
Hybrid Online Protocols for Source Location Privacy in
Wireless Sensor NetworksI

Matthew Bradburya,∗, Arshad Jhumkaa, Matthew Leekea

aDepartment of Computer Science,
University of Warwick,

Coventry, CV4 7AL, United Kingdom

Abstract

Wireless sensor networks (WSNs) will form the building blocks of many novel

applications such as asset monitoring. These applications will have to guarantee

that the location of the occurrence of specific events is kept private from attackers,

in what is called the source location privacy (SLP) problem. Fake sources have

been used in numerous techniques, however, the solution’s efficiency is typically

achieved by fine-tuning parameters at compile time. This is undesirable as WSN

conditions may change. In this paper, we first present an SLP algorithm —

Dynamic — that estimates the relevant parameters at runtime and show that it

provides a high level of SLP, albeit at the expense of a high number of messages.

To address this, we provide a hybrid online algorithm — DynamicSPR — that

uses directed random walks for the fake sources allocation strategy to reduce

energy usage. We perform simulations of the various protocols we present and

our results show that DynamicSPR provides a similar level of SLP as when

parameters are optimised at compile-time, with a lower number of messages sent.

Keywords: Wireless sensor networks, Source location privacy, Fake sources,

Random walks, Online algorithm

IThis is an extended version of a paper [1] that was published in the Proceedings of the IEEE
International Conference on Trust, Security and Privacy in Computing and Communications
(TrustCom), 2015.
∗Corresponding author
Email addresses: M.Bradbury@warwick.ac.uk (Matthew Bradbury),

H.A.Jhumka@warwick.ac.uk (Arshad Jhumka), M.Leeke@warwick.ac.uk (Matthew Leeke)

DOI: https://doi.org/10.1016/j.jpdc.2018.01.006

©2018. This manuscript version is made available under the CC-BY-NC-ND

4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0

1. Introduction

Wireless sensor networks (WSNs) are expected to form the foundation of smart

infrastructures of the future. As novel WSN-based applications are developed,

some of these will be intended for safety-critical or security-critical domains.

One such class of applications is monitoring applications where one or more

assets are observed. Such critical domains may include medical services [2] while

non-critical domains may include habitat monitoring [3]. For security-critical

applications, these WSN-based monitoring applications have to provide several

security and privacy guarantees.

This paper focuses on one such property, namely source location privacy

(SLP), which can be described as the problem of guaranteeing that the location

information of a source node (or asset) can only be observed or inferred by those

intended to observe it [4]. Such assets can be, for example, military personnel,

endangered species [5], etc. As WSNs operate in a broadcast medium, attackers

can intercept messages and use the knowledge gained to attack the network or

the asset. In SLP, the attacker may use directional antennas to be aware of the

direction (a type of context) a message was sent from and then use that direction

information repeatedly to follow through the network to find the source of the

messages and thus the location of the valuable asset the source had detected.

An actual deployment was undertaken to monitor badger locations in [6]

with a WSN deployed to route information and specific nodes in the network

designated as badger detection nodes. A larger deployment was undertaken by

the WWF as part of the Wildlife Crime Technology Report [7], where wireless

mesh networks, sensors attached to animals and UAVs were deployed to monitor

and protect wildlife from poachers. Wireless messages were encrypted [8] to

ensure that the content of the messages was protected. However, these two

networks did not protect against context attacks, meaning that they could be

abused by an attacker to find the location of the animals.

Fake source techniques have been previously used to provide SLP [1, 9, 10].

In [10], a heuristic was developed — which we refer to as Static — that provided

very high SLP levels under specific parameterisation. However, Static is not

suitable for real-world deployment as the parameters need to be fixed at compile-

time, making the application unable to quickly adapt to changing network

conditions. In this paper, we propose a novel heuristic — which we refer to

as Dynamic — that determines the parameter values (of Static) at runtime.

Through simulations, Dynamic was shown to provide comparable levels of SLP

2

as Static, albeit at the expense of a higher message overhead [1]. To reduce the

overhead, we propose a novel hybrid SLP protocol — called DynamicSPR —

that uses a directed random walk to select fake sources. Our results show that

DynamicSPR maintains similar SLP levels compared to Dynamic, and also

provides a significant reduction in the energy cost of the protection scheme.

The remainder of this paper is as follows: In Section 2 we provide a survey of

related work. Section 3 details our system models and Section 4 summarises the

Static algorithm. In Section 5 we develop the Dynamic algorithm for SLP and

then describe using a directed random walk in Section 6. In Section 7, we outline

the simulation approach employed to generate the results in Section 8 that are

discussed in Section 9. Section 10 concludes with a summary of contributions.

2. Related Work

The SLP problem first appeared around 2004 in the seminal work of [11], shortly

followed by [4] and there has been a large amount of contributions since then

[12–14]. The authors of [4] proposed a formalisation of the SLP problem, and

subsequently investigated several algorithms to enhance SLP. One technique was

to allocate fake sources, but the authors indicated that it had poor performance

despite being an expensive strategy. It has since been shown that, for certain

attacker models, fake sources can provide high levels of SLP [9]. The authors

subsequently went on to propose an algorithm called phantom routing, where

messages are first sent on a directed random walk of a given length to a phantom

node. After reaching the phantom node, the message is routed to the sink either

via flooding (PRS) or by single-path routing (PSRS).

2.1. Phantom-Routing Based Techniques

There have been several extensions to the phantom routing scheme originally

proposed in [4]. Most focus on improving how the directed random walk is

performed. GROW (Greedy Random Walk) [15] was one of the first extensions

that proposed using a bloom filter to record previously visited nodes to make

better decisions about the path the directed random walk should take. Another

alternative approach is angle-based techniques such as PRLA [16] or ADRS [17],

which use angles between key nodes such as the sink, source and current location

to determine which node should be chosen next in the path. Some techniques

aim to improve privacy by simply having multiple phantom routes [18], or an

increased randomness and diversity of the location of phantom nodes [19], or

3

by sacrificing nodes along the route by turning off their radio to entrap the

attacker [20]. Other algorithms (such as [15]) investigated optimisations to

reduce energy usage. This class of technique is temporal [21] in nature as the

attacker is typically delayed whilst on route to the source.

Similar techniques to phantom routing exist, where messages are routed in

a ring around the sink rather than in directed walks [22, 23]. Rings are first

formed around the sink and then generated messages are forwarded through the

rings before being routed to the source. Another technique uses communications

to lure an attacker to an area of the network which is then disconnected from

the rest of the network to trap the attacker [20].

However, there have been many works highlighting the deficiencies of phantom

routing. An issue solved by the self-adjusting random walk [24] was that there

could potentially be no suitable neighbour to continue the random walk. The

solution thus proposed adjusted the direction of the walk to ensure that there

would be sufficient suitable neighbours. Another problem is that the performance

of phantom routing degrades when multiple sources are present [25]. This problem

is still an open issue. In terms of new types of attack, the random walk technique

has also been shown to reveal information about the location of the source

[26], where a traffic-analysis attack developed based on random walks hitting

the network boundary allows prediction of the source’s location. The work in

[27, 28] identified three attacks based on quantitative leakage of information (i)

correlation-based source identification, (ii) routing traceback, and (iii) reducing

source space. It is shown that phantom routing as well as algorithms that use the

same source id for each message sent are vulnerable. Due to these weaknesses, it

is worth considering alternative protection schemes.

2.2. Fake-Sources Based Techniques

Instead of relying on a time delay introduced by a random walk, the fake source

technique uses on a subset of network nodes which act as decoys for the real

source by becoming fake sources. Fake sources will periodically broadcast fake

messages that are indistinguishable from the normal messages sent by the (real)

source, with the aim to convince an attacker that the fake source is actually

the real source node. When the set of nodes is the whole network, maximum

SLP is achieved [29]. However, this configuration uses a large amount of energy,

which reduces the network’s lifetime. Thus, an intelligent fake sources selection

strategy is required. [30] reinforces this point by showing that there is a trade-off

to be made between SLP and energy used due to message retransmissions. This

4

class of technique is spacial [21] in nature as the attacker is lured by the fake

sources to a different area of the network.

The main criticism of fake sources is that they use a large amount of energy

in comparison to other techniques, so it is important to fine-tune fake source

selection strategies to reduce their energy cost. Another issue is that fake source

techniques can perform poorly with multiple sources due to collisions between fake

messages [31]. A criticism of both fake sources and routing-based techniques is

that many existing solutions focusing on just providing SLP, whereas algorithms

such as [32] provide location privacy and additionally identity and route privacy.

2.3. Other Techniques

Many strategies have combined fake sources and routing protocols to provide

improved SLP. The work in [33] and [34] contributed the notion of CEM and

PEM respectively. CEM aims to trap the attacker in a cycle instead of letting

them find the source node whereas PEM draws the attacker away using extended

paths that broadcast fake messages. In [35] the authors proposed imposing

a tree structure on the network using fake sources at the leaf nodes, with a

focus on using the minimal energy possible at nodes one-hop from the sink

node to lengthen the network’s lifetime. In [36], the RFL scheme uses the

idea of fogs to provide privacy using a combination of fake messages inside

the fogs and routing between multiple fogs to provide SLP. Other schemes

have combined phantom routing with fake sources by creating them along the

phantom route [37, 38]. Whereas, other routing techniques have used delay

strategically to group messages together to prevent the attacker from making

as much forward progress towards the source [39]. Finally, some solutions are

starting to apply techniques that were previously discounted due to the large

energy and computational cost involved. For example, [40] proposed a technique

based on onion routing and distributed hash tables, but did not experimentally

evaluate the energy cost of their technique.

In short, phantom routing provides a high level of SLP at relatively low

energy usage while fake sources can potentially offer higher SLP levels but at

the cost of higher energy usage. Further, all of these techniques use network and

configuration information that needs to be available at compile-time.

2.4. Other Kinds of Context Privacy

There are several other research directions relating to the provision of privacy in

WSNs. Some have investigated the problem of base station-location privacy [41–

5

43], combining sink and source location privacy [44, 45] and providing location

privacy to multiple nodes simultaneously [44] by using fake routes branching

off the main route. Others have focused on more powerful attackers, such as

coordinated multiple attackers [9], or on a different kind of context privacy —

temporal privacy [46] — where the time events occur need to be protected.

2.5. Anonymous Communications Outside of Wireless Sensor Networks

Much work has investigated traffic analysis attacks against general networks [47].

A common way to achieve sender or target privacy in internet communications

is to use a proxy which acts as a middleman. A downside is that the sender and

target are both leaked to the proxy. Onion routing [48, 49] solves this problem

by sending a message between multiple hops before it reaches the destination.

At each hop a layer of encryption is removed from the message revealing the

next hop it should target. This ensures the target does not know the source and

the intermediate hops do not know the target.

There tends to be less need for onion routing in WSNs as the infrastructure

is typically owned and used by a single organisation. Though this may be less

true with the introduction of WSN IP stacks [50]. But, because a WSN operates

in a broadcast medium, the communication between intermediate hops is not

kept hidden from the attacker. This inter-hop communication will leak context

information if the messages are not routed in an SLP-aware manner.

3. Models

3.1. Network Model

A wireless sensor node is a device with a unique identifier that has limited compu-

tational capabilities and is equipped with a radio transmitter for communication.

A WSN is a set of wireless sensor nodes with communication links between pairs

of nodes. We assume that all nodes in the network have the same communication

range. The nodes that are in direct communication range with a node n are

called the neighbours of n.

There exists a distinguished node in the network called a sink, which is

responsible for collecting data and which acts as a link between the WSN and

the external world. Other nodes sense the presence of an asset and then route

the data via 〈normal〉 messages along a computed route to the sink for collection.

We assume that any node can be a data source and we assume a single node to

be a data source at any time. We assume that the network is event-triggered,

6

i.e., when a node senses an object, it starts sending messages periodically to the

sink for a certain amount of time.

We assume 〈normal〉 messages to be encrypted and that the source node

includes its ID in the encrypted messages. Using the ID, the sink can infer an

asset’s location as we assume the network administrators will record where they

put nodes. We do not assume that WSN nodes have access to GPS due to the

resulting increase in energy cost.

3.2. Safety Period Model

The objective of any WSN-based SLP solution is to ensure that the asset (at

a specific location) is never captured through the WSN. However, two issues

arise: (i) if the asset is not mobile, then a trivial solution is that the attacker

can take as long as it requires to perform an exhaustive search of the network,

until it catches the source, and (ii) if the asset is mobile, an exhaustive search is

unsuitable as the source may have moved when the attacker reaches the location.

Thus, with a mobile asset, the SLP problem against a local attacker present in

the network can only be considered when it is time-bounded, i.e, the asset has to

be captured within a given time window. Such a situation may occur during

wild-life poaching and in military situations.

This notion of time window has been termed as safety period in the literature.

There are two competing definitions of safety period: (i) The one used primarily

by routing-based techniques, e.g. [4] is where the safety period is defined as the

time required to capture the asset. The aim of these techniques is to maximise

the safety period, i.e., the higher the time to capture, the higher the SLP level

provided. (ii) The second notion is the dual of the first time, in that it is specified

as the maximum time the attacker can take to capture the source. We use the

second notion here.

3.3. Routing Protocol

In WSNs, a routing protocol is required so data can be transferred from a source

node to the sink node. The routing protocol is considered to be a set of paths

(a path is a sequence of communication links between pairs of nodes) and a

message will travel along one of the paths to the sink. Each message may follow

the same path or messages may follow different paths to the sink. In this paper

the technique we propose in this paper is independent of the type of routing

protocol used. In the SLP problem, an attacker will make use of the routing

protocol to locate the asset.

7

3.4. Attacker Model

It was proposed in [51] that the strength of an attacker for WSNs could be

factored along two dimensions, namely presence and actions. Presence captures

the network coverage of the attacker, while actions capture the attacks the

attacker can launch. For example, presence could be local, distributed or global,

while actions could be eavesdropping or reprogramming among others. In this

sense, the attacker we assume is a local distributed eavesdropper (distributed due

to mobility) based on the patient adversary, introduced in [4]. Such an attacker

is reactive in nature and proceeds as follows:

1. The attacker initially starts at the sink.

2. When the attacker is co-located at a node n and eavesdrops a message that

has not been received before, from a neighbour node m, the attacker will

move to m. Thus, in a normal setting, the attacker is geared to moving

closer to the source as he only follows unique messages.

3. Once the source has been found, the attacker will no longer move.

Previous work [4] has assumed that the attacker has the ability to identify

whether a message has been previously responded to. We also make this assump-

tion and implement it by having the attacker record and compare the message

type and sequence number. This is similar to the attacker comparing the en-

crypted message body against previously received messages. If this assumption

is not made, then a routing protocol such as flooding will lead the attacker

away from the source. The attacker will respond to both 〈Normal〉 and 〈Fake〉
messages, as 〈Fake〉 messages are encrypted and padded to be indistinguishable

from 〈Normals〉 messages.

We assume that the attacker has the capability to perfectly detect which

direction a message arrived from, that it has the same radio range as the nodes in

the network, and also has a large amount of memory to keep track of information

such as messages that have been heard. This is commensurate with the attacker

models used in [1, 10, 30].

In this work, the attacker starts at the sink because the sink is the one

location in the network where the attacker is guaranteed to eavesdrop a message

from the source node, irrespective of the routing protocol used. The attacker

could potentially start at any location in the network, however, the attacker may

not receive messages due to their location not being on the route from the source

to the sink. We assume that the sink is located at a base known to the attacker

such as a military base or a field station used by scientists monitoring wildlife.

8

3.4.1. Capabilities

This attacker model lies on the bottom of total order of attacker capabilities

shown in Figure 1. This is because some stronger attacks would weaken the

the attacker’s ability to capture the source by leaking information to the WSN

regarding the attacker’s position. For example, if the attacker attempted to

disrupt the functioning of the network (e.g., by a DoS attack), it would reduce

the amount of useful information the attacker could gather. If an attacker

attempted to broadcast messages to influence the SLP or routing protocol, then

the WSN could potentially detect an intrusion attack and respond by ceasing to

broadcast around the attacker (similar to [20]).

eavesdrop→ crash→ disturbing→ limited passive→ passive→ reprogramming

Figure 1: Attacker capability hierarchy proposed in [51].

Performing certain attacks such as breaking into a sensor node to obtain

encryption keys (i.e., passive attacks) are good strategies for an attacker trying

to defeat SLP. The problem with such an attack is that it is also time consuming.

For example, [51, p. 11] predicts that a key stealing attack will take around 30

minutes to perform in the field (not counting preparation time elsewhere or the

time it takes to find, obtain and open a sensor). As our solution to SLP aims to

provide a high level of SLP within a specific safety period, if the time taken to

obtain encryption keys is larger than the safety period then the attacker will

have failed to capture the source within this safety period. Then the attacker

would have achieved better results by simply eavesdropping.

Thus, in the context of SLP in WSNs, one of the most powerful type of local

attackers that can be had is the distributed eavesdropper which we assume here.

4. Problem Statement and Overview of the Static Heuristic

After having introduced the attacker model and the concept of safety period, we

now present the abstract SLP problem addressed in this paper. Given a network

G = (V,E), a distributed eavesdropper Â that is initially located at the sink, a

source src ∈ V , a safety period Psafety, a routing algorithm R, the problem is

to select a set F ⊆ V such that ∀v ∈ F , assign a tuple (n, p, d) to v, where n is

either a temporary or permanent fake source, p is the fake message period and d

is the duration over v sends fake messages such that Â does not reach src within

Psafety when Â is following the movement rules defined in Subsection 3.4.

9

Table 1: Glossary

Name Description

TFS Temporary Fake Source

PFS Permanent Fake Source

TailFS Tail Fake Source — A type of fake source only used in DynamicSPR

n, j, k Refer to nodes in the network. Node Â refers to the attacker

Psrc Source Period — the time between the source sending messages

DTFS TFS Duration — the time a TFS exists for

PTFS TFS Period — the time between the TFS sending 〈fake〉 messages

PPFS PFS Period — the time between the PFS sending 〈fake〉 messages

#F Number of 〈fake〉 messages to be sent during the TFS duration

α The average time it takes for one message to be received at a neighbour

1HopN(j) The set of nodes in the 1-hop neighbourhood of j

∆sink(j) The distance in hops between node j and the sink

∆src(j) The distance in hops between node j and the source

∆ss The distance in hops between the sink and the source

Ni The ith 〈normal〉 message sent by the source

A The 〈away〉 message sent by the sink

C The 〈choose〉 message sent by fake sources at their end-of-life

Fi The ith 〈fake〉 message sent by fake sources

Sn(M) The time one of the four message types is sent by node n

Rn(M) The time one of the four message types is received at node n

∆as(Ni) The attacker’s source distance after receiving i 〈normal〉 messages

The fake source allocation problem (assigning the tuple (n, p, d)) is an NP-

complete problem [10], so there is a need for heuristics to calculate good values

that provide high levels of SLP whilst using as little energy as possible. A heuristic

called Static was initially proposed in [10] that the novel on-line heuristics we

will present improve upon. We preview Static first, before presenting a version

of Static, which we call Dynamic that can determine parameters on-line.

Static is based on three main parameters, which capture the tradeoffs involved

between SLP and energy usage.

� the temporary fake source (TFS) duration (DTFS)

� the temporary fake source period (PTFS)

� the permanent fake source (PFS) period (PPFS)1

1We do not require permanent fake source duration as a permanent fake source is considered

10

The Static algorithm works as follows:

1. The source node repeatedly sends a 〈normal〉 message2 Ni with a time

period between messages of Psrc, beginning with N1.

2. When the sink receives N1 it waits for a short period of time (ω) then

broadcasts an 〈away〉 message A that floods the network.

3. When a one-hop neighbour of the sink receives A it becomes a TFS.

4. A TFS broadcasts a 〈fake〉 message Fi with period PTFS for a duration

of DTFS , before becoming a normal node and broadcasting a 〈choose〉
message C.

5. When a normal node receives C it becomes a PFS if the node believes itself

to be the furthest node in the network from the sink, otherwise it will

become a TFS. A PFS broadcasts a 〈fake〉 message Fi with period PPFS .

� When a node receives a previously unencountered A, Ni or Fi it updates its

last seen sequence number for that message and rebroadcasts the message.

� When a node receives a previously unencountered C it updates its last seen

sequence number for that message.

The authors of [10] performed a large-scale simulation to show the high levels

of SLP achievable by Static, when varying the values of the main variables, i.e.,

DTFS , PTFS and PPFS . The Static scheme has fake sources initially selected

close to the sink, that slowly move away to positions further from the sink and

the source. This allows the attacker to be slowly pulled away from the source

and was been informed by one of the results of [10] which showed that a higher

TFS duration improved SLP.

The problem is that if Static is deployed, DTFS , PTFS , and PPFS must be

fixed at compile time, making Static susceptible to poor performance under

changing network conditions or incorrect parameters chosen at compile-time.

Making these decisions correctly requires precise understanding of the environ-

ment where the network is being deployed. Thus, we now propose, in the next

section, a novel heuristic, which we call Dynamic, that determines these param-

eter values at runtime, on a per node basis, obviating the need to incorporate

operational knowledge at compile time.

a temporary fake source with ∞ duration.
2In [10], the base routing protocol used was flooding.

11

Source Sink TFS

(a) The source floods the net-
work with 〈normal〉 messages,
repeating every Psrc seconds.
Nodes record their ∆src.

Source Sink TFS

(b) After the sink receives the
first 〈normal〉 message it waits
ω seconds then floods an 〈away〉
message to start the fake source
allocation.

Source Sink TFS

(c) All nodes 1-hop from the
source that receive the 〈choose〉
become TFSs. This diagram
only shows 1 for simplicity.

Source Sink TFS

(d) The 〈away〉 flood continues,
allowing nodes to record ∆ss

and ∆sink(j).

Source Sink TFS

(e) The TFS starts sending
〈fake〉 messages, for the dura-
tion of the fake source.

Source Sink TFS

(f) The 〈fake〉 message flood
should lure the attacker away
from the source.

Figure 2: The common actions for the Static and Dynamic algorithms.

5. Dynamic: Estimating Parameters Online

Three types of information are required for the online evaluation of DTFS , PTFS ,

and PPFS : (i) parameters fixed at compile time of the firmware that are known

to all nodes, (ii) information needed to derive the parameters that is not required

during network execution and (iii) information that must be calculated during

network execution and passed on to other nodes in the network.

The first piece of information required is the source period (Psrc), which is

fixed at compile time. The second required piece of information is the delivery

delay (α), which is the time taken for a message sent by one node to be received

at a neighbour. This delay has been the subject of research as it is an important

12

Source Sink TFS

(a) Choose next fake source by
broadcasting a 〈choose〉 mes-
sage.

Source Sink TFS

(b) Nodes further from the
source than the original TFS be-
come fake sources.

Source Sink TFS

(c) The fake sources continue
sending 〈fake〉 messages.

Figure 3: Spread of fake sources under Static or Dynamic after a TFS duration expires.

Source Sink TFS

(a) Choose next fake source by
unicasting a 〈choose〉 message.

Source Sink TFS TailFS

(b) Original TFS becomes a
TailFS until it detects a further
TFS.

Source Sink TFS

(c) TailFS detects further TFS
and becomes normal again.

Figure 4: Spread of fake sources under DynamicSPR after a TFS duration expires.

value to take into account during clock synchronisation [52, 53]. Typically, α

will be very small compared to the source period Psrc, which means that its

impact may be negligible on the final values. Finally, three pieces of network

information are computed during execution: (i) the sink-source distance (∆ss),

(ii) the sink distance for node n (∆sink(n)) and (iii) the source distance for node

n (∆src(n)). All distances are calculated in hops. With this information, we will

now explain how the three important parameters of Static are calculated.

To develop the framework for calculating the parameters, we view the fake

source strategy of luring an attacker away from a source through an analogy

with tug–of–war: In tug–of–war, two teams are pulling on either end of a rope,

13

the team that pulls a marker on the rope over a certain point wins. In SLP, we

can think of sending messages as pulling on the rope, the source is on one side

and the fake sources are on the other. The attacker is the marker that will cause

one team to lose, i.e., Â captures the source because the pull from the source is

greater than the pull from the fake sources. We will often refer to the pull of the

source or the fake sources during our explanation. We will use this analogy in

determining the values of parameters of Dynamic at runtime. To provide SLP,

the fake sources need to exert a bigger pull on the attacker than the source.

For this analysis we use the following notation. The current time will be

denoted by t, at t = 0 the source node sends the first 〈normal〉 message. The

1-hop neighbourhood of a node j is denoted by 1HopN(j). We also define a

function max⊥ which finds the maximum of all arguments that are not ⊥.

5.1. Message Timings

We assume that the source routes messages to the sink such that the message

will first reach the sink via a shortest path (e.g., by flooding or CTP [54]). Thus,

� The ith 〈normal〉 message is sent by the source at time:

Ssrc(Ni) = (i− 1)Psrc (1)

� In the worst case when no SLP is provided, an attacker will receive N1 at

t = α∆ss and will have moved to be at (∆ss − 1) hops from the source.

For the ith 〈normal〉 message the attacker receives, the distance between

the attacker and the source (∆as) will be:

∆as(Ni) = max(0,∆ss − i) (2)

� An attacker will receive the ith 〈normal〉 message at time:

RÂ(Ni) = Ssrc(Ni) + α∆as(Ni−1) (3)

〈Away〉 messages will be sent and received at these earliest times:

� The 〈away〉 message A is sent by the sink at time Ssink(A). The wait

between receiving a 〈normal〉 message and sending the 〈away〉 message is

denoted by ω. This short wait was included to reduce collisions between

the 〈normal〉 and 〈away〉 messages. ω was set to Psrc

2 in this work.

14

Ssink(A) = Ssrc(N1) + α∆ss + ω (4)

� A node j will receive A at the earliest at the time Rj(A).

Rj(A) = Ssink(A) + α∆sink(j) (5)

When node j receives an 〈away〉 message A (and its hop count is 0) or when it

receives a 〈choose〉 message, the node becomes a TFS and starts broadcasting

〈fake〉 messages. The time at which j becomes a TFS is τTFS(j), where:

τTFS(j) =

Rj(A) if j ∈ 1HopN(sink)

τTFS(k) +DTFS(k) + α if k ∈ 1HopN(j) ∧∆sink(k) < ∆sink(j)

(6)

The number of N messages sent between t = 0 and t = τTFS(j) is Σj(N):

Σj(N) =

⌈
τTFS(j)

Psrc

⌉
(7)

5.2. Calculating TFS Duration

5.2.1. Intuition

When a node is selected as a TFS, the period at which it generates 〈fake〉
messages defines the pull it exerts on the attacker. Since it knows the pull

exerted by the source (defined by Psrc), we can estimate the duration over which

the fake source needs to apply its greater pull to drag the attacker away from

the source. Our estimation will make use of network delays encountered.

5.2.2. Derivation

To calculate DTFS , we set the duration to be the difference in time between

the TFS sending the first 〈fake〉 message and the attacker receiving the next

〈normal〉 message, less the time it takes to send the next 〈choose〉 message:

DTFS(j) = RÂ(NΣj(N)+1)− τTFS(j)− α (8)

For the case ∆sink(j) = 1, the attacker will have already received N1 and the

next 〈normal〉 message it will receive is N2. The following timing information is

known about the nodes 1-hop away from the sink:

15

τTFS(j) = α∆ss + ω + α (9)

RÂ(N1) = α∆ss (10)

RÂ(N2) = Psrc + α(∆ss − 1) (11)

Using this information the duration for a node j ∈ 1HopN(sink) is:

DTFS(j) = RÂ(N2)− τTFS(j)− α = Psrc − ω − 3α (12)

The next step is to calculate the duration for nodes that are n-hops away from

the sink, where n > 1. In this case the attacker has now received Nn and the

duration of this TFS is to last until Nn+1 is received. The knowledge about a

node k that is (n − 1)-hops from the sink, can be used to calculate when the

node j that is n-hops from the sink becomes a TFS at τTFS(j).

τTFS(j) = τTFS(k) +DTFS(k) + α

= τTFS(k) + (RÂ(Nn)− τTFS(k)− α) + α

= RÂ(Nn)

= (n− 1)Psrc + α(∆ss − (n− 1))

(13)

RÂ(Nn+1) = nPsrc + α(∆ss − n) (14)

Therefore the duration is given by:

DTFS(j) = RÂ(Nn+1)− τTFS(j)− α = Psrc − 2α (15)

For nodes where ∆sink(j) > 1, the duration is equal to the time that the attacker

would receive the next 〈normal〉 message less the time it received the current

〈normal〉 message and α.

DTFS(j) = RÂ(Ni+1)−RÂ(Ni)− α = Psrc − 2α (16)

So for any node j the DTFS(j) will be:

DTFS(j) =

Psrc − ω − 3α if ∆sink(j) ∈ {1,⊥}
Psrc − 2α otherwise

(17)

As α is not available to the nodes during runtime and because α is expected to

be very small relative to Psrc, α is ignored in the final result.

16

DTFS(j) =

Psrc − ω if ∆sink(j) ∈ {1,⊥}
Psrc otherwise

(18)

To aid in handling unreliable information dissemination, when the node’s distance

to the sink ∆sink(j) is unknown (i.e., set to ⊥) the smaller duration is used.

5.3. Calculating Number of Fake Messages to Send

5.3.1. Intuition

There exists a relation between the TFS duration, the TFS period and the

number of message that are sent in that period. Either the number of messages

to be sent can be defined in terms of the duration and period, or the period

can be defined in terms of the duration and number of messages. We choose

the latter, as shown in Equation (20), as this allows the algorithm to make

its decisions based on the number of 〈normal〉 messages sent during the TFS

duration.

#F (j) =
DTFS(j)

PTFS(j)
(19) PTFS(j) =

DTFS(j)

#F (j)
(20)

5.3.2. Derivation

Two approaches are provided to calculate the number of 〈fake〉 messages to send.

Pull From Attacker:

#F (j) = max⊥(1, 2∆sink(j)) (21)

This approach aims to pull the attacker back from its estimated position assuming

no SLP protection. In this case we assume that TFS nodes propagate away from

the source at the same rate that an attacker moves towards the source. This

can be a reasonable assumption when the duration of the TFS is equal to the

source period. This means that a TFS will need to send twice the ∆sink(j) to

dissuade the attacker back from its position. ∆sink(j) message are needed to

pull back from the sink to the TFS, another ∆sink(j) messages are needed to

pull the attacker from its position back to the sink.

Pull From Sink:

#F (j) = max⊥

1,

∆sink(j) if ⊥ ∈ {∆src(j),∆ss}
∆src(j)−∆ss otherwise

 (22)

17

This approach aims to pull the attacker back from the sink’s location. This

approach is less aggressive compared to the previous approach and is not as

focused on trying to pull the attacker all the way back, but instead keeping it

in a location between the TFS and the source. An important benefit of this

approach is that ∆src(j)−∆ss is used to calculate the sink distance. This means

that a TFS closer to the source will send fewer messages than TFS further away.

5.4. Calculating TFS Period

5.4.1. Intuition

The TFS period of a fake source defines how fast 〈fake〉 messages are sent by

the node, i.e., it captures the strength of the pull of the fake source. A TFS

must send at least 1 〈fake〉 message to keep parity with the number of 〈normal〉
messages sent. c > 1 messages need to be sent to ensure that at least one 〈fake〉
message reaches the attacker when collisions occur. To pull an attacker back h

hops, h× c different 〈fake〉 messages need to be sent.

5.4.2. Derivation

Using the TFS duration DTFS(j) and the number of 〈fake〉 messages to send

#F (j) the TFS period is obtained by dividing them. The PTFS can not

be allowed to go below 3α as collisions would then occur between the cur-

rent and the previously broadcast 〈fake〉 message. Again as α is unavail-

able, PTFS(j) is finally defined without it. This requires #F (j) to be de-

fined in such a way that it does not lead to PTFS(j) being set to 3α or less.

PTFS(j) = max

(
3α,

DTFS(j)

#F (j)

)
(23) PTFS(j) =

DTFS(j)

#F (j)
(24)

5.5. Calculating PFS Period

5.5.1. Intuition

By the time a PFS has been created, many TFSs should have been pulling the

attacker away from the source. This means the PFS should not need to send as

many 〈fake〉 messages as a TFS. It will need to send at least 1 〈fake〉 message for

each 〈normal〉 message sent by the source, plus some extra to consider collisions.

5.5.2. Derivation

If an attacker can be guaranteed to have been moved far enough from the

source by TFSs, then having PPFS(j) = Psrc would be preferable. However, the

18

attacker’s position should not be relied upon to be far enough away, meaning

the algorithm requires PPFS(j) < Psrc, such that any PFSs retain the ability to

pull back the attacker and cope with collisions of 〈fake〉 messages.

A lower bound on the period PPFS(j) ≥ α exists, as the PFS cannot

physically send messages more often than that. There also exists an upper bound

of PPFS(j) < Psrc as the PFS should not broadcast slower than the source.

The technique used here is to set the PFS period to the source period mul-

tiplied by the receive ratio of 〈fake〉 messages at the source (ψsrc(F)). This is

justified because it means for every 〈normal〉 message sent the PFS should send

enough 〈fake〉 messages for the attacker to receive at least one 〈fake〉 message.

PPFS(j) = max(Psrc × ψsrc(F), 3α) (25) PPFS(j) = Psrc × ψsrc(F) (26)

In order to calculate this receive ratio, the source node needs to keep a record of

the number of 〈fake〉 messages sent and received. The sequence number records

the overall number sent and an additional counter records the number of times

the sequence number was updated as the number received. This information must

be transmitted back to the PFS, where it is needed, using 〈normal〉 messages.

This is best effort as a PFS may not receive every 〈normal〉 message sent.

ψsrc(F) =
fake messages received + 1

fake sequence number + 1
(27)

5.6. Summary

These derivations allow the Dynamic algorithm to determine the three main

parameters online and adapt to changes in the network. The diagram shown

in Figure 5a depicts how node types can change during the execution of Dynamic

and an ideal spread of fake sources for Dynamic is shown in Figure 6a. However,

as the energy usage is high for this technique there is a desire to optimise it.

6. DynamicSPR: Fake Source Allocation Strategy

The Dynamic heuristic (and thus Static) works in such a way that fake sources

spread out across part of the network. Nodes close to the source are prevented

from becoming fake sources and nodes that are believed to be the furthest from

the source become a PFS (see Figure 6a). The downside is that the many fake

sources cause a high message overhead (i.e., use a large amount of energy) and

may often undo the work of other fake sources or induce a high proportion of

19

collisions. To circumvent this problem, we consider an alternative technique for

fake source selection and use the directed random walk technique from phantom

routing to achieve this3. The benefit of the directed random walk is that it

allocates a node far from the source, which is a good location for a PFS to be.

DynamicSPR (dynamic single path routing algorithm), is a modification of

the Dynamic heuristic that uses a directed walk away from the source node

to allocate fake sources. Intuitively, the use of a directed random walk should

prevent multiple competing fake sources from being created, allowing high levels

of SLP to be provided whilst using fewer messages. This approach to allocating

fake sources matches the optimal solution presented in [55], where the routing

of messages causes the attacker to move away from the source. A difference

between Dynamic and DynamicSPR is in the way the sink is notified that SLP

should start being provided. Instead of starting fake source allocation when the

first 〈normal〉 is received, instead the source node first sends a 〈notify〉 message

to the sink to inform it that an object has been detected.

6.1. DynamicSPR Overview

Initially a wave of 〈away〉 messages are sent to inform nodes of their sink distance.

When the sink receives a 〈notify〉 from the source, a 〈choose〉 message will be

sent to start the fake source allocation. At the end of a fake node’s duration the

node then chooses a neighbour that has the furthest source distance and sends

them a 〈choose〉 message. If there are multiple candidates, the next fake node

will be chosen randomly from them. Along the walk TFSs will be created to

pull the attacker away hop–by–hop. The walk will end when no neighbours are

further from the source than the current node, this node will be a PFS.

The state machine for DynamicSPR is depicted in Figure 5b. A typical

execution of DynamicSPR will result in a fake source selection shown in Figure 6b.

6.2. Ensuring Reliability

It is unrealistic to assume that links between sensor nodes are reliable or that

the links remain bi-directional [56]. Unreliable links become problematic when

considering delivery of messages along single path routes, because if one message

is lost it can prevent the single-path route from reaching its target. If a 〈choose〉
message fails to be delivered then the directed walk could terminate prematurely

3The routing protocol for 〈normal〉 messages remains unchanged for DynamicSPR.

20

����������	

��
����	

����	����	

�	�	������	�

����	�

�	�	�����

���	�

��	�
�������
��������

�	����������
	�

���	

�	�	��	������	

� �
�����������	�!

 	����	�����
	�

���	

"���� �
�����	�	��	�

������������	���������	������	

�	�	��	������	

� �
�������	�!

��
����������#$���	�

(a) Static and Dynamic

����������	

��
����	

����	����	

�	�	������	�

��	�
�������
��������

�	����������
	�

���	

�	�	��	������	

����	����������	�

�	��������

�������
	����	

!��	���
���������

"#���	�

$	����	�����
	�

���	

%����$�
���������
�����	�	��	�

������������	���������	������	

�	�	��	������	

�����	�����������	

�����	������������	

!��	��������	����
	

�����	�����	�	��	�

����	�

�	�	�����

���	�

(b) DynamicSPR

Figure 5: The conditions under which nodes transition from one type to another.

and no more SLP protection would be allocated. To ensure the walk is continued,

a 〈choose〉 message needs to be retransmitted until it is acknowledged. However,

having the fake source only sending 〈choose〉messages until they are acknowledged

may stop providing SLP for a time as no 〈fake〉 messages are flooded through the

network. To resolve this problem a new type of fake source — tail fake sources

(TailFS) — will be created along the directed walk to continue providing SLP.

A TFS becomes a TailFS after its duration expires. While it is a TailFS, both

〈choose〉 and 〈fake〉 messages are sent periodically. As soon as a 〈fake〉 message

is received from a fake source that is further from the real source than the TailFS

is, the TailFS reverts to being a normal node and ceases sending 〈choose〉 and

〈fake〉 messages. In this case the 〈fake〉 message acts as an acknowledgement

packet. Using this technique pairs of fake sources will be created along a walk,

a TFS and a TailFS that is one-hop close to the source than the TFS is. As a

TailFS has a potentially unbounded duration, the fake broadcast period is set to

be those used for PFSs (PPFS(j)). The 〈choose〉 message is repeated every TFS

duration (DTFS(j)) until the TailFS becomes a Normal node.

6.3. Choosing The Next Fake Source

In order to choose the next fake node from the 1-hop neighbourhood, nodes

need to keep their neighbour’s updated. To do this every node periodically

broadcasts a message informing neighbours of their id as well as important

distance information that is used to make a decision on the next fake source.

The next fake node in the directed random walk is chosen randomly from the

21

������ ���	
�� ���

(a) Static and Dynamic

������ ���	
�� ���
������

(b) DynamicSPR

Figure 6: Best-case spread of fake sources for three different fake source algorithms.

set defined in Equation 28 and is allowed to have the same source distance as

the current fake source. By reducing the strictness of the distance decision, the

directed walk is allowed to go along a path of same-distance nodes which could

potentially help the walk reach further from the source.

CanBeFake(j) = {n | n ∈ 1HopN(j) ∧∆src(n) ≥ ∆src(j)} (28)

6.4. Unchanged Settings and Their Impact

The way DTFS , PTFS , and PPFS are calculated in DynamicSPR has not been

changed from the Dynamic algorithm. In one sense, DynamicSPR can be

considered a special instance of Dynamic where all but one link at each hop

becomes unidirectional.

6.5. Number of Messages to Send

Whilst the approach to calculate the TFS period has not changed, a more

conservative number of 〈fake〉 messages can be sent. This is because there is no

longer a wave of fake sources that are potentially competing against one another.

At minimum for the first 〈normal〉 messages, two 〈fake〉 messages will need

to be sent. This is because the first normal message will have at best pulled

the attacker one hop from the source towards the sink, and the TFS will be

allocated 1 hop from the sink in a direction away from the source. This means

the TFS must first pull the attacker to the sink and then again towards the

22

TFS. For future 〈normal〉 messages at least one 〈fake〉 message will be required,

as the 〈normal〉 message will pull the attacker one hop towards the source. In

both of these situations noise or unreliability may cause messages to be lost, so

depending on how reliable these links are extra messages may need to be sent.

However, we assume a node will not know how reliable all links between itself

and the attacker are, so do not have the nodes consider it.

The number of messages each TFS sends over its duration is listed below.

Randomly choosing 1 or 2 messages is included to consider the case where

messages are lost due to collisions.

� 1 message over the duration (called Fixed1)

� 2 messages over the duration (called Fixed2)

� Randomly chosen between 1 or 2 messages over the duration (called Rnd)

7. Experimental Setup

We explain the simulation tool and protocol configurations used for validation.

7.1. Simulation Environment and Network Configuration

The TOSSIM (version 2.1.2) simulation environment was was used in all ex-

periments [57]. TOSSIM is a discrete event simulator capable of accurately

modelling sensor nodes and the modes of communications between them.4

A square grid network layout of size n×n was used in all experiments, where

n ∈ {11, 15, 21, 25}, i.e., networks with 121, 225, 441 and 625 nodes respectively.

None of the algorithms described in this work require the network topology to be

in a grid structure, as our communication model does not guarantee it. We find

grids a good way to test the algorithms, hence why we have tried to structure

them as such. These sizes were chosen as we believe that they are practical

sizes for deployments and also because the attacker tends to capture the source

more often on smaller networks [10]. Hence, we believe that testing with small

or medium sized networks provide better opportunities to uncover poor SLP

performance in these protocols.

4The source code for the implementation of the algorithm and the scripts used to test it

can be found at https://bitbucket.org/MBradbury/slp-algorithms-tinyos.

23

The node neighbourhoods were generating using LinkLayerModel5 with the

parameters shown in [1, Table I]. Noise models were created using the first 2500

lines of meyer-heavy.txt6. A single source node generated messages and a

single sink node collected messages. The source and sink nodes were distinct and

assigned positions in the SourceCorner configuration from [10] where the sink is

in the centre and the source in the top left corner. The rate at which messages

from the real source were generated was varied Psrc ∈ {2, 1, 0.5, 0.25}. At least

5000 repeats were performed for each combination of parameters. Separate

repeats were performed individually for the three DynamicSPR configurations:

Fixed1, Fixed2 and Rnd. Nodes were located 4.5 meters apart, which was

the distance experimentally determined to give a grid network topology. This

separation distance ensured that messages (i) pass through multiple nodes from

source to sink, (ii) can move only one hop at a time, and (iii) will usually (but

is not guaranteed) to be passed to horizontally or vertically adjacent nodes.

7.2. Simulation Experiments

An experiment constituted a single execution of the simulation environment

using a specified protocol configuration, network size, source period and safety

period. An experiment terminated when the source node had been captured by

an attacker or the safety period had expired. An attacker was implemented based

on the log output from TOSSIM. It maintains internal state about its location

using node identifiers. When a node receives a message, if the attacker is at that

location it will move based on the attacker model specified in Subsection 3.4.

7.3. Safety Period

As stated in Subsection 3.2, we use a definition for safety period such that it

leads to bounded simulation times. For a given network size and source rate,

using flooding as a base routing protocol, we calculate the average time it takes

the attacker to detect the real source (i.e., capture the asset). We call this the

capture time. As established in Subsection 3.2, the safety period needs to be

larger than the capture time, to allow for the chance that the attacker moves in

the wrong direction and to allow it the chance to rectify the mistake. In this

paper, the safety period value used is double the average time taken from the

5LinkLayerModel is a tool provided with TOSSIM that generates link strengths between

nodes using experimental results.
6meyer-heavy.txt is a noise sample file provided with TOSSIM.

24

Table 2: Safety period (seconds) for each network size and source period (seconds).

Size

Psrc
2 1 0.5 0.25

11× 11 83.65 41.99 21.35 11.00

15× 15 124.06 61.82 31.24 15.98

21× 21 183.12 91.78 46.23 23.40

25× 25 222.92 111.67 56.07 28.37

first 〈Normal〉 message sent until the attacker to capture the source. The safety

periods used in our simulations are shown in Table 2.

8. Results

In this section we describe the results of the DynamicSPR protocol via a com-

parison between them and the Dynamic SLP protocol. From our simulations we

collected various metrics about the performance of the Dynamic and Dynamic-

SPR protocols. The following metrics will be analysed in this section:

1. Received Ratio — This is the percentage of messages that were sent by

the source and received by the sink.

2. Capture Ratio — This is the percentage of runs in which the attacker

reaches the location of the source, i.e., captures the source.

3. Average Number of Fake Messages Sent — This is the average

number of 〈fake〉 messages sent across all nodes.

4. Attacker Distance — This is the average attacker distance from the

source recorded at the end of a run.

Several graphs include values for Baseline results which are the results for normal

(or protectionless) flooding under the same conditions as the results when SLP

is provided. These results are included to put the overhead of running the fake

source protocols into perspective.

The results for Static are also included for some graphs to situate the perfor-

mance of Dynamic and DynamicSPR. These simulation include all the parameter

combinations that were used in [10]. These results are not an exhaustive search

of the parameter space, but include values likely to be good. Conversely, these

parameters also produced results that demonstrated poor performance.

25

 Dynamic - Highest
 Dynamic - Lowest

 DynamicSpr (Fixed1)
 DynamicSpr (Fixed2)

 DynamicSpr (Rnd)
 Static - Highest

 Static - Lowest
 Baseline

 0

 20

 40

 60

 80

 100

 11 15 21 25

R
e
ce

iv
e
 R

a
ti

o
 (

%
)

Network Size

(a) Source Period 2.0 seconds

 0

 20

 40

 60

 80

 100

 11 15 21 25

R
e
ce

iv
e
 R

a
ti

o
 (

%
)

Network Size

(b) Source Period 1.0 second

 0

 20

 40

 60

 80

 100

 11 15 21 25

R
e
ce

iv
e
 R

a
ti

o
 (

%
)

Network Size

(c) Source Period 0.5 seconds

 0

 20

 40

 60

 80

 100

 11 15 21 25

R
e
ce

iv
e
 R

a
ti

o
 (

%
)

Network Size

(d) Source Period 0.25 seconds

Figure 7: Results showing the percentage of 〈normal〉 messages received at sink.

8.1. Received Ratio

The graphs in Figure 7 show that DynamicSPR has a strictly better delivery

ratio than Dynamic and has a similar delivery ratio to the best-case Static. This

improvement over Dynamic is due to the lower number of 〈fake〉 messages being

sent and thus a reduction in the number of collisions. Fewer collisions allow

more 〈normal〉 messages to be successfully flooded from the source to the sink.

As previously experienced with the Dynamic protocol [1], the faster the

source is broadcasting 〈normal〉 messages, the lower the delivery ratio is. This is,

again, caused by the higher number of collisions. Also, larger network sizes tend

to have lower the delivery ratios, due to the 〈normal〉 message requiring more

successful transmissions over unreliable links leading to a lower final delivery

probability. Both behaviours are also true for the DynamicSPR protocol.

In Figures 7c and 7d the delivery ratio becomes much lower than the baseline

case, especially for the worst case Static and Dynamic. In these two cases,

the low source period (leading to a high message rate) increases unreliability

and causes a low delivery ratio. This then leads to a low capture ratio as the

attacker has fewer opportunities to move. So for the remaining analysis, we will

26

 Dynamic - Highest
 Dynamic - Lowest

 DynamicSpr (Fixed1)
 DynamicSpr (Fixed2)

 DynamicSpr (Rnd)
 Static - Highest

 Static - Lowest
 Baseline

 0

 1

 2

 3

 4

 5

 6

 11 15 21 25

C
a
p

tu
re

 R
a
ti

o
 (

%
)

Network Size

(a) Source Period 2.0 second

 0

 1

 2

 3

 4

 5

 6

 11 15 21 25

C
a
p

tu
re

 R
a
ti

o
 (

%
)

Network Size

(b) Source Period 1.0 seconds

Figure 8: Results showing the capture ratio.

focus on the two slower source periods (2 and 1 seconds between messages) as

their delivery ratios remain comparable to the baseline case meaning that the

SLP provided by the DynamicSPR and Dynamic protocols are due to the SLP

protocols and not due to the lower delivery ratios.

8.2. Capture Ratio

Figure 8 shows the capture ratio for the best and worst Dynamic and Static

protocol results, as well as the three configurations of the DynamicSPR protocol.

DynamicSPR provides a similar capture ratio compared to Dynamic across the

four different source periods. The capture ratio for the baseline case is not visible

because it is 100% for all network sizes, and has been hidden by the scale of the

graph. The results for Static show that good parameterisation can lead to very

low capture ratios. But this is traded off with very high energy usage (in terms

of 〈fake〉 messages). DynamicSPR manages to achieve low capture ratios that

approach Static for larger networks whilst incurring less energy usage as will

now be shown.

8.3. Average Number of Fake Messages Sent

The purpose of DynamicSPR was to reduce the message overhead of Dynamic.

As sending and receiving messages tends to be the most energy expensive activity

performed [3], we will analyse the number of messages sent as a proxy for energy

consumption.

The graphs in Figures 9 and 10 show that the DynamicSPR protocol performs

strictly better than the Dynamic and Static protocols with respect to the number

27

 Dynamic - Highest
 Dynamic - Lowest

 DynamicSpr (Fixed1)
 DynamicSpr (Fixed2)

 DynamicSpr (Rnd)
 Static - Highest

 Static - Lowest

 0

 1

 2

 3

 4

 5

 6

 7

 11 15 21 25

Fa
ke

 M
e
ss

a
g

e
s

S
e
n
t

p
e
r

S
e
co

n
d

 p
e
r

n
o
d

e

Network Size

(a) Source Period 2.0 second

 0

 1

 2

 3

 4

 5

 6

 7

 11 15 21 25

Fa
ke

 M
e
ss

a
g

e
s

S
e
n
t

p
e
r

S
e
co

n
d

 p
e
r

n
o
d

e

Network Size

(b) Source Period 1.0 seconds

Figure 9: Results showing the average number of 〈fake〉 messages sent per node per second.

 Dynamic - Highest
 Dynamic - Lowest

 DynamicSpr (Fixed1)
 DynamicSpr (Fixed2)

 DynamicSpr (Rnd)
 Static - Highest

 Static - Lowest
 Baseline

 0

 1

 2

 3

 4

 5

 6

 7

 11 15 21 25

M
e
ss

a
g

e
s

S
e
n
t

p
e
r

S
e
co

n
d

 p
e
r

N
o
d

e

Network Size

(a) Source Period 2.0 second

 0

 1

 2

 3

 4

 5

 6

 7

 11 15 21 25

M
e
ss

a
g

e
s

S
e
n
t

p
e
r

S
e
co

n
d

 p
e
r

N
o
d

e

Network Size

(b) Source Period 1.0 seconds

Figure 10: Results showing the average number of messages sent per node per second.

of messages sent per node per second7. This reduction is due to DynamicSPR

using a reliable directed random walk compared to the Dynamic protocol that

uses a controlled flooding approach to allocate fewer fake sources. Although, it

is possible that a better parameterisation of Static could lead to a lower energy

usage than DynamicSPR. Note that the lowest Static here does not correspond

to the lowest capture ratio for Static, in fact low messages sent here correspond

to the maximum Static capture ratio.

There is very little difference between the three DynamicSPR configurations,

even though Fixed2 had the opportunity to send twice as many messages as

Fixed1. This behaviour is because these parameters only control the 〈fake〉
broadcast rate of a TFS and after a TFS’s duration expires it becomes a TailFS.

A TailFS will broadcast 〈fake〉 messages until another node receives the 〈choose〉

7We use messages sent per node per second because these techniques tend to cause each

node to send a similar number of messages over the safety period.

28

 Dynamic - Highest
 Dynamic - Lowest

 DynamicSpr (Fixed1)
 DynamicSpr (Fixed2)

 DynamicSpr (Rnd)
 Static - Highest

 Static - Lowest
 Baseline

 0

 20

 40

 60

 80

 100

 120

 140

 11 15 21 25

A
tt

a
ck

e
r

D
is

ta
n
ce

 F
ro

m
 S

o
u
rc

e
 (

m
e
te

rs
)

Network Size

(a) Source Period 2.0 second

 0

 20

 40

 60

 80

 100

 120

 140

 11 15 21 25

A
tt

a
ck

e
r

D
is

ta
n
ce

 F
ro

m
 S

o
u
rc

e
 (

m
e
te

rs
)

Network Size

(b) Source Period 1.0 seconds

Figure 11: Results showing the attacker’s distance from the source.

message it sends. The rate at which these 〈fake〉 messages are broadcasted is

decided using the PFS equations, as the duration of a TailFS is potentially

infinite. A TailFS may exist for some time if the links between nodes are

unreliable. As the simulated links are not perfectly reliable, the rate at which

the TailFS broadcasts messages dominate the rate at which the TFS broadcast

messages. Hence, preventing different TFS broadcast rates from greatly affecting

the number of 〈fake〉 messages sent. In more reliable situations these settings

may have an observable effect as the TailFS would not exist as long8.

8.4. Attacker Distance

The attacker distance metric quantifies how good the SLP protocol is at pulling

an attacker away from the source. Figure 11 shows that the Dynamic protocol is

better able to pull the attacker further from the source compared to DynamicSPR.

There is little difference between the different techniques used in the protocols.

Both protocols perform better than baseline protectionless which failed to

prevent the attacker from finding the source. The cause of the difference is that

Dynamic is capable of allocating a PFS at a node further from the source than

DynamicSPR. This is because Dynamic uses a controlled flooding of the network

with TFSs which allows it to reach all nodes. In comparison, DynamicSPR uses

a directed walk along the source distance gradient, which allows a local source

distance maxima to be found, but not necessarily the global maxima.

8In our simulations we used meyer-heavy.txt which is a very noisy sample to setup the

noise model which leads to higher link unreliability compared to other noise samples such as

casino-lab.txt. We also use a LinkLayerModel that allows links to become asymmetric.

29

8.5. Results Summary

Overall, we conclude that DynamicSPR protocol provides similar SLP level to

Dynamic, but is however more energy efficient in terms of messages sent.

9. Discussion

Improving Delivery Ratio: We observed that, at higher message rates, the

delivery ratio decreases to around 30% for DynamicSPR. This is mainly due to

the higher number of messages and the increased likelihood of occurrence of the

hidden terminal problem [58], leading to more collisions. To improve significantly

upon the delivery ratio, protocols proposed in [58] or other protocols such as the

Collection Tree Protocol [54] can be used. Due to the different routing structure

we plan on applying this framework and analysis to obtain fake broadcast rates

for when CTP is used to route messages from the source to sink. Minor changes

to the framework are expected, such as those made for DynamicSPR.

Dealing with Different Attackers: In this paper, we have assumed a dis-

tributed eavesdropping attacker that backtracks on the network traffic to capture

the source within a specified time, termed as the safety period. In Subsection 3.4

we chose to assume attackers have the ability to perfectly determine whether

a message is new or not. An alternative to this would be to have attackers

not respond to messages for a certain time period after moving. Setting the

time period of this model is a difficult decision, which is why we focused on the

attacker model where the attacker has perfect knowledge regarding whether a

message has been previously eavesdropped.

10. Conclusion

We present two online fake sources-based protocols, namely Dynamic and Dy-

namicSPR, that provide SLP. These protocols are based on the Static heuristic,

which was proposed to address the intractable nature of SLP. We have developed

a framework for estimating SLP-relevant parameters. Dynamic was shown to

provide high levels of SLP at the expense of a high message overhead. To circum-

vent this problem, we have proposed DynamicSPR, a hybrid SLP protocol, that

uses a directed random walk to allocate fake sources. Our results show that, in

general, the SLP levels provided by DynamicSPR are low like those of Static and

Dynamic, whilst being more energy efficient. This makes DynamicSPR scalable

and suitable for WSN deployments that require SLP.

30

Acknowledgements

This research was supported the Engineering and Physical Sciences Research

Council (EPSRC) [DTG grant EP/M506679/1].

Bibliography

[1] M. Bradbury, M. Leeke, A. Jhumka, A dynamic fake source algorithm

for source location privacy in wireless sensor networks, in: 14th IEEE

International Conference on Trust, Security and Privacy in Computing and

Communications (TrustCom), 2015, pp. 531–538. doi:10.1109/Trustcom.

2015.416.

[2] A. Milenković, C. Otto, E. Jovanov, Wireless sensor networks for personal

health monitoring: Issues and an implementation, Comput. Commun. 29 (13-

14) (2006) 2521–2533. doi:10.1016/j.comcom.2006.02.011.

[3] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, J. Anderson, Wireless

sensor networks for habitat monitoring, in: Proceedings of the 1st ACM

International Workshop on Wireless Sensor Networks and Applications,

WSNA ’02, ACM, New York, NY, USA, 2002, pp. 88–97. doi:10.1145/

570738.570751.

[4] P. Kamat, Y. Zhang, W. Trappe, C. Ozturk, Enhancing source-location

privacy in sensor network routing, in: 25th IEEE International Conference

on Distributed Computing Systems (ICDCS’05), 2005, pp. 599–608. doi:

10.1109/ICDCS.2005.31.

[5] A.-M. Badescu, L. Cotofana, A wireless sensor network to monitor and

protect tigers in the wild, Ecological Indicators 57 (2015) 447–451. doi:

10.1016/j.ecolind.2015.05.022.

[6] V. Dyo, S. A. Ellwood, D. W. Macdonald, A. Markham, N. Trigoni,

R. Wohlers, C. Mascolo, B. Pásztor, S. Scellato, K. Yousef, Wildsens-

ing: Design and deployment of a sustainable sensor network for wildlife

monitoring, ACM Trans. Sen. Netw. 8 (4) (2012) 29:1–29:33. doi:

10.1145/2240116.2240118.

[7] WWF, Wildlife crime technology project, Online, accessed: 2016-06-03

(2012–2016).

31

URL worldwildlife.org/projects/wildlife-crime-technology-

project

[8] Intel, Anti-poaching technology: Wearables are helping save rhinos, Online,

accessed: 2016-06-29 (2014).

URL web.archive.org/web/20160324001414/iq.intel.com/how-

wearable-technology-is-helping-saving-rhinos-from-poachers

[9] A. Jhumka, M. Leeke, S. Shrestha, On the use of fake sources for source

location privacy: Trade-offs between energy and privacy, The Computer

Journal 54 (6) (2011) 860–874. doi:10.1093/comjnl/bxr010.

[10] A. Jhumka, M. Bradbury, M. Leeke, Fake source-based source location

privacy in wireless sensor networks, Concurrency and Computation: Practice

and Experience 27 (12) (2015) 2999–3020. doi:10.1002/cpe.3242.

[11] C. Ozturk, Y. Zhang, W. Trappe, Source-location privacy in energy-

constrained sensor network routing, in: Proceedings of the 2nd ACM

workshop on Security of ad hoc and sensor networks, SASN ’04, ACM,

New York, NY, USA, 2004, pp. 88–93. doi:10.1145/1029102.1029117.

[12] M. Conti, J. Willemsen, B. Crispo, Providing source location privacy in

wireless sensor networks: A survey, IEEE Communications Surveys and Tu-

torials 15 (3) (2013) 1238–1280. doi:10.1109/SURV.2013.011413.00118.

[13] R. Rios, J. Lopez, J. Cuellar, Foundations of Security Analysis and Design

VII: FOSAD 2012/2013 Tutorial Lectures, Springer International Publishing,

Cham, 2014, Ch. Location Privacy in WSNs: Solutions, Challenges, and

Future Trends, pp. 244–282. doi:10.1007/978-3-319-10082-1_9.

[14] N. Li, N. Zhang, S. K. Das, B. Thuraisingham, Privacy preservation in

wireless sensor networks: A state-of-the-art survey, Ad Hoc Networks 7 (8)

(2009) 1501–1514, privacy and Security in Wireless Sensor and Ad Hoc

Networks. doi:10.1016/j.adhoc.2009.04.009.

[15] Y. Xi, L. Schwiebert, W. Shi, Preserving source location privacy in

monitoring-based wireless sensor networks, in: 20th International Paral-

lel and Distributed Processing Symposium, 2006, pp. 1–8. doi:10.1109/

IPDPS.2006.1639682.

32

[16] W. Wei-Ping, C. Liang, W. Jian-xin, A source-location privacy protocol

in WSN based on locational angle, in: IEEE International Conference on

Communications (ICC), 2008, pp. 1630–1634. doi:10.1109/ICC.2008.315.

[17] P. Spachos, D. Toumpakaris, D. Hatzinakos, Angle-based dynamic routing

scheme for source location privacy in wireless sensor networks, in: Vehicular

Technology Conference (VTC Spring), 2014 IEEE 79th, 2014, pp. 1–5.

doi:10.1109/VTCSpring.2014.7022833.

[18] P. Kumar, J. Singh, P. Vishnoi, M. Singh, Source location privacy using

multiple-phantom nodes in WSN, in: TENCON 2015 - 2015 IEEE Region

10 Conference, 2015, pp. 1–6. doi:10.1109/TENCON.2015.7372969.

[19] J. Huang, M. Sun, S. Zhu, Y. Sun, C.-c. Xing, Q. Duan, A source-location

privacy protection strategy via pseudo normal distribution-based phantom

routing in WSNs, in: Proceedings of the 30th Annual ACM Symposium

on Applied Computing, SAC ’15, ACM, New York, NY, USA, 2015, pp.

688–694. doi:10.1145/2695664.2695843.

[20] A. Nassiri, M. A. Razzaque, A. H. Abdullah, Isolated adversary zone for

source location privacy in wireless sensor networks, in: 2016 International

Wireless Communications and Mobile Computing Conference (IWCMC),

2016, pp. 108–113. doi:10.1109/IWCMC.2016.7577042.

[21] A. Jhumka, M. Bradbury, Deconstructing source location privacy-aware

routing protocols, in: Proceedings of the Symposium on Applied Computing,

SAC’17, ACM, New York, NY, USA, 2017, pp. 431–436. doi:10.1145/

3019612.3019655.

[22] L. Yao, L. Kang, F. Deng, J. Deng, G. Wu, Protecting source–location

privacy based on multirings in wireless sensor networks, Concurrency and

Computation: Practice and Experience 27 (15) (2015) 3863–3876. doi:

10.1002/cpe.3075.

[23] X. Niu, Y. Yao, C. Wei, Y. Liu, J. Liu, X. Chen, A novel source-location

anonymity protocol in surveillance systems, in: 2015 International Con-

ference on Identification, Information, and Knowledge in the Internet of

Things (IIKI), 2015, pp. 100–104. doi:10.1109/IIKI.2015.30.

[24] L. Zhang, A self-adjusting directed random walk approach for enhancing

source-location privacy in sensor network routing, in: Proceedings of the

33

2006 International Conference on Wireless Communications and Mobile

Computing, IWCMC ’06, ACM, New York, NY, USA, 2006, pp. 33–38.

doi:10.1145/1143549.1143558.

[25] C. Gu, M. Bradbury, A. Jhumka, M. Leeke, Assessing the performance of

phantom routing on source location privacy in wireless sensor networks,

in: 2015 IEEE 21st Pacific Rim International Symposium on Dependable

Computing (PRDC), 2015, pp. 99–108. doi:10.1109/PRDC.2015.9.

[26] R. Shi, M. Goswami, J. Gao, X. Gu, Is random walk truly memoryless

— traffic analysis and source location privacy under random walks, in:

INFOCOM, 2013 Proceedings IEEE, 2013, pp. 3021–3029. doi:10.1109/

INFCOM.2013.6567114.

[27] Y. Li, J. Ren, J. Wu, Quantitative measurement and design of source-

location privacy schemes for wireless sensor networks, Parallel and Dis-

tributed Systems, IEEE Transactions on 23 (7) (2012) 1302–1311. doi:

10.1109/TPDS.2011.260.

[28] L. Lightfoot, Y. Li, J. Ren, Star: design and quantitative measurement of

source-location privacy for wireless sensor networks, Security and Commu-

nication Networks 9 (3) (2016) 220–228. doi:10.1002/sec.527.

[29] K. Mehta, D. Liu, M. Wright, Protecting location privacy in sensor networks

against a global eavesdropper, IEEE Trans. on Mobile Computing 11 (2)

(2012) 320–336. doi:10.1109/TMC.2011.32.

[30] A. Thomason, M. Leeke, M. Bradbury, A. Jhumka, Evaluating the impact

of broadcast rates and collisions on fake source protocols for source location

privacy, in: 12th IEEE International Conference on Trust, Security and

Privacy in Computing and Communications (TrustCom), 2013, pp. 667–674.

doi:10.1109/TrustCom.2013.81.

[31] J. F. Laikin, M. Bradbury, C. Gu, M. Leeke, Towards fake sources for

source location privacy in wireless sensor networks with multiple sources, in:

15th IEEE International Conference on Communication Systems (ICCS’16),

2016, pp. 1–6. doi:10.1109/ICCS.2016.7833572.

[32] R. A. Shaikh, H. Jameel, B. J. D’Auriol, H. Lee, S. Lee, Y.-J. Song,

Achieving network level privacy in wireless sensor networks, Sensors 10 (3)

(2010) 1447–1472. doi:10.3390/s100301447.

34

[33] Y. Ouyang, Z. Le, G. Chen, J. Ford, F. Makedon, Entrapping adversaries

for source protection in sensor networks, in: International Symposium on

a World of Wireless, Mobile and Multimedia Networks, 2006. WoWMoM

2006, 2006, pp. 10–34. doi:10.1109/WOWMOM.2006.40.

[34] W. Tan, K. Xu, D. Wang, An anti-tracking source-location privacy protec-

tion protocol in WSNs based on path extension, Internet of Things Journal,

IEEE 1 (5) (2014) 461–471. doi:10.1109/JIOT.2014.2346813.

[35] J. Long, M. Dong, K. Ota, A. Liu, Achieving source location privacy and

network lifetime maximization through tree-based diversionary routing in

wireless sensor networks, IEEE Access 2 (2014) 633–651. doi:10.1109/

ACCESS.2014.2332817.

[36] M. Dong, K. Ota, A. Liu, Preserving source-location privacy through

redundant fog loop for wireless sensor networks, in: 13th IEEE International

Conference on Dependable, Autonomic and Secure Computing (DASC),

Liverpool, UK, 2015, pp. 1835–1842. doi:10.1109/CIT/IUCC/DASC/PICOM.

2015.274.

[37] P. K. Roy, J. P. Singh, P. Kumar, M. Singh, Source location privacy

using fake source and phantom routing (fsapr) technique in wireless sensor

networks, Procedia Computer Science 57 (2015) 936–941, 3rd International

Conference on Recent Trends in Computing 2015 (ICRTC-2015). doi:

10.1016/j.procs.2015.07.486.

[38] L. Bai, L. Li, S. Qian, S. Zhang, Random selection false source-based

algorithm for protecting source-location privacy in WSNs, in: 2016 12th

International Conference on Natural Computation, Fuzzy Systems and

Knowledge Discovery (ICNC-FSKD), 2016, pp. 2064–2069. doi:10.1109/

FSKD.2016.7603499.

[39] M. Bradbury, A. Jhumka, A near-optimal source location privacy scheme for

wireless sensor networks, in: 16th IEEE International Conference on Trust,

Security and Privacy in Computing and Communications (TrustCom), 2017,

pp. 409–416. doi:10.1109/Trustcom/BigDataSE/ICESS.2017.265.

[40] P. Palmieri, Preserving Context Privacy in Distributed Hash Table Wireless

Sensor Networks, Springer International Publishing, Cham, 2016, pp. 436–

444. doi:10.1007/978-3-319-29814-6_37.

35

[41] J. Deng, R. Han, S. Mishra, Countermeasures against traffic analysis attacks

in wireless sensor networks, in: First International Conference on Security

and Privacy for Emerging Areas in Communications Networks, 2005. Se-

cureComm 2005, 2005, pp. 113–126. doi:10.1109/SECURECOMM.2005.16.

[42] N. Baroutis, M. Younis, Using fake sinks and deceptive relays to boost

base-station anonymity in wireless sensor network, in: Local Computer

Networks (LCN), 2015 IEEE 40th Conference on, 2015, pp. 109–116. doi:

10.1109/LCN.2015.7366289.

[43] G. Chai, M. Xu, W. Xu, Z. Lin, Enhancing sink-location privacy in wireless

sensor networks through k-anonymity, International Journal of Distributed

Sensor Networks 8 (4) (2012) 1–16. doi:10.1155/2012/648058.

[44] H. Chen, W. Lou, On protecting end-to-end location privacy against local

eavesdropper in wireless sensor networks, Pervasive and Mobile Computing

16, Part A (2015) 36–50. doi:10.1016/j.pmcj.2014.01.006.

[45] H. Park, S. Song, B. Y. Choi, C. T. Huang, Passages: Preserving anonymity

of sources and sinks against global eavesdroppers, in: INFOCOM, 2013 Pro-

ceedings IEEE, 2013, pp. 210–214. doi:10.1109/INFCOM.2013.6566765.

[46] P. Kamat, W. Xu, W. Trappe, Y. Zhang, Temporal privacy in wireless

sensor networks: Theory and practice, ACM Trans. Sen. Netw. 5 (4) (2009)

28:1–28:24. doi:10.1145/1614379.1614380.

[47] X. Fu, B. Graham, R. Bettati, W. Zhao, On countermeasures to traffic

analysis attacks, in: IEEE Systems, Man and Cybernetics SocietyInforma-

tion Assurance Workshop, 2003., 2003, pp. 188–195. doi:10.1109/SMCSIA.

2003.1232420.

[48] D. Goldschlag, M. Reed, P. Syverson, Onion routing, Communications of

the ACM 42 (2) (1999) 39–41. doi:10.1145/293411.293443.

[49] Z. Ling, J. Luo, W. Yu, X. Fu, D. Xuan, W. Jia, A new cell-counting-based

attack against tor, IEEE/ACM Transactions on Networking 20 (4) (2012)

1245–1261. doi:10.1109/TNET.2011.2178036.

[50] J. Ko, J. Eriksson, N. Tsiftes, S. Dawson-Haggerty, J.-P. Vasseur, M. Durvy,

A. Terzis, A. Dunkels, D. Culler, Industry: Beyond interoperability: Pushing

the performance of sensor network IP stacks, in: Proceedings of the 9th ACM

36

Conference on Embedded Networked Sensor Systems, SenSys ’11, ACM,

New York, NY, USA, 2011, pp. 1–11. doi:10.1145/2070942.2070944.

[51] Z. Benenson, P. M. Cholewinski, F. C. Freiling, Wireless Sensors Networks

Security, IOS Press, 2008, Ch. Vulnerabilities and Attacks in Wireless Sensor

Networks, pp. 22–43.

[52] K. Liu, Q. Ma, H. Liu, Z. Cao, Y. Liu, End-to-end delay measurement in

wireless sensor networks without synchronization, in: Mobile Ad-Hoc and

Sensor Systems (MASS), 2013 IEEE 10th International Conference on, 2013,

pp. 583–591. doi:10.1109/MASS.2013.71.

[53] Y.-C. Wu, Q. Chaudhari, E. Serpedin, Clock synchronization of wireless

sensor networks, Signal Processing Magazine, IEEE 28 (1) (2011) 124–138.

doi:10.1109/MSP.2010.938757.

[54] O. Gnawali, R. Fonseca, K. Jamieson, M. Kazandjieva, D. Moss, P. Levis,

Ctp: An efficient, robust, and reliable collection tree protocol for wireless

sensor networks, ACM Trans. Sen. Netw. 10 (1) (2013) 16:1–16:49. doi:

10.1145/2529988.

[55] M. Bradbury, A. Jhumka, Understanding source location privacy proto-

cols in sensor networks via perturbation of time series, in: INFOCOM,

2017 Proceedings IEEE, 2017, pp. 1611–1619. doi:10.1109/INFOCOM.2017.

8057122.

[56] N. Baccour, A. Koubâa, L. Mottola, M. A. Zúñiga, H. Youssef, C. A. Boano,

M. Alves, Radio link quality estimation in wireless sensor networks: A

survey, ACM Trans. Sen. Netw. 8 (4) (2012) 34:1–34:33. doi:10.1145/

2240116.2240123.

[57] P. Levis, N. Lee, M. Welsh, D. Culler, Tossim: accurate and scalable simu-

lation of entire tinyos applications, in: Proceedings of the 1st international

conference on Embedded networked sensor systems, SenSys ’03, ACM, New

York, NY, USA, 2003, pp. 126–137. doi:10.1145/958491.958506.

[58] H. Zhang, A. Arora, Y. ri Choi, M. G. Gouda, Reliable bursty convergecast

in wireless sensor networks, Computer Communications 30 (13) (2007)

2560–2576. doi:10.1016/j.comcom.2007.05.046.

37

