processes.Hence, the relaxed program includes the following
three actions that correspond to the case where the number of
available channels is either 0, 1 or 2. It also includes actions
where we only switch between channels assigned to a single
call. Thus, the actions are as follows:

ci =0 ∧ ai =0 ∧ av=0 ∧ c j = ck = 1 ∧ a j =ak =3
−→ ci , ai , a j , ak :=1, 2, 2, 2

ci = 0 ∧ ai = 0 ∧ av = 1 ∧ c j = 1 ∧ a j = 3
−→ ci , ai , a j , av:=1, 2, 2, 0

ai = 0 ∧ av = 2
−→ ci , ai :=1, 2

ci = c j = 1 ∧ ai = 2 ∧ a j = 3
−→ ai , a j :=3, 2

where i j and k are quantified over
the number of calls in the system.
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7,000,000 4,100,300 1,110,330

6,000,000 3,100,300 0,110,330

5,000,000 2,100,300 0,110,320 0,110,230

4,000,000 1,100,300 0,110,220

3,000,000 0,100,300

Fig. 5 Cellular networks:MAXC=7,MAX=3,MIN=2, degradation
tolerance = 1

We can also visualize the above actions as shown in Fig. 5.

6 Algorithm for generating distributed
graceful programs

In this section, we extend Algorithm 1 (see Sect. 4) to handle
distributed programs. In particular, Algorithm 1 focuses on
deriving a concurrent graceful program, where the program
is able to read and update all variables in an atomic step. In
applying Algorithm 1 to distributed programs, it is necessary
that the generated program can be implemented using a set
of processes.

The main difference between a concurrent program and
a distributed program is that, in a distributed program, each
process may have some private variables to which they have
sole access. Use of such variables is essential in ensuring
that the graceful program is implementable in a distributed
system. As an illustration, if we model processes that may
be byzantine, then the knowledge of whether a process is
byzantine must necessarily be private to that process.

There are several ways to model such distributed pro-
grams. One approach is to utilize message passing, where
all process information is private. And, channels are intro-
duced between processes so that they can send information
to other processes. We can observe that in such a system, a
channel is a shared object that is accessed by the processes on
both ends of it. To manage complexity, however, it is desir-
able to utilizemodels that hide such detailed implementation.
One such approach is to use sharedmemorymodel. In shared
memory model, each process can read the (public) variables
of its neighbors (in a pre-defined neighbor list) and update
its own information.
Modeling distributed programs To capture shared memory
programs, we use the approach in [12]. Specifically, we intro-
duce wi as a set of variables that process i can write and ri
as a set of variables process that i can read. We model these
restrictions as follows:
Write restriction Given a transition (s0, s1), we can trivially
identify variables written in this transition. In particular, if
value of a variable in s0 differs from that in s1 then that
variable has been written by the transition. Hence, we can
model write restriction by preventing process i from utilizing

transitions that write variables are outside wi . Thus, a write
restriction prevents a process from utilizing transitions:

wri te(i, wi ) = {(s0, s1)|∃x ∈ wi ::x(s0) �= x(s1)}

To model write restrictions, we can simply add the above
transitions to the transitions that violate safety as far as pro-
cess i is concerned. If a transition cannot be executed by any
process then we can simply add it to transitions that violate
safety (while specifying input for Algorithm 1).
Read restriction A state s0 is uniquely decided by knowing
the values of all program variables. Hence, any transition
(s0, s1) essentially reads all variables. Hence, modeling read
restrictions requires a slightly different approach. If a process
executes a transition (s0, s1) but it cannot read some variable,
say v, then it must execute a corresponding transition in s′

0
where s0 and s′

0 are identical except for the value of v. In
other words, read restriction causes program transitions to
be grouped.

Now, consider the case where two transitions (s0, s1) and
(s′

0, s
′
1) are grouped due to read restrictions. We now iden-

tify how s′
0 and s′

1 are related to s0 and s1. For simplicity of
discussion, we consider the case where wi ⊆ ri , i.e., pro-
cesses that can write a variable can also read it. Under these
circumstances, if (s0, s1) and (s′

0, s
′
1) are grouped due to read

restrictions then values of all variables in ri are equal in s0
and s′

0. In other words, due to read restrictions, s0 and s
′
0 are

indistinguishable for process i . Likewise, s1 and s′
1 must also

be indistinguishable for process i .
For variables not in ri , based on our assumption that

wi ⊆ ri , neither transition (s0, s1) nor (s′
0, s

′
1) can change

that variable. Hence, the group of transitions associated with
(s0, s1) is given by the following formula.

group(i, ri )(s0, s1)

= {(s′
0, s

′
1)|(∀x ∈ ri ::x(s0) = x(s′

0) ∧ x(s1) = x(s′
1))

∧(∀x /∈ ri ::x(s′
0) = x(s′

1) ∧ x(s0) = x(s1))}

We handle the distribution issues during Algorithm 1 as
follows. Write restrictions are added to safety violating tran-
sitions and, hence, would be removed. Read restrictions are
ignored initially, i.e., in the loop 4-13. However, just before
we check the condition on Line 13 that determines whether
the loop should terminate, we attempt to remove the corre-
sponding group of transitions removed in the loop. However,
if removal of some transition, say t1, causes removal of tran-
sition t2 and t2 is a transition in I× I then we only remove t1
but not the corresponding group. This is due to the fact that
Problem III.1 prevents us from removing transitions in I × I .
It is therefore possible that the transitions of the graceful pro-
gram may not satisfy the read restrictions entirely. Based on
this discussion, we present the following algorithm snippet
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Automation of fault-tolerant graceful degradation 11

(Algorithm 2) that is inserted between Line 12 and Line 13
in Algorithm 1 to handle read restrictions.

Algorithm 2Handle read restriction, insert between Line 12
and Line 13 in Algorithm 1
for each process j do

pr :=pold − p′
pr j := transitions of process j in pr
for each t ∈ pr j do

p′:=p′ − (group( j, r j )(t) − I × I )
end for

end for

Theorem 2 Let 1-R denote the algorithm obtained by adding
Algorithm 2 to Algorithm 1 between lines 12 and 13. Then,
Algorithm 1-R solves problem III.1 in polynomial time in the
presence of read-write restrictions.

Proof All the transitions that have been removed in one pass
through the iteration are collected and the respective read
restriction group, for each process, is removed. This group
does not contain any transition τ ∈ I× I . Thus, problem III.1
(A1) is satisfied. Since all deadlock states in I ′ are removed,
and maxp returns the largest program, problem III.1 (A2) is
satisfied. Finally, problem III.1 (A3) is satisfied as no transi-
tion in I is removed and that p satisfies spec from I . ��

7 Case study for graceful distributed
programs

In this section, we present the case study for byzantine
agreement problem. In the canonical version of byzantine
agreement, there is a general process and three non-general
processes. In an ideal scenario, the general sends a decision
(either 0 or 1) to non-generals. The non-generals receive this
decision and finalize their decision to be that of the gen-
eral. This ensures strong validity, i.e., the decision of the
non-generals is the same as that of the general and strong
agreement, i.e., the decision of the non-generals match with
each other.

One can consider some graceful versions of this. One
graceful version allows a non-general to be byzantine and,
hence, allows it to change its decision. For this graceful ver-
sion, the program satisfies weak validity, i.e., the decision
of the non-byzantine non-general is the same as that of the
general provided the non-general is non-byzantine and weak
agreement, the decision of the non-general is the same as that
of another non-general provided both are not byzantine. 2 The
program for the ideal scenario suffices to deal with ensuring

2 The Agreement requirement generally considered in the literature
corresponds to weak agreement from this paper. The Validity

weak validity and weak agreement if a non-general is byzan-
tine.

In this case study, we begin with this program as our
input program for which we want to add graceful degra-
dation.3 Subsequently, we derive a graceful version of this
program that only satisfies weak agreement. Finally, we
utilize this derived graceful program along with the origi-
nal program to derive a fault-tolerant graceful degradation
byzantine agreement program, i.e., a program that (1) sat-
isfies weak validity and weak agreement in the
absence of faults and (2) satisfies weak agreement in the
presence of faults, where the fault makes the general process
byzantine.

7.1 Original program

7.1.1 State space

The program consists of one general process (g) and three
non-general processes, i, j and k. Each process maintains a
decision variable d. For process g, the value for decision d
can either be 0 or 1. For processes i, j and k, the decision
value can be ⊥, 0 or 1. The value ⊥ denotes that the corre-
sponding non-general process has not received the decision
from general. Each non-general also maintains a variable f
that is 0 initially and is set to 1 when it finalizes its deci-
sion. Also, the variable bmaintained in each process denotes
whether the process is byzantine (b = 1) or not (b = 0).
Thus, the variables are defined as follows.

– d.g : {0, 1}, d.i, d. j, d.k : {0, 1,⊥}, b.g, b.i, b. j, b.k :
{true, f alse}

– f .i, f . j, f .k : {0, 1}

7.1.2 Specification of byzantine agreement

As described above, the original safety specification is
weak validity and weak agreement.Weak validity
requires non-byzantine non-generals to finalize their decision
to be the same as that of the general.Weak agreement requires
that the final decision of any two non-byzantine non-generals
should be the same. Additionally, the notion of finalization

Footnote 2 continued
requirement generally considered in the literature is slightly dif-
ferent from weak validity considered here. Specifically, weak
validity requires the non-general to be non-byzantine. But does not
impose the same requirement on the general. This is due to the fact
that weak validity is expected to be satisfied in the absence of
faults (that make the general byzantine) and only weak agreement
is expected to be satisfied in the presence of faults.
3 We could also apply Algorithm 1 to the program where the origi-
nal specification isstrong validity and strong agreement.
However, the corresponding derivation is outside the scope of this paper.
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requires that a non-general cannot finalize the decision⊥ and
it cannot change it after it finalizes it. Thus, the set of bad
states or transitions identified by these specifications are as
follows:

specbs_va =∃l ∈ i, j, k::
¬b.l ∧ d.l �= d.g ∧ f .l = 1

specbs_ag =∃p, q ∈ i, j, k::
¬b.p ∧ ¬b.q

∧ d.p �= d.q

∧ f .p = 1 ∧ f .q = 1

specbs_nb =∃l ∈ i, j, k::
¬b.l ∧ f .l = 1 ∧ d.l = ⊥

specbt_ f i ={(s, s′)|∃l ∈ i, j, k::
s( f .l) = 1 ∧ s(b.l) = 0∧
(s(d.l) �= s′(d.l) ∨ s′( f .l) = 0)}

The original safety specification, spec, is specified in
terms of the set of bad states, (specbs_va ∪ specbs_ag ∪
specbs_nb), and the set of bad transitions specbt_ f i .

Finally, the liveness specification, Lv requires (for both
original and graceful program) that each non-byzantine non-
general finalizes its decision. This is specified as follows:

Lv:=true � (∀p ∈ i, j, k::(b.p = 0) → ( f .p = 1))

7.1.3 Actions for original program

As discussed above, the original program deals with the case
where a non-general is byzantine but not the case where a
general is byzantine. The actions of the original program are
as follows:

d. j = ⊥ ∧ f . j = 0 −→ d. j :=d.g

d. j �= ⊥ ∧ f . j = 0 −→ f . j :=1

b. j −→ d. j :=0|1

The last action is the one that allows a byzantine non-
general to change its decision. Since Problem Statement III.1
guarantees to preserve existing behavior, these actions would
be preserved in the final program. These actions are treated as
environment actions, i.e., actions that eventually stop. Hence,
they are not considered in resolving liveness on Lines 11 and
12.

7.1.4 Invariant of original program

The invariant can be computed from the initial statewhere the
general is not byzantine and at most one non-general may be
byzantine. Moreover, the decision of each non-general is ⊥

and it has not finalized its decision. The states reached from
this initial state by the computation of the above program are
as follows:

I = ¬b.g ∧ (¬b.i ∨ ¬b. j) ∧ (¬b. j ∨ ¬b.k)

∧(¬b.i ∨ ¬b.k) ∧ (∀p::¬b.p ⇒ (d.p = ⊥ ∨ d.p=d.g))

∧(∀p::(¬b.p ∧ f .p) ⇒ (d.p �= ⊥))

Graceful program The graceful program is intended for
the scenarios where the general is byzantine. Hence, the
weaker specification specr is specified in terms of the set
of bad states, (specbs_ag ∪ specbs_nb), and the set of bad
transitions specbt_ f i .

We now illustrate Algorithm 1 in the context of byzantine
agreement. In particular, we instantiate Algorithm 1 with (1)
p, the transitions of the original program, (2) spec and specr
representing the original and weaker specification, (3) live-
ness specification Lv, (4) invariant I , and (5) state predicate
Sa equal to b.g ∧ ¬b.i ∧ ¬b. j ∧ ¬b.k. Note that the last
parameter is based on the observation that the graceful pro-
gram is intended for scenarioswhere the general is byzantine.
Now, we evaluate Algorithm 1 on these inputs.
Lines 1–2: Identifying invariant (I ′). The algorithm starts
with generating all possible states in invariant satisfying
weaker safety specification. Since we include original invari-
ant (I ) in the fault-intolerant program, the invariant (I�) not
in I is enumerated as follows.

1) First, observe that Sa requires that only the general is
byzantine and no non-general is byzantine.

2) Considering states in Sa further, we observe (a) I�
includes all states where d.i = d. j = d.k is true. This is
due to the fact that in such states agreement is satisfied
irrespective of values of b.i, b. j, b.k, b.g., f .i, f . j, f .k
or d.g. (b) Now, consider states where some two non-
generals, say i and j differ. To ensure Agreement, in
such states in I�, either d.i (or d. j) should be equal to ⊥
or f .i (or f . j) must be 0. (c) If I� includes a state where
f . j is 1 then d. j must be different from ⊥.

Hence, after computation by Line 1, we have

I� = (b.g = 1 ∧ b.i = b. j = b.k = 0)∧
(∀l ∈ i, j, k : f .l = 1 → d.l �= ⊥)∧

∨

⎛

⎜
⎜
⎝

d.i = d. j = d.k
d.i �= d. j → (d.i = ⊥ ∨ d. j = ⊥ ∨ f .i = 0 ∨ f . j = 0)
d.i �= d.k → (d.i = ⊥ ∨ d.k = ⊥ ∨ f .i = 0 ∨ f .k = 0)
d. j �= d.k → (d. j = ⊥ ∨ d.k = ⊥ ∨ f . j = 0 ∨ f .k = 0)

⎞

⎟
⎟
⎠

Line 3: Identifying a set of transitions (p′) not violating safety
specification.After enumerating the possible states in I� gen-
erated on Line 1, the algorithm generates p′ by reusing p as
well as including any transition in space I� × I ′ that does
not violate the specification specr .
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d.i = ⊥ −→ d.i := d.g

d.i = ⊥ ∧ (d.j = d.k = ⊥) −→ d.i := 0|1

d.i = ⊥ ∧ f.i = 0 ∧ ( (d.j = d.g ∧ d.j = ⊥)∨
(d.j = d.k ∧ d.k = ⊥)) −→ d.i := 0|1

d.i = ⊥ ∧ f.i = 0 ∧ (d.i = d.j ∨ d.i = d.k) −→ f.i := 1

d.i = ⊥ ∧ f.i = 0 ∧ (d.j = d.k = ⊥ ∧ d.i = d.g)−→ f.i := 1

d.i = ⊥ ∧ f.i = 0∧
d.j = ⊥ ∧ d.i = d.j ∧ d.j = d.k −→ d.i := d.j

Fig. 6 Byzantine agreement: actions for graceful program

If following Algorithm 1 as is, it would include transi-
tions where process j changes the value of d.k. Or, it may
include transitions of process j that rely on the general
being non-byzantine. Since this would be unacceptable in
the fault-tolerant graceful degradation program, as it would
be impossible to implement such a program, we utilize the
approach discussed in Sect. 6 to model ability of different
processes to read and write variables.
Loop 4–13: Resolving deadlock states and liveness viola-
tion. It is straightforward to observe that in this case, the
following transitions can be included in p′: (1) A process
that has not finalized can change its decision to 0 or 1 non-
deterministically, or (2) A process can finalize as long as its
decision is not ⊥ and another process has not finalized with
a different decision.

Notation. We use the sequence 〈x1, x2, x3, x4〉 to denote
the set of states where the value of x1 equals d.g, the value
of x2 equals d.i , the value of x3 equals d. j and the value of
x4 equals d.k. We use ‘∗’ to denote that the decision value of
certain process is irrelevant. For example 〈∗, 1, 1, 1〉 denotes
the set of states where d.i = d. j = d.k = 1 and d.g is either
0 or 1.

In such a program, there are no deadlock states. However,
some transitions need to be removed due to non-decreasing
rank value (Line 11). In particular, consider a state in
〈∗, 0, 0, 1〉 where process k has not finalized its decision.
Further consider the transition where process i changes its
decision to 1. This transition is removed since the rank of
both states (number of steps to reach a state where all non-
byzantine non-generals have finalized) is the same. In other
words, a process in majority cannot change its decision to the
minority process unless that minority process has finalized
its decision.

At this point, we reach the end of the loop (Line 13). Since
we need to consider grouping caused by read restrictions,
this results in removal of all transitions where a process in
majority changes its decision to one that is in the minority,
irrespective of whether the minority process has finalized.
(Note that this removal does not impact transitions in I and

the invariant of the original program, since there is no corre-
sponding state in I .)

While we omit the detailed analysis of different iterations
of this loop, we note that the transitions of the graceful pro-
gram for process i in states outside I are as shown in Fig. 6.
(Recall that the transitions for process i inside I are the same
as that of the original program.):

8 Adding fault-tolerance to programwith
graceful degradation

In this section, we present the second step in the two-step
approach, namely, adding fault-tolerance to the graceful pro-
gram. Hence, we first introduce the notion of faults. Then,
in Problem Statement VIII.2, we formalize the requirements
for adding fault-tolerant graceful-degradation. Subsequently,
we continue with the two case studies discussed in Sect. 5
by utilizing the original and graceful program to obtain a
fault-tolerant graceful-degradation program. For brevity, we
only focus on one of the levels of tolerance, namely masking
tolerance.

The faults, say f , that a program is subject to is repre-
sented by a set of transitions. Specifically, given a program
p = 〈Sp, δp〉, faults f are a subset of Sp × Sp. We use p[] f
to denote the transitions obtained by taking the union of p
and f .

Masking fault-toleranceOne can consider different levels
of tolerance, namely failsafe, nonmasking and masking, to a
given fault based on whether the program satisfies safety
and/or liveness in the presence of faults. Masking fault-
tolerant program ensures that in the absence of faults, it
satisfies its specification (including both safety and liveness).
Moreover, in the absence of faults, it remains inside its invari-
ant. In the presence of faults, it may be perturbed to a state
outside its invariant. Let T be the boundary up to which the
program can be perturbed due to faults and subsequent pro-
gram actions. A masking fault-tolerant program ensures that
starting fromany state in T , it recovers to its invariant. Thus, it
ensures that after faults occur, the program recovers to states
from where both safety and liveness are satisfied. Addition-
ally, during this recovery, it satisfies the safety specification.

Based on this intuition, we formally define a program, say
p, is masking f -tolerant to spec (=〈S f , Lv〉) from I iff the
following conditions hold:

(1) p satisfies spec from I .
(2) ∃T :: (a) I ⊆ T . (b) p[] f satisfies S f from T . (c) Every

computation of p[] f that starts from a state in T has a
state in I .

Nowwe consider the problem of adding fault-tolerance to
the graceful program. Intuitively, the resulting fault-tolerant
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program, say p f , is required to satisfy the original (stronger)
specification in the absence of faults. However, when the
program is perturbed by faults, the program is guaranteed to
recover to states from where it satisfies the weaker specifica-
tion.We formally identify the problem in Problem Statement
VIII.2, as follows.

Problem Statement VIII.2:
Addition of Fault-Tolerant Graceful-Degradation
Given p, spec, I , such that p satisfies spec from I ;
pg , specr , Ig , such that pg satisfies specr from Ig;
I ⊆ Ig , p |I ⊆ pg |I , f .
Does there exist I f , Ig f and p f such that
B1:I f ⊆I , p f |I f ⊆pg |Ig f ,
B2:Ig f ⊆Ig , p f |Ig f ⊆pg |Ig f ,
B3:p f satisfies spec from I f ,
B4:p f is masking f -tolerant for specr from Ig f .

As one can imagine, it should be possible to reuse exist-
ing algorithms for adding fault-tolerance to add fault-tolerant
graceful degradation. However, one needs to ensure that dur-
ing such reuse, the synthesized program satisfies the weaker
specification in the presence of faults. By contrast, (assuming
that satisfying the stronger specification were not feasible),
the existing algorithm for adding fault-tolerance will declare
failure to add fault-tolerance. There are several algorithms
[1,5,13] for adding fault-tolerance in the literature. In this
section, we plan to utilize them as a black box, i.e., we only
rely on the assumption that they satisfy the problemof adding
fault-tolerance (repeated from [5]).

Problem Statement VIII.3:
Addition of Fault-Tolerance
Given p, spec, I , f such that p satisfies spec from I ;
Does there exist I f , and p f such that
C1:I f ⊆I , p f |I f ⊆p |I f ,
C2:p f is masking f -tolerant for spec from I f .

In order to describe the fault-tolerant program subject
to the constraints in Problem Statement VIII.2, we can
utilize any of the algorithms [1,5,13]. We use the name
Add_masking to describe such a generic algorithm. Since
our reuse is black-box in nature, we only rely on the proof
(from [1,5,13]) that it satisfies Problem VIII.3. However,
for the convenience of the reader, we briefly describe the
key steps of these algorithms. Given the fault-intolerant pro-
gram, a set of fault transitions, the invariant and specification,
Add_masking first ensures all the reachable states by p[] f
satisfy safety specification and then excludes the compu-
tation that starts outside the invariant and cannot possibly
reach a state in the invariant. In addition, Add_masking
also resolves deadlock states and removes computations that
reach the deadlock states if it is impossible to add recovery.

The algorithm for adding fault-tolerant graceful degrada-
tion is as shown in Algorithm 3. First, it invokes

Add_masking (Line 4) that satisfies the constraints of
Problem VIII.3. The input to Add_masking consists of
the graceful program pg , fault transition f , invariant of
the graceful program Ig , and weaker specification specr .
Add_masking returns p′ and I ′ such that constraints of
ProblemVIII.3 are satisfied. Note that p′ satisfies the weaker
specification in the absence of faults. Hence, we consider the
computations of p′ on I ∩ I ′ (Line 5) by computing I ∩ I ′
and p′′|(I ∩ I ′), i.e., a program whose transitions are a sub-
set of the transitions of p and p′. Since the transitions of
this program are a subset of that of p, it satisfies the stronger
specification, spec, as long as it does not deadlock in any
state in I ∩ I ′. If there are deadlock states, those are removed
(Loop 6-11) and the process is repeated (Loop 2-12).

Algorithm 3 Adding Fault-tolerance to Graceful Program
Input: fault-intolerant program p, graceful program transitions pg ,

fault transitions f , invariant I , graceful invariant Ig , weaker speci-
fication specr .

Output: masking fault-tolerant program p f
1: p′:=pg , I ′:=Ig , I ′′:=I
2: repeat
3: Iold :=I ′, pold :=p′
4: p′, I ′:=Add_masking(p′, f , I ′, specr )
5: I ′′:=I ′′ ∩ I ′, p′:=p′ − (I ′′ × ¬I ′′), p′′:=p′|I ′′
6: while deadlock(I ′′, p′′) �= ∅ do
7: I ′:=I ′ − deadlock(I ′′, p′′)
8: I ′′:=I ′′ ∩ I ′
9: p′:=maxp(p′, I ′′, I ′)
10: p′′:=p′|I ′′
11: end while
12: until Iold = I ′ ∧ pold = p′
13: return p′ as p f , I ′ as Ig f , and I ′′ as I f

We now prove the correctness of Algorithm 3.

Lemma 3 (Correctness ofAlgorithm3)Let the input to Algo-
rithm 3 be:

– fault-intolerant program p,
– invariant I ,
– spec (original specification),
– graceful program pg,
– specr (relaxed specification),
– Ig (graceful invariant), and
– fault f

Let the output of Algorithm 1 be:

– fault-tolerant graceful program p f ,
– stronger invariant I f (in the absence of f ), and
– invariant Ig f
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Then

1) I ′′ ⊆ I
2) I ′ ⊆ Ig
3) p′ satisfies spec from I”
4) p′ is masking f-tolerant for specr from I ′

Proof The proof is on a case basis.

– I ′′ ⊆ I , p′ | I ′′ ⊆ pg | I ′: This follows from Lines 1, 5,
7-8, as I ′′ can only become smaller than I . Also, since
p′ ⊆ pg and I ′′ ⊆ I ′ (Lines 7 and 8), we have that
p′ | I ′′ ⊆ pg | I ′.

– I ′ ⊆ Ig, p′ | I ′ ⊆ pg | I ′: This follows from the fact that
I ′ = Ig initially and from the properties of Add_masking
(Lines 4 and 7).

– p′ satisfies spec from I ′′: It follows from the fact that I ′′
is closed in p′ (Line 5), I ′′ ⊆ I (1st condition) and p sat-
isfies spec from I (from problem statement assumption).

– p′ is masking f-tolerant for specr from I ′: This follows
from the properties of Add_masking (Line 4) and Line 7
(as I ′ gets stronger). ��

Lemma 4 Let the input to Algorithm 3 be:

– fault-intolerant program p,
– invariant I ,
– spec (original specification),
– graceful program pg,
– specr (relaxed specification),
– Ig (graceful invariant), and
– fault f

Then, Algorithm 3 terminates in polynomial time in state
space of p.

Proof We need to show that the two loops eventually ter-
minate. We prove this by showing the existence of a least
fixpoint for both loops.

– Inner loop: We need to show that, for a given I ′′ and p′′,
eventuallydeadlock(I ′′, p′′)=∅.Whendeadlock(I ′′, p′′) �
= ∅, then I ′′ and p′′ become smaller (Lines 7 − 10).
Eventually, I ′′ = ∅, making p′′ = ∅. At the next itera-
tion, deadlock(I ′′, p′′) = ∅ and the loop terminates.

– Outer loop: If the inner loop terminates with I ′′, p′′ =
∅,∅, then the outer loop will terminate in the next iter-
ation, since Iold , pold = ∅,∅, which is equal to the
terminating condition of the outer loop. On the other
hand, if the inner loop terminates with I ′′, p′′ �= ∅,∅,
Iold and pold get smaller in the next iteration (Line 3).
Eventually, Iold , pold = ∅,∅ and the loop terminates. ��

Theorem 3 Let the input to Algorithm 3 be: (i) fault-
intolerant program p, (ii) invariant I , (iii) spec (orig-
inal specification), (iv) graceful program pg, (v) specr
(relaxed specification), (vi) Ig (graceful invariant), and
(vii) fault f

Then, Algorithm 3 solves Problem VIII.2 in polynomial
time.

Proof It follows from Lemmas 3 and 4, p f | I f ⊆ pg | Ig f
(since I f ⊆ Ig f and p f is obtained by removing transitions
from pg) and p f | Ig f ⊆ pg | Ig f (as p f is smaller than pg).

��

8.1 Case study (continued): fault-tolerant printer
system

In this section,we continuewith the printer system fromSect.
5. We consider the fault that dequeues the next task before
the current task is printed. Specifically, the fault action is
represented as follows:

f ::di = 1 ∧ pi = 0 −→ di+1:=1

Next, we use this fault action along with the original and
graceful program from Sect. 5 to generate the fault-tolerant
graceful degradation program: Observe that in this case, the
invariant of the graceful program is closed in the fault actions.
Hence, Add_masking can trivially satisfy the fault-tolerance
requirement as no recovery action is needed. And, the actions
of the fault-tolerant graceful-degradation program are the
same as those of the graceful program.

8.2 Case study (continued): resource constraint
problem

In this section, we extend the cellular network case study
from Sect. 5 to make it fault-tolerant. One type of fault that
occurs often is channel loss. The fault action is:

f ::av > 0 −→ av:=av − 1

As can be observed, the invariant of the graceful program
is closed in the fault action, meaning that no further action
needs to be added to the graceful program, i.e., the graceful
program can tolerate channel losses.

8.3 Case study (continued): fault-tolerant byzantine
agreement

As discussed earlier, the fault action relevant for this step is
the one that makes the general process byzantine. We repre-
sent this fault by two actions. First action causes the general
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to be byzantine and the second allows it to change its deci-
sion.

f :: ∀p ∈ g, i, j, k ¬b.p −→ b.g:=true

b.g −→ d.g:=0|1

Based on the constraints of Problem VIII.2, in the con-
text of byzantine agreement, the problem of adding fault-
tolerant graceful-degradation will result in a program that
has the following properties: In the absence of faults, i.e.,
when the general is not byzantine, it will guarantee that
weak validity, weak agreement and Lv are satis-
fied.Moreover, in the presence of faults, i.e.,when the general
is byzantine, weak agreementwill be satisfied and even-
tually the program will recover to a state where both weak
agreement and Lv would be satisfied. Observe that taken
together, this ensures that the final program guarantees that
if the general is not byzantine then all non-generals finalize
with a decision that is the same as that of the general. And,
if the general is byzantine, all non-byzantine non-generals
finalize with identical decision. In other words, the fault-
tolerant graceful degradation program satisfies the typical
requirements for byzantine agreement [14].

The graceful program from Sect. 7 did not entirely han-
dle the read restrictions. Hence, the input program would
remove certain transitions that potentially violate the read
restrictions. Observe that the first action (where process i
changes from⊥ to d.g) exists in I aswell as outside I . Hence,
knowledge of b.g is not needed when executing this action.
Hence, the action corresponding to the group containing sec-
ond action must be removed. Likewise, in the third action, i
can change its value to either 0 or 1 only if both d. j and d.k
are different from the general. The fourth action remains as
is. Regarding the fifth action, we observe that if a fault occurs
in a state reached after executing that action then the corre-
sponding state, where d.g �= d.i and f .i = 1, is outside Ig .
Since recovery is not possible from this state, this transition
would be removed during addition of fault-tolerance. Finally,
the sixth action remains as is. Thus, the actions of the fault-
tolerant program are as shown in Fig. 7. And as discussed
above, it satisfies the requirements of [14]. The program is
also correct even if the third modified action is removed. It is
generated by our program to provide maximal choice to the
designer.

9 Addition of fault-tolerant multi-graceful
degradation

The problem of graceful degradation focuses on obtaining
a program that satisfies a weakened specification. This con-
cept can be generalized to a hierarchy of specifications, one
weaker than the previous one. In this section, we generalize

d.i = ⊥ −→ d.i := d.g

Second action subsumed by the first one.

Third action modified as below
d.i = ⊥ ∧ f.i = 0 ∧ ( (d.j = d.g ∧ d.j = ⊥)∧

(d.j = d.k ∧ d.k = ⊥)) −→ d.i := 0|1

d.i = ⊥ ∧ f.i = 0 ∧ (d.i = d.j ∨ d.i = d.k) −→ f.i := 1

Fifth action removed

d.i = ⊥ ∧ f.i = 0∧
d.j = ⊥ ∧ d.i = d.j ∧ d.j = d.k −→ d.i := d.j

Fig. 7 Byzantine agreement: actions for fault-tolerant graceful-
degradation program

our definitions and algorithms to such multi-graceful degra-
dation.

9.1 Problem statement

A multi-graceful degradation program satisfies its original
specification when no fault has occurred. However, if faults
occur then depending upon their severity, it satisfies a weaker
specification. To characterize the severity of faults, a multi-
graceful degradation program identifies a set of faults, say
f1, f2, . . . , fn , such that ∀ j : 0 < j < n : f j ⊆ f j+1. Since
f j ⊆ f j+1, f j+1 can perturb the program at least as much as
f j does.Hence,we say that f j+1 ismore severe than f j . In the
presence of increasingly severe faults, multi-graceful degra-
dation program provides successively weaker guarantees.
Hence, it identifies a set of specifications specr0(= spec,
the original specification), specr1 , specr2 , . . . , specrn such
that ∀ j : 0 ≤ j < n : specr j+1 is weaker than specr j .
Moreover, in the presence of increasingly severe faults, the
program may not recover to its original behavior. Hence, it
identifies a set of state predicates I ′

1, I
′
2, . . . I

′
n to which it

recovers after the recovery is complete. For each class of
faults, a fault-tolerant multi-graceful degradation program
provides the desired level –masking, failsafe or nonmasking–
of tolerance. However, in this section, we consider masking
fault-tolerance alone. Generalization to other types of fault-
tolerance is straightforward.

To add multi-graceful degradation to a given program p
that satisfies its specification, say spec from invariant, say I ,
we need to construct a program p f with invariant I f such
that p f satisfies spec from I f without using any new behav-
iors other than those used by p. However, if faults occur then
it needs to provide appropriate level of tolerance to them as
well as recover to states from where it satisfies the corre-
sponding weaker specification. Thus, the problem statement
is as follows:
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Problem Statement: IX.1
Addition of Fault-Tolerant Multi Graceful-Degradation
Given
◦ p, spec, I , such that p satisfies spec (= specr0 ) from I ,
◦ set of faults, f1, f2, · · · , fn , where

∀ j : 0 < j < n : f j ⊆ f j+1,
◦ set of relaxed specifications specr1 , specr2 , · · · , specrn ,

where ∀ j : 0 ≤ j < n : specr j+1 is weaker than specr j

Generate a multi-graceful fault-tolerant program p f and
invariant I f such that

∃I ′
1, I

′
2, · · · I ′

n where I f ⊆ I ′
1 ⊆ I ′

2 ⊆ · · · ⊆ I ′
n

1: I f ⊆ I , p f |I f ⊆ p|I f
2: p f satisfies spec from I f
3: p f is masking fi -tolerant to specri from I ′

i .

9.2 Algorithm for adding fault-tolerant
multi-graceful degradation

In this section, we introduce the algorithm for adding multi-
graceful degradation in Algorithm 4. Algorithm 4 takes as
input the set of increasingly severe faults and correspond-
ingly weaker specifications. It also takes in as inputs state
predicates Sa1 , Sa2 , . . . , San . These state predicates capture
constraints, if any, under which the corresponding graceful
behavior is expected. By default, they could be set to Sp − I ,
i.e., all states outside the invariant of the original program.

Algorithm 4 considers the faults successively. For fault
class f1, it generates a graceful program satisfying a relaxed
specification specr1 (Line 3). This program preserves all
original behaviors of p and adds new behaviors that satisfy
specr1 . Observe that this can be achieved by Algorithm 1
presented earlier in the paper. After obtaining the graceful
program that satisfies specr1 , we add fault tolerance to f1
(Line 4). This algorithm adds masking tolerance to the input
program. Similar to Algorithm 3, we use a generic algorithm
Add_masking to achieve this. This algorithm can be instan-
tiated to be an algorithm from [1,5,13].

Finally, this whole process is repeated for each fault-class.
Thus, the algorithm for adding multi-graceful degradation is
as shown in Algorithm 4:

Theorem 4 (Correctness of Algorithm 4) Let the input to
Algorithm 4 be:

– fault-intolerant program p,
– invariant I ,
– state predicates Sa1 , Sa2 , . . . , San ,
– specr1 , specr2 , . . ., specrn
– fault transitions f1, f2 . . . fn,

Let the output of Algorithm 4 be:

– masking fault-tolerant graceful program p f ,
– invariant I f

Then

1) I f ⊆ I , p f |I f ⊆ p|I f .
2) p f satisfies spec from I f .
3) p f is masking fi -tolerant to specri from Ii .

Proof To showAlgorithm 4 is sound, we first recall the prop-
erties of Algorithm 1. Let the input to Algorithm 1 be p, its
invariant I , original specification spec and the weaker spec-
ification specr ,. Let the output be the graceful program pg
and its invariant Ig . Then, we have:

– pg|I = p|I , I ⊆ Ig .
– pg satisfies specr from Ig .
– pg satisfies spec from I .

Now we use the above three properties to prove this theo-
remwhere we need to show that p f and I f satisfy conditions
in Problem Statement IX.1.

– I f ⊆ I , p f |I f ⊆ p|I f .
I f ⊆ I follows from Line 14. p f |I f ⊆ p|I f follows
from Line 4 since it does not add any new transition to
p|I f .

– p f satisfies spec from I f .
Note that after each iteration (Line 2 to Line 13), p′′ satis-
fies the specification from invariant generated in previous
steps. It follows from Line 3 that I ′′ is closed in pgi ; and
from Line 4 that I ′′ is closed in p′ since Add_masking
does not add any new transition in Igi as well as in I ′′.
In addition, from Line 6 to Line 11, no new transition
is added and deadlock states are resolved. Hence I f is
closed in p f . Moreover p f satisfies spec since I f ⊆ I .

– p f is masking fi -tolerant to specri from Ii .
p′′ obtained after each iteration (Line 2 to Line 13) sat-
isfies specri follows the same proof above. And p f is
masking fi -tolerant is ensured via Add_masking.

��
Theorem 5 Algorithm 4 is polynomial in the size of (|Sp|∗n)

where Sp is the state space and n the is number of fault
classes.

Proof The complexity of Algorithm 1 is polynomial in the
size of (|Sp|). If we utilize the Add_masking algorithm from
[5] then its complexity is also polynomial in the size of (|Sp|).
Moreover, in Algorithm 4, the outer loop (from Line 2 to
Line 13) executes at most n iterations and the inner loop
(fromLine 6 to Line 11) executes polynomial times in (|Sp|).
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Algorithm 4 Adding multi-graceful degradation
Input: fault-intolerant program p, fault-intolerant program invariant I .

state predicates Sa1 , Sa2 , . . . , San
weaker specifications specr1 , specr2 , . . ., specrn .
fault transitions f1, f2, . . . , fn .

Output: masking fault-tolerant program p f , and its invariant I f
1: p′′:=p, I ′′:=I
2: for i = 1 to n do
3: pgi , Igi := Gen_graceful(Sai ,p′′,I ′′ ,specri ) // This function invokes Algorithm 1 .
4: p′, I ′:=Add_masking(pgi , fi , Igi , specri ) // If any of the above two procedures fail, then algorithm aborts and reports no result returned.
5: p′′:=p′|I ′′, I ′′:=I ′′ ∩ I ′
6: while deadlock(I ′′, p′′) �= ∅ do
7: I ′:=I ′ − deadlock(I ′′, p′′)
8: I ′′:=I ′′ ∩ I ′
9: p′:=maxp(p′, I ′′, I ′)
10: p′′:=p′|I ′′
11: end while
12: p′′:=p′, I ′′:=I ′
13: end for
14: return p′′ as p f and I ′′ ∩ I as I f

Function: maxp(t : transition predicate, S1,S2,. . .:set of state predicates where S1 ⊆ S2 ⊆ · · · )
return {(s0, s1)|t ∩ (s0 ∈ S1 ⇒ s1 ∈ S1) ∧ (s0 ∈ S2 ⇒ s1 ∈ S2) ∧ · · · }

Function: deadlock(S: state predicate , t : transition predicate)
return {s0|s0 ∈ S ∧ (∀s1 ∈ S : (s0, s1) /∈ t)}

Therefore, the complexity of Algorithm 4 is polynomial in
the size of (|Sp| ∗ n). ��

10 Ohio coal research center ventilation
system

In this section, we illustrate Algorithm 4 with a case study
related to Ohio Coal Research Center (OCRC) ventilation
system. The OCRC safety system [15] was designed to pro-
tect personnel and facilities by detecting the presence of
explosive and/or toxic gas and either dealing with it, or by
alerting lab personnel and emergency responders. Our goal
in this paper is to illustrate how (a slightly abstracted version
of) this system can be designed using Algorithm 4.

In OCRC, the facility works with several gases that are
potentially explosive/poisonous in large enough concentra-
tion. The first line of defense if these gases are released is
ventilation, i.e., to evacuate any gas before it becomes a
hazard. Ordinarily, ventilation is handled by the building’s
central air supply (see Fig. 8) and exhaust, augmented by
an exhaust booster fan. If gas is detected (above a specified
threshold), the lab needs to be isolated from the rest of the
building by closing the exhaust vent cover and then turning
off the booster, and turning on a local exhaust fan that evacu-
ates air directly outside the building. Depending on the level
of gas concentration, status lights in the lab will change from
red to yellow or red, and a claxon alarm will sound. In addi-
tion, automated phone calls are placed to lab personnel and
emails are sent.

The system needs to tolerate equipment faults. Sensors are
generally duplicated so that failure of one sensor is tolerated,
and relative accuracy can be compared. Hence, failure to
detect the gas is not a concern. However, other parts of the
system can fail. For example, if the central exhaust supply
fails, a local supply fan needs to be turned on. Also, whenever
feasible, isolation is desired so that the released gas does not
enter the rest of the building. However, if the vent cover fails
and does not close then it may be impossible.

Based on the analysis of these faults, in [15], authors have
identified four possible statuses: Safe, NotLocal, UnsafeLab
and UnsafeCentral.

Status Safe corresponds to the case where there is venti-
lation, and the lab is isolated if necessary. Ventilation can be
Central (central exhaust on, vent cover open, booster on) or
Local (vent cover closed and local exhaust on); in both cases
central and/or local supply are on. NotLocal corresponds
to the case where there is ventilation but not isolation; this
means central exhaust is being used.UnsafeLab corresponds
to the case where the lab is isolated although ventilation is
inadequate.UnsafeCentral corresponds to the case where the
lab should be isolated but is not, and ventilation is inadequate.
These form a total order from safest to most hazardous.

To illustrate graceful degradation, we focus on the key
components of ventilation: central supply, central exhaust,
vent cover, local supply and local exhaust. For simplicity, we
ignore the exhaust booster. Specifically, if exhaust booster
fails, we model it as a failure of the central exhaust system.
Central supply and exhaust are not controllable but other
components are. Controllable components have an actuation
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Fig. 8 Overview of OCRC lab safety system (from [15])

status (open/closed, on/off) and controllability status (con-
trollable or not). A component is declared uncontrollable if
an attempt to actuate it fails, and it remains uncontrollable
until an operator fixes it and declares it controllable. Control-
lability lets us know whether it can be actuated or whether
we have to adapt to its present status.

10.1 Modeling ventilation system

Variables Based on the assumption made by system design-
ers, either central supply or local supply is functioning and it
is acceptable to use either one or both. Moreover, the choice
of supply does not affect the status (Safe, NotLocal, etc.) of
the system. Hence, we only model the central exhaust and
local exhaust system. Hence, we introduce the variable cc
(denoting whether central exhaust is available to use, i.e., it
has not been turned off by building.) and variable lc (denot-
ing whether local exhaust is available to use, i.e., whether
it is controllable). We also introduce variable c (denoting
whether the central exhaust system is being used by the lab)
and variable l (denoting whether the local exhaust system
is being used by the lab). Likewise, we introduce variables
v and vc to denote status of vent cover and its controllabil-
ity. Finally, the variable gas denotes whether hazardous gas
exists at a sufficiently high concentration. Thus, the variables
are as follows:

– gas : {0, 1}: Gas hazard detected (gas = 1) or not
(gas = 0).

– vc : {0, 1}: Vent controllable (vc = 1) or not (vc = 0).
– v : {0, 1}: Vent closed (v = 0) or open (v = 1).

– cc : {0, 1}: Central exhaust controllable (cc = 1) or not
(cc = 0).

– c : {0, 1}: Central exhaust in use (c = 1) or not (c = 0).
– lc : {0, 1}: Local exhaust controllable (lc = 1) or not

(lc = 0).
– l : {0, 1}: Local exhaust in use (l = 1) or not (l = 0).

Thus, the state space of this program consists of all states
obtained by assigning each variable value from the domain.
Additionally, when the context is clear, we would use C-style
syntax, that is ¬v evaluating to true if v = 0.

Based on the above modeling, we identify certain struc-
tural constraints. These constraints describe limitations in
terms of transitions that a revised program can include. For
example, if the central exhaust is not controllable then the
system cannot use it by setting c = 1. Observe that this
structural constraint can be modeled as a set of transitions
that the program cannot include. Hence, during the synthesis
algorithm, we model it as (an additional) safety specifica-
tion that has to be satisfied by the revised program. The set
of (bad) transitions identifying the structural constraints are
given by the following set of transitions.

S fbt ={(s0, s1)|(gas(s0) �= gas(s1)) ∨ (vc(s0) �= vc(s1))

∨ (cc(s0) �= cc(s1)) ∨ (lc(s0) �= lc(s1))}

In addition, the program cannot reach certain states in
which central/local exhaust is uncontrollable (cc = 0, lc =
0) while it is turned on (c = 1, l = 1). Thus

S fbs = {s|(¬cc(s) ∧ c(s)) ∨ (¬lc(s) ∧ l(s))}
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Notation. We use 〈gas, vc, cc, lc|v, c, l〉 to represent the
state. If a variable value is ‘∗’, it means it can be either 0 or 1.
Thus, 〈1, 1, 1, 1|∗, 0, 1〉 denotes a state where gas is present;
vent cover, central exhaust and local exhaust are controllable;
vent cover may be open or closed, central exhaust is not in
use and local exhaust is in use.

Specification There are two major requirements considered
critical in the system design. First of all, when hazardous
gas is detected, the lab should be isolated from the building
(denoted as Riso) to prevent gas leak from the lab to the rest
of the building. Second, the poisonous gasmust be exhausted
from lab (denoted as Rexh) to outside air. These requirements
are captured by Riso and Rexh , where

– Riso = gas ⇒ ¬v, gas isolated.
– Rexh = gas ⇒ ((v ∧ c) ∨ l), gas exhausted.

Rexh is considered much more important than Riso since
gases like hydrogen and carbon monoxide can explode.
Hence, we can consider three requirements that are used in
describing the graceful behavior.

– S f1 = Riso ∧ Rexh , where S f1 is the ideal require-
ment that should be satisfied whenever possible. In this
state, any leaked gas is exhausted while isolating the rest
of building from gas. This corresponds to status Safe
described at the beginning of this section.

– S f2 = Rexh , where S f2 is desirable when S f1 cannot
be met, i.e., if isolation cannot occur then exhaust must
be provided. This corresponds to the status NotLocal
described at the beginning of this section.

– S f3 = Riso ∨ Rexh , where S f3 specifies that at least one
of the two requirements should be met. This corresponds
to the statusUnsafeLab described at the beginning of this
section.

Remark For brevity of presentation,wedonotmodelUnsafe-
Central. Modeling UnsafeCentral will require three different
levels of graceful degradation. However, our algorithm can
be easily applied in deriving this third level of graceful degra-
dation.

Original program
In the ideal scenario, there is no gas leak and at least one

of the exhaust systems is functioning correctly. Moreover,
since no gas is leaked, the vent is always open. For efficiency
reasons, whenever possible, the program chooses the central
exhaust. But it switches to the local exhaust if needed. Thus,
the program consists of three actions. Specifically, the first
action turns on the central exhaust and turns off the local
exhaust when both are available. If only one of the exhaust
is available, the last two actions utilize the corresponding

Table 1 Actions of fault-intolerant program p

¬gas ∧ lc ∧ cc ∧ (¬c ∨ l) −→ c:=1, l:=0

central exhaust is turned on if both controllable

¬gas ∧ ¬lc ∧ cc ∧ ¬c −→ c:=1

central exhaust is turned on if local exhaust is uncontrollable

¬gas ∧ lc ∧ ¬cc ∧ ¬l −→ l:=1

local exhaust is turned on if central exhaust is uncontrollable

Table 2 Faults

f1: ¬gas −→ gas:=1 Hazardous gas is detected

f2: cc ∧ lc −→ cc:=0, l:=1, c:=0 Central exhaust loses its control

f3: cc ∧ lc −→ lc:=0, l:=0, c:=1 Local exhaust is loses its control

f4: vc −→ vc:=0 Vent cover loses its control

exhaust. The three actions of the program are as shown in
Table 1.

10.2 Application of multi-graceful degradation in
OCRC

In this section, we illustrate Algorithm 4 in the context of
OCRC. First, we discuss the faults in different severity and
the expected requirements in the presence of these faults.
Then, specify corresponding relaxed specifications. In par-
ticular, we split the whole synthesis progress into four parts
followingAlgorithm 4. In the end, we show the resulting pro-
gram and compare it with the original OCRC system design.

10.2.1 Faults

Before adding graceful degradation to the program inTable 1,
we identify the faults thatmay require one to provide aweaker
specification. We consider four possible faults that affect the
system. Of these, the first fault, f1, corresponds to the case
where a gas leak occurs. The next two faults, f2 and f3, cause
the central and the local exhaust to become uncontrollable.
When the exhaust becomes unavailable/uncontrollable, the
system receives a notification upon which the system must
turn the corresponding exhaust to off. Moreover, it cannot
turn that exhaust on again (except under manual interven-
tion). Note that the assumption in this system is that both the
local and the central exhaust do not become uncontrollable.
This is captured in the modeling of fault actions f2 and f3.
Finally, the last fault action, f4, causes the vent cover to be
uncontrollable. This is a stuck-at fault that causes the vent to
remain in its current position. Its status cannot be changed
by the program. These faults are as shown in Table 2.
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10.2.2 Requirements in the presence of faults

In this system, the first graceful program, say pg f t1 , is
designed for the case where faults f1 and f2 occur. Observe
that in the presence of f1 and f2, local exhaust and vent
cover are still controllable. Hence, we can eventually ensure
both Riso and Rexh . Note that in the presence of f1 and f2,
system may reach states that violate S f1 if f1 occurs while
the central exhaust is being used. But all such states are still
in S f2. Hence, the desired graceful behavior in this context
is one that satisfies the safety specification S f2 and liveness
specification Lv2:=true � S f1.

The second graceful program, say pg f t2 , is designed for
the case where all four faults can happen. If the local exhaust
is uncontrollable then it would be impossible to satisfy S f1
when a gas leak occurs. Likewise, if the vent cover cannot
be closed, it would be impossible to satisfy S f1. Hence, if
the system is exposed to all four faults, the systemmay reach
states that violate S f2. However, all such states still satisfy
S f3. Hence, the desired graceful behavior in this context is
one that satisfies the safety specification S f3 and liveness
specification Lv2:=true � S f2.

Thus, the systemdesign requires us to consider two classes
of faults. The first class includes actions f1 and f2. These
faults are combined into one class since requirements in their
presence are the same. And, the second class includes f1, f2,
f3 and f4.

10.3 Application of Algorithm 4

First, we identify the inputs for Algorithm 4.

– The fault-intolerant program p is same as that shown in
Table 1.

– The invariant I is set of reachable states by p, which in
particular are represented as I = {s|¬gas(s) ∧ (l(s) ∨
(c(s) ∧ v(s)))}

– In this case study, graceful behavior is desired only
if gas is present. Thus the set of state predicates
Sa1, Sa2, . . . , San are all set to {〈1, ∗, ∗, ∗|∗, ∗, ∗〉}.

– Faults are as described in Sect. 10.2.1 and the relaxed
specification is as described in Sect. 10.2.2.

Recall that Algorithm 4 utilizes a multi-step approach
where in each step, one class of faults is considered. The
Algorithm 4 invokes Algorithm 1 on Line 3. This subrou-
tine expands the behavior of the original program to add new
behaviors that only satisfy the weaker specification. Sub-
sequently, it utilizes this program to add fault-tolerance in
Line 4. Thus, for ease of understanding, we partition the
application of Algorithm 4 into four parts, given below:

Part 1. (Line 3 infirst iteration of loop 2–13):Generate grace-
ful program pg1 , such that it satisfies safety specification S f2
and liveness specification Lv2:=true � S f1.
Part 2. (Line 4 in first iteration of loop 2–13): Add fault-
tolerance to pg1 to obtain pg f t1 .
Part 3. (Line 3 in second iteration of loop 2–13): Generate
graceful program pg2 , such that it satisfies safety specifica-
tion S f3 and liveness specification Lv3:=true � S f2.
Part 4. (Line 4 in second iteration of loop 2–13): Add fault-
tolerance to pg2 to obtain pg f t2 .
Part 1: Generation of Graceful Program pg1 .

To generate pg1 (onLine 3 ofAlgorithm4),we invoke pro-
cedure Gen_grace f ul. Based on the inputs to Algorithm 4,
the inputs to the algorithm are as follows.

– Sa : As mentioned, Sa1 = {〈1, ∗, ∗, ∗|∗, ∗, ∗〉}.
– p: In the first iteration (2–13), the program transitions for

gen_grace f ul is the fault-intolerant program p.
– I : Same as the invariant identified for fault-intolerant pro-
gram.

– specr1 : The relaxed specification is a pair of safety spec-
ification and liveness specification.

– Relaxed Safety: We specify safety specification as
the set of bad states and bad transitions. First of all,
we require that program always satisfies S f2, thus
states in¬S f2 are not allowed. In addition, the relaxed
safety specification should always contain structural
constraints S fbs and S fbt .

– Relaxed Liveness: We require program ensure both
exhaustion and isolation eventually, i.e. reach a state
satisfying S f1.

Hence specr1 :=〈(¬S f2 ∪ S fbs, S fbt ), true � S f1〉.

First on Line 1, we identify all the states in Sa satisfying
S frbs . These states are denoted as I�:=((v = 1 ∧ c = 1) ∨
(l = 1)) ∧ (cc = 0 → c = 0) ∧ (lc = 0 → l = 0). Then, I ′
includes all states in I and I�. On Line 3, we obtain the set of
transitions satisfying the safety specification. In particular,
we show all the transitions in Fig. 9 (including solid and
dashed arrow). Note that on Line 3, each state in I� is added
with a self-loop transition. Now we discuss the synthesis by
loop (from Line 4 to Line 13) in different iterations.

– Iteration #1:Byconstruction I only includes stateswhere
no hazardous gas is present and I� only includes states
where hazardous gas is present. The program cannot
write the variable gas. Hence no transition from I� to I is
added on Line 7. There is no deadlock state identified in
this iteration onLine 8. To realize the effect of Line 11,we
first assign the rank (using function rank) over each state.
According to Lv, states in S f1 are assigned rank 0. Since
both states 〈1, 1, 1, 1|1, 1, 1〉 and 〈1, 1, 1, 1|1, 0, 1〉 reach
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1, 1, 1, 1|1, 1, 0 1, 1, 1, 1|1, 1, 1 1, 1, 1, 1|1, 0, 1

1, 1, 1, 1|0, 1, 1 1, 1, 1, 1|0, 0, 1

1, 1, 0, 1|1, 0, 1 1, 1, 0, 1|0, 0, 1

1, 0, 1, 1|0, 1, 1 1, 0, 1, 1|0, 0, 1

1, 0, 1, 1|1, 1, 0 1, 0, 1, 1|1, 1, 1 1, 0, 1, 1|1, 0, 1

1, 0, 1, 0|1, 1, 0 1, 1, 1, 0|1, 1, 0 1, 0, 0, 1|1, 0, 1

1, 0, 0, 1|0, 0, 1

Sf2

Sf1

gas, vc, cc, lc|v, c, l
: state
gas, vc, cc, lc|v, c, l

: removed state

: program transition

: removed transition

Fig. 9 Transitions of pg1 (except those shown in Table 1)

Table 3 Newly discovered
transitions in Part 3 〈1, 0, 1, 1|0, 1, 0〉 → 〈1, 0, 1, 1|0, 1, 1〉 〈1, 0, 0, 1|0, 0, 0〉 → 〈1, 0, 0, 1|0, 0, 1〉

〈1, 0, 1, 1|0, 0, 0〉 → 〈1, 0, 1, 1|0, 0, 1〉 〈1, 1, 1, 0|0, 1, 0〉 → 〈1, 1, 1, 0|1, 1, 0〉
〈1, 1, 0, 1|0, 0, 1〉 → 〈1, 1, 0, 1|0, 0, 1〉 〈1, 1, 1, 1|0, 0, 0〉 → 〈1, 1, 1, 1|0, 0, 1〉
〈1, 1, 1, 1|0, 1, 0〉 → 〈1, 1, 1, 1|0, 1, 1〉 〈1, 1, 1, 0|0, 0, 0〉 → 〈1, 1, 1, 0|0, 1, 0〉

some states in S f1 in one step, their ranks are 1. There-
fore, the transition between them is removed on Line 11.
Likewise, on Line 11, the self-loop transitions on states
〈1, 1, 1, 1|1, 1, 0〉, 〈1, 1, 1, 1|1, 1, 1〉, 〈1, 1, 1, 1|1, 0, 1〉
and 〈1, 1, 0, 1|1, 0, 1〉 are removed. On Line 12, those
states with ranks of∞ are removed, i.e. those underlined
states in Fig. 9.

– Iteration #2: Algorithm 1 applies no change in the next
iteration, thus the loop terminates.

Therefore the remaining transitions (and states) together
with those in p (and in I ) are returned as pg1 (and Ig1 ). We
show transitions of pg1 (except those shown in Table 1) in
Fig. 9.
Part 2: Adding fault-tolerance to pg1 .

To add fault-tolerance, we use procedure Add_masking
as a black box. Thus to illustrate the result of adding fault-
tolerance,wefirst consider how the programcan be perturbed
by faults, that is set of reachable states by pg1 in the presence
of f , where f = f1 ∪ f2; then show that starting from all
these reachable states there are transitions provided by either
original program p or graceful program pg1 .

In the absence of faults, if only f1 occurs, the system
reaches one of the states in 〈1, 1, 1, 1|∗, ∗, ∗〉. Note that all
these states are generated in pg1 and have outgoing transi-
tion, thus f1 is tolerated. In the absence of faults, if only f2
occurs, following transitions in p, system switches to local
exhaust, thus f2 is tolerated. If original program perturbed
by f1 and f2 together, the only state can be perturbed to
is 〈1, 1, 0, 1|1, 0, 1〉 which is generated in pg1 and has an

outgoing transition. Thus, there is no changes on Line 4 in
Algorithm 4.
Part 3: Generation of graceful program pg2 .

In this case, we add fault-tolerance to the program gen-
erated in Part 2. The inputs of program and invariant are
selected from thefirst iteration. Faults consist of all four faults
in Table 2 and the specification in the presence of faults is as
specified in Sect. 10.2.2.

We do not elaborate the effect of Algorithm 1 again on
pg2 . Instead, we show set of newly discovered transitions
and states in pg2 (not including those in pg1 ) in Table 3.
Part 4: Adding fault-tolerance to pg2 .

There are no new transitions added by Add_masking,
and pg f t2 is same as pg2 .

10.4 Extension to deal with UnsafeCentral

To finalize the synthesis, we also consider the status of
UnsafeCentral. In this case, neither isolation nor exhaustmay
be satisfied, at least temporarily. Hence, the relaxed require-
ment does not include any safety specification. However,
it includes a liveness specification, namely, true � S f3.
Although we do not present the application of Algorithm 4,
we can easily obtain the corresponding program by consid-
ering only another class of faults and applying Algorithm 4
in a third iteration.

The statewhere S f3 is violated is reacheddue to faults such
as transients. It could also be reached if both exhaust systems
fail temporarily. Algorithm 4 already handles this scenario
as well. Specifically, for this case, we need to model fault
f5 as a transient fault that requires the liveness specification
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true � S f3. If we add this as the third fault class and apply
Algorithm 4, the resulting program is same as the ventilation
system (i.e., the system except alarms, status lights etc) of
OCRC.

11 Related work

The work in this paper is closely related to that of con-
troller synthesis, game theory and automated addition of
fault-tolerance. Controller synthesis considers the follow-
ing problem: Given two languages U (plant) and D (desired
system), identify a third language C (controller), such that
U ∩D ⊆ C [16]. Thus, the goal is to begin with the plant and
add controller to obtain the desired system. The idea of trans-
forming a fault-intolerant system into a fault-tolerant system
using controller synthesis is used in [17]. Also in [18], Girault
and Rutten demonstrate the application of discrete controller
synthesis in automated addition of fault-tolerance in the con-
text of untimed systems. Our work in this paper differs from
this work in that we are trying to relax the specification of the
given system whereas they are trying to strengthen it. In the
context of game theoretical approach for model revision, a
program is automatically fixed as a game [19,20]. The game
is played on the model of two players [21], i.e., program and
environment. A program is considered to win the game if the
specification is always satisfied no matter how the environ-
ment interacts with the program. Game theoreticmethods are
usually based on the theory of tree automata [22].

Model repair for probabilistic system [3] is to revise a
probabilistic system M such that the new system M ′ satisfies
a probabilistic temporal logic formula. M ′ differs from M
only in the transition flows of controllable states. Our work
is orthogonal to that in [3] in that this work can be extended in
the context of dealing with probabilities and their work can
be extended to deal with addition of graceful degradation.
Algorithms for automatic addition of fault-tolerance [1,5]
add fault-tolerance concerns to existing untimed or real-time
programs in the presence of faults, and guarantee the addition
of no new behaviors to the original program in the absence
of faults. In the context of this paper, we utilize the synthesis
algorithm for adding fault-tolerance. Our work builds on this
work by enabling repair in scenarioswhere the previouswork
fails to perform repair or has a much higher overhead.

12 Discussion and summary

12.1 Discussion

Order of Operations in Different Phases. In our approach,
we first designed a program that satisfied degraded specifica-
tion. Subsequently, we added fault-tolerance to the resulting

program. A natural question, thus, is whether it would be
possible to add fault-tolerance as the first step. We argue that
this is not possible. In particular, the main reason for using
the approach in this paper is for cases where it is impossible
for the fault-tolerant program to recover to states fromwhere
the original specification is satisfied.

Comparison with algorithms for adding safety, liveness or
fault-tolerance. Existing work [5,13,23] focuses on adding
properties to an existing program. Since the goal of this work
is to construct a program that preserves the existing speci-
fication (in the absence of faults) and to satisfy the newly
desired property, they prohibit transitions to be added in the
absence of faults. This is due to the fact that adding transi-
tions creates new program behaviors that may not satisfy the
original (universal) specification. However, these approaches
permit removal of transitions, as removal of transitions pre-
serves existing universal specification as long as it does not
create deadlocks. Our solution in Algorithm 1 is explicitly
designed to add such transitions so that the new program sat-
isfies a relaxed specification. For this reason, the algorithms
in this paper are more general than that in [5,13,23]. Specif-
ically, the algorithm in this paper is applicable even if it is
impossible to recover the system to states from where the
original specification is satisfied. By contrast, the algorithms
in [5,13,23] will declare failure in these cases.

Scalability of approach. State space explosion is gen-
erally unavoidable in the area of program verification or
synthesis. Even though the addition of fault tolerance (FT) is
NP-complete in the size of the state space, it has been shown
to be feasible to add FT to programs of moderate size [24],
up to programs with state space of 10100 [25]. However, the
approachmay not directly scale to C++ programs of 1000s of
lines of code. One possible way to circumvent this is through
model extraction. In [26], we have extracted the necessary
state transition model from a UML model, apply fault tol-
erance transformation to it and convert it back (with some
heuristics) to a UML model. In [27], the authors have shown
how an UPPAAL model can be extracted from a SystemC
model (an extension of C). We have shown how FT can be
added to these models [28] and how it can be sliced to find
subset of the model relevant to the property at hand. In this
context, automated reverse transformation is not yet avail-
able.

Transformation failure. Our algorithm involves 2 steps:
(i) Addition of graceful behavior and (ii) addition of fault-
tolerance. Technically, the first step cannot fail. It can simply
return the original program, i.e., it may not add any new
behaviors. This may, however, cause the second step to fail.
Adding fault-tolerance fails for two reasons: (1) it is impos-
sible to satisfy the property or (2) heuristics used for adding
fault-tolerance fails. For high atomicity programs—where a
process can read all the variables, the algorithms for adding
fault-tolerance are sound and complete, i.e., they declare
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failure only if a solution is not feasible. For distributed pro-
grams, the problemof adding fault-tolerance isNP-complete.
Hence, heuristic based approaches have been developed for
adding fault-tolerance in distributed systems.

Implication to concrete programs. Our work focuses on
event based programs where each process consists of several
event processing modules that responds to events (that may
correspond to external events or internal events indicating
that certain predicate is true). In this case, adding behaviors
corresponds to adding new modules for dealing with newer
predicates. By contrast, removing behaviors corresponds to
restricting ore removing existing event response modules.

An alternate approach is to utilize ideas such as recovery
blocks [29]. Specifically, in this approach, at certain instances
of the program, acceptance conditions are checked. If they are
violated, alternate code is executed to recover from the result-
ing faults/errors. New behaviors can be added by adding such
recovery blocks. Also, in [30], authors present an approach
to utilize concurrent atomic actions (that are the basis of our
model) instead of recovery blocks.

Interference among properties. In our case study onmulti-
graceful degradation, we assumed that the specifications
were in a strict order, with the original specification being
strongest, the next one weaker and so on. This allowed us to
handle the stepwise addition where we consider one specifi-
cation at a time. It is possible to consider a version where you
have incompatible weaker specifications. For example, one
specification could be to satisfy requirement 1 alone but not
necessarily requirement 2. Another specification could be to
satisfy requirement 2 but not necessarily requirement 1. We
believe that designing graceful degradation in this manner
is expected to be more difficult. We anticipate it being NP-
complete based on a result in [31]. In this work, authors have
considered adding failsafe and nonmasking fault-tolerance.
They are similar to incompatible requirements. We antici-
pate that such scenarios are generally rare; in most cases,
requirements can be characterized in terms of their prior-
ity and the desired graceful behaviors require that highest
priority requirements should be satisfied. Hence, the grace-
ful behaviors naturally fall into (1) drop 1 requirement with
lowest priority, (2) drop 2 requirements with lowest priority
and so on.

12.2 Conclusion

Existing approaches for automated additionof fault-tolerance
have focused on the following problem: Given a fault-
intolerant program p, construct a fault-tolerant program
p′such that p′ behaves like pafter recovery from faults. It
follows that after recovery is complete, p′ satisfies the orig-
inal specification of p. However, as discussed in the paper,
there are several instances where it is impossible (or undesir-
able) to recover the system to states from where the original

specification is satisfied. Hence, we focused on the problem
of graceful fault-tolerance, where the goal is to construct a
program p′ such that (1) in the absence of faults p′ behaves
like p, (2) p′ provides desired fault-tolerance, and (3) after
recovery is complete, p′ exhibits graceful behavior where it
satisfies the given weaker specification.

Wepresented a two-phase approach for designing graceful
fault-tolerance: In the first phase, we transformed the input
fault-intolerant program p into a graceful program pg that
includes all behaviors of p as well as new behaviors that
satisfy the desired weaker specification. In the second phase,
we used both p and pg to obtain a fault-tolerant program p′
that behaves like p in the absence of faults and recovers to
behaviors provided by pg after the faults stop.

To solve this problem, we have first formalized the prob-
lem of adding graceful degradation to a program and have
then provided an algorithm that transforms a given fault-
intolerant program into a gracefully degrading program. We
presented two solutions, one for concurrent programs and
another for distributed programswhere each process can read
or write only a subset of program variables. For the sec-
ond phase, we have formulated the problem of addition of
fault-tolerance where one begins with two (or possiblymore)
programs that satisfy successively weaker specifications.

We have then demonstrated the applicability of our algo-
rithms through three case studies: (i) a printer system [4],
(ii) cellular networks [11] and (iii) Byzantine agreement.
Of these, if we used the first two case studies with exist-
ing approaches [23] then they will declare failure since there
does not exist a fault-tolerant program that satisfies the origi-
nal specification. And, for the third case study, a significantly
more complex input is required to permit addition of fault-
tolerance.

We have then extended the notion of graceful degradation
to that of multi-graceful degradation whereby a program can
satisfy someweaker specification based on the severity of the
fault type being present. Similarly, we have first formalised
the problem and provided a polynomial-time algorithm that
automates the addition of multi-graceful degradation. We
have shown the applicability of the algorithm on a non-trivial
case study, namely the OCRC system.

Our approach for designing graceful programs also opens
up new research directions in the area of program repair,
where the goal is to add a desired property (safety, live-
ness, fault-tolerance, etc.) to a given program.However, these
approaches fail if the newly desired property is incompatible
(e.g., adding priorities to programs that assume equal fair-
ness) with an existing property of the program.

For example, consider the case where we have a pro-
gram that provides fair mutual exclusion access to processes
P1 and P2. Suppose we want to add the property that
requires that P1 has higher priority than P2. Since the new
requirement is incompatible with existing program prop-
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erties, existing approaches that add a new property while
preserving existing universal properties fails. In these cases,
our first phase can be used to remove ‘fairness’ from the
given program so that the priority requirement can be added.
Thus, novel algorithms to add new properties to an existing
program after removing the offending property are required.
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