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Abstract—In this work, we propose a method to obtain
higher quality sensor pattern noise (SPN) for identifying source
cameras. We believe that some components of SPN have been
severely contaminated by the errors introduced by denoising
filters and the quality of SPN can be improved by abandoning
those components. In our proposed method, some coefficients
with higher denoising errors are abandoned in the wavelet
representation of SPN and the remaining wavelet coefficients
are further enhanced to suppress the scene details in the SPN.
These two steps aim to provide better SPN with higher signal-
to-noise ratio (SNR) and therefore improve the identification
performance. The experimental results on 2,000 images captured
by 10 cameras (each responsible for 200 images), show that our
method achieves better receiver operating characteristic (ROC)
performance when compared with some state-of-the-art methods.

Index Terms—Digital forensics, source camera identification,
sensor pattern noise, denoising errors, correlation detection

I. INTRODUCTION

SENSOR pattern noise (SPN) is a deterministic component
remaining in the images taken by the imaging sensor. It

mainly consists of the photo-response non-uniformity (PRNU)
noise [1] arising primarily from the manufacturing imper-
fections and the inhomogeneity of silicon wafers. So unless
otherwise specified in this paper, SPN refers to its main com-
ponent, PRNU noise. The uniqueness to individual camera and
stability against environmental conditions make SPN a feasible
fingerprint for identifying source cameras. The use of SPN in
identifying the source camera was first proposed by Lukas et
al. in [1], where the reference SPN is first constructed for each
camera by averaging the noise residuals extracted from images
acquired by the camera. If the correlation between the noise
residual of a query image (the query SPN) and the reference
SPN is higher than a pre-defined threshold, the query image is
deemed to be taken by the camera. However, the correlation-
based detection of SPN heavily relies upon the quality of the
extracted SPN, which can be severely contaminated by image
content, color interpolation, JPEG compression and other non-
unique artifacts. Therefore, exploring the way of extracting
better SPN becomes of great significance for source camera
identification.

Over the past few years, many methods have been proposed
to enhance the quality of the SPN so as to improve the
performance of source camera identification. In [2], Chen et
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al. proposed a maximum likelihood estimation (MLE) of the
reference SPN from several residual images. Hu et al. [3]
argued that the large or principal components of noise residue
are more robust against random noise, so instead of using the
full-length SPN, only a small portion of the largest components
are involved in the calculation of correlation. Kang et al.
[4] introduced a camera reference phase SPN to remove the
periodic noise and other non-white noise contamination in the
camera fingerprint. They proposed to use the correlation over
circular cross-correlation norm (CCN) to further suppress the
impact of periodic noise contamination. Actually, distortion
to the SPN can be inflicted by each processing component
of the imaging pipeline. We have done some work aiming at
removing or suppressing the distortion resulting from different
components in the image acquisition process. For example,
based on the assumption that the stronger a signal component
of SPN is, the more likely it is associated with strong scene
details, Li [5] proposed six enhancing models to attenuate
the interference from scene details. Afterwards, Li et al. [6]
continued to propose a Color-Decoupled PRNU (CD-PRNU)
extraction method to prevent the color filtering array (CFA)
interpolation errors from propagating into the physical com-
ponents. They extracted the PRNU from each color channel
and then assembled them to get the more reliable CD-PRNU.
In [7], Lin et at. proposed a novel spectrum equalization
algorithm (SEA) to preprocess the reference SPN aiming at
suppressing the non-unique artifacts introduced by CFA inter-
polation, JPEG compression and other periodic operations. It
has better performance over the zero-mean (ZM) and Wiener
filtering in DFT domain (WF) operations proposed in [2].

In this work, we propose a method for obtaining better
SPN via filtering distortion removal (FDR). It is widely
accepted that the choice of denoising filters is very important
[3, 8, 9] and the quality of SPN can be improved by choosing
better denoising filters. However, in their pursuit for better
SPN, researchers usually ignore the fact that even the “best”
denosing filter can inflict distortion on SPNs. As a result,
some components of SPN may be severely contaminated by
denoising errors and become uninformative. By abandoning
the components that have been severely contaminated, SPN of
better quality can be obtained. To the best of our knowledge,
there is no existing work attempting to improve the quality of
SPN through attenuating the errors introduced by the denoising
filter.

The rest of this paper is organized as follows. In Section II,
we will first revisit the expression of noise residue and analyze
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different parts of it, and then give the details of the proposed
scheme. Experimental results and analyses will be presented
in Section III. Finally, Section IV concludes the work.

II. PROPOSED SCHEME

A. Motivation

Motivated by the work in [2], we start from the expression
of noise residual W, which is defined as the difference of the
observed image I and its denoised version Î

(0)
= F (I):

W = I− Î
(0)

= (1 + K)I(0) + Θ− Î
(0)

= IK + I(0) − Î
(0)

+ (I(0) − I)K + Θ

= IK + Ξ, (1)

where K is the zero-mean like multiplicative factor responsible
for PRNU, I(0) is the noise-free image, Θ stands for a
complex of independent random noise components containing
the interference from image content and other noises, Ξ is
the sum of Θ and the two additional terms introduced by the
denoising filter. Ξ can be modeled as white Gaussain noise,
which determines the accuracy of the estimation of K. In [1],
noise residues from a set of N images are averaged to suppress
the random noise:

Rf =
1

N

N∑
i=1

Wi, (2)

where Rf serves as the reference SPN. Then the task of
source camera identification is accomplished by calculating
the normalized cross correlation (NCC) ρ between the noise
residue W of the query image and the reference SPN Rf :

ρ = corr(W,Rf ) =
(W−W) · (Rf − Rf )
‖W−W‖ · ‖Rf − Rf‖

, (3)

where ‖ ·‖ is the L2 norm and the mean value is denoted with
a bar. According to Equation (1), one possible way to improve
the detection accuracy is to increase the signal-to-noise ratio
(SNR) of the signal containing K in W, which means we
should promote IK and suppress Ξ as much as possible. For
IK, it is straightforward that the luminance I should be as high
as possible. But as pointed out in [2], special attention should
be paid to the saturated or dark image regions where K is
absent or attenuated. While for Ξ, it consists of three parts:
(I(0) − I)K, Θ and I(0) − Î

(0)
. For the first term, as both

the magnitudes of K and I(0) − I are very weak, the energy
of Ξ is mostly concentrated in Θ and I(0) − Î

(0)
. But since

Θ is a complex random noise term involving both the image
content and the interferences from different stages of image
acquisition process, so it is difficult to straightforwardly and
properly model this part of signal. In spite of this, the scene
details presented in Θ can be more or less suppressed using
the models proposed in [5]. For the third part of Ξ, I(0)−Î

(0)
is

exactly the error introduced by the denoising filter. Therefore,
choosing the SPN components with smaller denoising errors
will hopefully provide better SPN with higher SNR. In the next
sub-section, the denoising error will be analyzed quantitatively.

B. Denoising error

As the most popular denoising filter for SPN extraction is
the Mihcak filter proposed in [10], we will take this as an
example. Assume the observed signal g(k) (wavelet coeffi-
cients for I) is the sum of the noise-free signal f(k) (wavelet
coefficients for I(0)) and a signal-independent additive random
noise v(k):

g(k) = f(k) + v(k), (4)
where k is the index of wavelet coefficients. Considering a
small region N(k) in which the signal f(k) is assumed to be
stationary, f(k) can be modeled as [11]:

f(k) = mf + σfw(k), (5)
where mf and σf are the local mean and standard deviation of
f(k), and w(k) is zero-mean white noise with unit variance.
mf can be estimated using the local mean of g(k), so f(k)
can also be viewed as zero-mean Gaussian signal after mf

is subtracted. For the convenience of analysis, we drop mf

afterwards. It will not affect the result of the difference
between f(k) and its estimation f̂(k).

Accordingly, f(k) ∼ N(0, σ2
f (k)), v(k) ∼ N(0, σ2

v), then
g(k) = f(k) + v(k) ∼ N(0, σ2

g(k)), where σ2
g(k) = σ2

f (k) +
σ2
v . σ2

v depends on the quality of the image and usually can
be regarded as a constant for the whole image. σ2

g(k) can be
estimated using the following formula:

σ̂2
g(k) =

1

M

∑
i∈N(k)

g2(i), (6)

where N(k) is the local neighborhood around k, M is the
number of pixels within N(k). According to the minimum
mean square error (MMSE) criterion [10], the output of the
Mihcak filter can be written as:

f̂(k) =
σ̂2
g(k)− σ2

v

σ̂2
g(k)

g(k) = (1−Q(k)) g(k), (7)

where
Q(k) =

σ2
v

σ̂2
g(k)

=
Mσ2

v∑
i∈N(k) g

2(i)
. (8)

We use Error(k) to represent the expectation of squared
error at index k:
Error(k)

= E
[
(f(k)− f̂(k))2

]
= E

[
(g(k)− v(k)−

(
1−Q(k)

)
g(k))2

]
= E

[(
Q(k)g(k)− v(k)

)2]
(9)

= E
[
Q2(k)g2(k)− 2Q(k)

(
f(k) + v(k)

)
v(k) + v2(k)

]
.

v(k) and f(k) only account for the center pixel of the
neighborhood where Q(k) is calculated, and v(k) is inde-
pendent of f(k), so we assume that Q(k), f(k) and v(k)
are mutually independent to simplify the following deduction.
Hence, Equation (9) can be simplified as:
Error(k)

= E[Q2(k)]E[g2(k)]− 2E[Q(k)]E[v2(k)] + E[v2(k)]

= σ2
g(k)E[Q2(k)] + σ2

v

(
1− 2E[Q(k)]

)
. (10)

If we let X(k) =
∑
i∈N(k)

(
g(i)
σ̂g(k)

)2
, it conforms to Chi-

square distribution with a degree of M , χ2(M). Here σ̂2
g(k)
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is viewed as constant within N(k). Therefore, Y (k) = 1
X(k) ∼

Inverse− χ2(M). We have
E[Y (k)] =

1

M − 2
(for M > 2)

E[Y 2(k)] =
1

(M − 2)(M − 4)
(for M > 4).

(11)
We rewrite Equation (8) using Y (k):

Q(k) =
Mσ2

v

σ̂2
g(k)

Y (k). (12)

Therefore,
E[Q(k)] =

Mσ2
v

(M − 2)σ̂2
g(k)

E[Q2(k)] =
M2σ4

v

(M − 2)(M − 4)σ̂4
g(k)

.

(13)

If the smallest neighbor we consider is M = 3×3, substituting
E[Q(k)] and E[Q2(k)] in Equation (10) with Equation (13)
yields:
Error(k)

=
M(8−M)σ4

v

(M − 2)(M − 4)σ̂2
g(k)

+ σ2
v (for M ≥ 9). (14)

Our purpose is to abandon those coefficients severely con-
taminated by the denoising filter and keep the remaining ones.
Therefore, we choose a threshold T , so that Error(k) 6 T .
We set T to be proportional to the noise variance σ2

v , i.e.,
T = λσ2

v . Obviously, 0 < λ < 1. Therefore,
M(8−M)σ4

v

(M − 2)(M − 4)σ̂2
g(k)

+ σ2
v 6 λσ2

v

=⇒ σ̂2
g(k) 6

M(M − 8)

(M − 2)(M − 4)(1− λ)
σ2
v . (15)

where M is the neighborhood size of the Mihcak filter, and
σ2
v is the power of noise. Once the Mihcak filter is applied,
M and σ2

v are determined for a given signal, so λ is the only
parameter needs to be specified. We will investigate the effect
of different λ on the performance in Section III-B.

C. Proposed scheme

Based on the above analysis, our method consists of two
main steps: Selection and Enhancement. In the selection step,
we only keep those coefficients with lower local variance in
the wavelet representation of SPN and abandon the rest to
alleviate or remove the influence of denoising errors. The
remaining coefficients will be further enhanced to suppress
the interference from scene details. These two steps aim
to increase the identification performance by improving the
SNR of extracted SPN. The details of the proposed filtering
distortion removal are listed as follows:
1) Selection: Transform every query image onto the wavelet

domain, keep those wavelet coefficients with lower local
variance (i.e. σ̂2

g(k)≤
M(M−8)

(M−2)(M−4)(1−λ)σ
2
v), and set the

ones with higher local variance to 0;

2) Enhancement: For those selected coefficients, use the
models proposed in [5] to further restrain the scene details.
To our experience, Model 3 with α = 6 in [5] can achieve
better identification rate (or equivalent) than other models;

3) Correlation: Transform the wavelet coefficients back onto
the spatial domain and calculate the correlation with the
reference pattern noise according to Equation (3). Notice
that the reference pattern noise is first represented in the
wavelet domain and only the coefficients at the selected
locations are preserved.

III. EXPERIMENTS

A. Experimental setup

The proposed scheme was compared with some exist-
ing works [1, 2, 5] on an image database consisting of
2,000 images taken by 10 cameras (each responsible for
200 images). The 10 cameras are Olympus C730UZ, Canon
IXUS850IS, Canon PowerShotA400, Canon IXY500, Fuji-
Film Finepix S602, FujiFilm Finepix A920, Canon Ixus55,
Olympus S1050SW, Samsung L74Wide and Samsung NV15.
The first 6 cameras are owned by ourselves, but the last
4 cameras were randomly selected from the Dresden Image
Database [12]. For each camera, another 50 blue-sky or flat-
filed images were used to construct the reference SPNs.

For the sake of convenience, we will refer to [1] as “Basic”,
[2] as “MLE”, and [5] as “Enhancer”. To distinguish the
impacts of selection and enhancement, we will show the results
of only applying the Selection, and applying both the Selection
and Enhancement, which will be referred to as “FDR 1” and
“FDR 2”, respectively. For the method in [1], we used the
source code published in [13, 14]. For Li’s approach [5], we
used Model 3 with α = 6 because it shows better results than
his other models. In addition, for all the methods involved,
we used image blocks cropped from the center of the green
channel of the full-size color images. For the fairness of
comparison, we set M = 25 and σ2

v = 9 for all the methods
that use the Mihcak filter. It is also worth mentioning that
the reference SPNs constructed by different methods will be
processed by SEA [7] to suppress the periodic artifacts before
calculating the correlations using Equation (3).

B. Performance evaluation

We used the overall ROC to compare the performances
of different methods. To obtain the overall ROC curve, for
a given detection threshold, the numbers of true positives
and false positives are counted for each camera, respectively,
then these numbers are summed up and used to calculate
the True Positive Rate (TPR) and False Positive Rate (FPR).
Specifically, as the numbers of images captured by each
camera are exactly the same, we can simply calculate the TPR
and FPR for a threshold as follows:

TPR =

∑C
i=1 Ti
T

FPR =

∑C
i=1 Fi

(C − 1)T
,

(16)

where C is the number of cameras, T is the total number
of query images, Ti and Fi are the true positives and false
positives of camera i, respectively. In order to show the details
of the ROC curves with a low FPR, all the ROC curves are
plotted in the logarithmic scale.
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To see how significantly λ affects the performance, we
varied λ from 0.8 to 1.0 and showed the results on image
blocks of 256×256 pixels in Fig. 1(a), where no enhancement
is applied and λ = 1.00 means filtering distortion is not
removed. As can be seen, the performance increases initially
and then decreases as λ keeps falling down, which clearly
shows that abandoning those coefficients that are severely
contaminated helps improve the performance. Based on the
experiments, a λ between [0.95, 0.99] deliveries satisfactory
results for different image sizes. In the following experiments,
λ is fixed to 0.96. The comparisons with other methods on
image blocks sized 128×128, 256×256 and 512×512 pixels
are shown in Fig. 1(b), 1(c) and 1(d), respectively. While the
improvement on images of 512×512 is not so significant as on
images of 256 × 256 and 128 × 128 pixels, the performance
of the filtering distortion removed SPN is better than those
of other methods that do not take the denoising errors into
consideration. Furthermore, the performance of FDR 2 is
better than that of FDR 1, which means enhancing the selected
SPN can further improve the performance by attenuating
the influence of scene details. But as shown in Fig. 1(d),
enhancement helps very little in boosting the performance on
large image blocks sized 512× 512 pixels.

The TPRs of 5 methods at a low FPR of 5 × 10−4 are
shown in Table I, which demonstrates that the TPR of FDR
1 is 2% ∼ 14%, 3% ∼ 10% and 1% ∼ 2% higher than
those of [1, 2, 5] on images of 128 × 128, 256 × 256 and
512 × 512 pixels, respectively. Besides, the performance can
be slightly improved via further enhancing the selected SPN.
Similar to the main tendencies observed in Fig. 1, it seems
that the smaller the image size, the higher the improvement.
This is probably due to the fact that, when compared with
the relatively less SPN information that is available in smaller
images, the improved quality of SPN by removing the filtering
distortions is more notable and therefore boosts the perfor-
mance more significantly. To see how many “clean” wavelet
coefficients have been retained, we drew the distribution of
the percentages of the selected wavelet coefficients for 2,000
images in Fig. 2. As can be observed, by specifying λ = 0.96,
around 80% ∼ 90% of the wavelet coefficients are selected for
for most images sized 128×128 and 256×256 pixels. Note that
the selection scheme does not cost extra computation, because
the local variance σ̂2

g(k) is already available when performing
the Mihcak filtering [10].

TABLE I: The TPRs of 5 methods at a low FPR of 5× 10−4

Sizes Basic [1] MLE [2] Enhancer [5] FDR 1 FDR 2

128×128 0.4730 0.3705 0.5250 0.5405 0.5520
256×256 0.8195 0.7715 0.8435 0.8720 0.8850
512×512 0.9625 0.9460 0.9630 0.9650 0.9650

IV. CONCLUSIONS

In this paper, we propose a method of obtaining better SPN
for source camera identification. We contended that part of
the SPN may have been contaminated by the denoising filter
errors. By analyzing the Mihcak denoising filter [10], we
discovered that the errors are closely related to the local
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Fig. 1: Overall ROC curves for various image sizes and λ.
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Fig. 2: The distribution of the percentages of the selected
wavelet coefficients for images sized (a) 256 × 256 and (b)
128× 128 pixels when setting λ = 0.96.

variances of wavelet coefficients. Accordingly, the quality of
the SPN is improved by abandoning the wavelet coefficients
with higher local variances. The filtering distortion removed
SPN is then further enhanced using Li’s models to restrain
the scene details. Compared with some existing approaches
that apply the Mihcak filter, our method achieves better
identification performance in terms of the overall ROC curves.
Despite better denoising filters, such as the PCAI [15] and
the BM3D algorithm [16], have been proposed to extract
SPN, but the entire denoising processes of them are much
more complicated. Therefore, we will leave the analysis of
the denoising errors of other SPN extractors to our future
work. Additionally, as some useless SPN components have
been discarded, the proposed scheme can serve as a dimen-
sionality reduction method potentially, which would be another
direction of our future work.

ACKNOWLEDGMENT

This work was supported by the EU FP7 Digital Im-
age Video Forensics project (Grant Agreement No. 251677,
Acronym: DIVeFor).



5

REFERENCES

[1] J. Lukas, J. Fridrich, and M. Goljan, “Digital camera
identification from sensor pattern noise,” IEEE Transac-
tions on Information Forensics and Security, vol. 1, no. 2,
pp. 205–214, 2006.

[2] M. Chen, J. Fridrich, M. Goljan, and J. Lukás, “Deter-
mining image origin and integrity using sensor noise,”
IEEE Transactions on Information Forensics and Secu-
rity, vol. 3, no. 1, pp. 74–90, 2008.

[3] Y. Hu, B. Yu, and C. Jian, “Source camera identification
using large components of sensor pattern noise,” in
Proceedings of International Conference on Computer
Science and its Applications, 2009, pp. 291–294.

[4] X. Kang, Y. Li, Z. Qu, and J. Huang, “Enhancing
source camera identification performance with a camera
reference phase sensor pattern noise,” IEEE Transactions
on Information Forensics and Security, vol. 7, no. 2, pp.
393–402, 2012.

[5] C.-T. Li, “Source camera identification using enhanced
sensor pattern noise,” IEEE Transactions on Information
Forensics and Security, vol. 5, no. 2, pp. 280–287, 2010.

[6] C.-T. Li and Y. Li, “Color-decoupled photo response
non-uniformity for digital image forensics,” IEEE Trans-
actions on Circuits and Systems for Video Technology,
vol. 22, no. 2, pp. 260–271, 2012.

[7] X. Lin and C.-T. Li, “Preprocessing reference sensor pat-
tern noise via spectrum equalization,” IEEE Transactions
on Information Forensics and Security, vol. 11, no. 1, pp.
126–140, 2016.

[8] A. Cortiana, V. Conotter, G. Boato, and F. G. B. De Na-
tale, “Performance comparison of denoising filters for
source camera identification,” in Proceedings of SPIE,
2011, pp. 788 007–788 007–6.

[9] G. Chierchia, S. Parrilli, G. Poggi, C. Sansone, and
L. Verdoliva, “On the influence of denoising in prnu
based forgery detection,” in Proceedings of the 2nd
ACM workshop on Multimedia in Forensics, Security and
Intelligence, 2010, pp. 117–122.

[10] M. Mhak, I. Kozintsev, and K. Ramchandran, “Spatially
adaptive statistical modeling of wavelet image coeffi-
cients and its application to denoising,” in Proceedings
of IEEE International Conference on Acoustics, Speech,
and Signal Processing, vol. 6, 1999, pp. 3253–3256.

[11] D. T. Kuan, A. A. Sawchuk, T. C. Strand, and P. Chavel,
“Adaptive noise smoothing filter for images with signal-
dependent noise,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, no. 2, pp. 165–177, 1985.
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