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ABSTRACT 

 

Sensor pattern noises (SPNs), extracted from digital images to serve as the fingerprints of imaging 

devices, have been proved as an effective way for digital device identification. However, as we 

demonstrate in this work, the limitation of the current method of extracting the sensor pattern noise is 

that the SPNs extracted from images can be severely contaminated by the details from scenes, and as 

a result, the identification rate is unsatisfactory unless images of a large size are used. In this work, 

we propose a novel approach for attenuating the influence of the details from scenes on sensor 

pattern noises so as to improve the device identification rate of the identifier. The hypothesis 

underlying our SPN enhancement method is that the stronger a signal component in a SPN is, the less 

trustworthy the component should be, and thus should be attenuated. This hypothesis suggests that an 

enhanced SPN can be obtained by assigning weighting factors inversely proportional to the 

magnitude of the SPN components. 

 

Index Terms—Source device identification, multimedia forensics, digital forensics, digital 

investigation, sensor pattern noise 

 

 



I. Introduction 

As the cost of digital imaging devices, such as camcorders, digital cameras, scanners and cameras 

embedded in mobile phones, falls and the functionalities of these devices increase, digital imaging 

become increasingly cheaper in our every-day life. While digital imaging devices bring ever-

increasing convenience of image acquisition, powerful, yet easy-to-use digital image processing tools 

also provide effective means for manipulating images that can serve good and malicious purposes.  

As a result, the use of digital images in forensic investigations becomes more frequent and important. 

Typical image forensics includes source device identification, source device linking, classification of 

images taken by unknown cameras, integrity verification, authentication, etc.  

Usually the process of acquiring a photo with an ordinary digital camera is similar to the 

diagram illustrated in Figure 1. The light from the scene enters a set of lenses and passes through an 

anti-aliasing filter before reaching a colour filter array (CFA) that is intended to admit one of the red 

(R), green (G) and blue (B) components of the light per pixel for the following semi-conductor 

sensor to convert the signal into electronic form. A de-mosaicing process is subsequently carried out 

to get the intensities of the other two colours for each pixel by interpolating the colour information 

within a neighbourhood. A sequence of image processing operations, such as colour correction, white 

balancing, Gamma correction, enhancing, JPEG compression, etc. then take place before the photo is 

saved in the storage medium.  The hardware or software used in each stage in the image acquisition 

pipeline as illustrated in Figure 1 may leave unique traces in images, which can lead to the 

identification of the imaging device. As such, to help with forensic investigations, researchers have 

proposed ways of identifying and linking source devices, classifying images and verifying the 

integrity of images based on the detection of existence or local inconsistencies of device attributes or 

data processing related characteristics, such as sensor pattern noise (SPN) [1-8], camera response 

function [9], re-sampling artefacts [10], colour filter array (CFA) interpolation artefacts [11, 12], 

JPEG compression [13, 14], lens aberration [15, 16], etc. Other device and image attributes such as 



binary similarity measures, image quality measures and higher order wavelet statistics have also been 

exploited to identify and classify source devices [17 - 19].  

  While many methods [9-12] require that specific assumptions be satisfied, methods based on 

sensor pattern noise [1-8, 20-22] have drawn much attention due to the relaxation of the similar 

assumptions. Another advantage of sensor pattern noise is that it can identify not only camera models 

of the same make, but also individual cameras of the same model [1, 6]. The deterministic 

component of sensor pattern noise (SPN) is mainly caused by imperfections during the sensor 

manufacturing process and different sensitivity of pixels to light due to the inhomogeneity of silicon 

wafers [23, 24]. It is because of the inconsistency and the uniqueness of manufacturing imperfections 

and the variable sensitivity of each pixel to light that even sensors made from the same silicon wafer 

would possess uncorrelated pattern noise, which can be extracted from the images produced by the 

devices. This property makes sensor pattern noise a robust fingerprint for identifying and linking 

source devices and verifying the integrity of images. The reader is referred to [23] and [24] for more 

details in relation to sensor pattern noise. 

 

II. Limitation of Existing SPN Extraction Model     

Because sensor pattern noise appears as high-frequency signal in images, most image forensic 

methods based on sensor pattern noise [2-8] adopt the model proposed in [1] or its variant [25] for 

extracting the SPN, n, from an image I.  The model is formulated as 

                         n = DWT(I) – F(DWT(I))                                                                  (1) 

where DWT is the Discrete Wavelet Transform and F is a denoising function, which filters out the 

sensor pattern noise in the DWT domain. Although various denoising filters can be used as F, the 

wavelet-based denoising filter described in Appendix A of [1] has been reported as effective in 

producing good results. We can see from Eq. (1) that the SPN, n, literally covers the high-frequency 

components of I.  

  The key limitation of Eq. (1) is that the SPN, n, can be severely contaminated by details from 

the scene because scene details account for the high-frequency components of I and their magnitude 



is far greater than that of sensor pattern noise. For example Figure 2(a), (b) and (c) show a reference 

SPN of a camera, which is the average SPN of 50 images of blue sky taken by a digital camera,  the 

image of a natural scene taken by the same camera, and the SPN extracted from the image of Figure 

2(b), respectively. Figure 2(a) is what a “clean” SPN should look like. However, from Figure 2(c) we 

can see that the SPN contains strong details from the scene, which dominates the real SPN. Note the 

intensity of Figure 2(a) and (c) has been up scaled 9 and 3 times for visualisation purpose. 

   In the scenario of SPN-based source device identification, the investigator usually has a 

collection of devices or a database of reference sensor pattern noises, each representing one device, 

in his/her possession. The reason of creating such a clean reference SPN – the average of a number 

(say 20 to 50) of SPNs extracted from natural images, as illustrated in Figure 2(a) - is that it can 

better represent the imaging camera. However, source camera linking, which is about establishing 

whether or not the images under investigation are taken by the same camera without the camera and 

its reference SPN in the investigator’s possession, is a more challenging problem than source camera 

identification. The investigation can only be carried out based on one SPN from each image and if 

one or more SPNs are severely contaminated by the details of the scenes, the chance of reaching a 

correct conclusion cannot be expected to high. An even more challenging application is blind / 

unsupervised image classification aiming at classifying a large set of images in the absence of the 

imaging cameras and reference SPNs. Given a large number of images, classification based on the 

SPNs extracted from images of their original size (e.g., 3 or 4 mega pixels) is computationally 

prohibitive. This entails the need for carrying out the classification task based on the SPNs from 

smaller blocks cropped from the original images. However, cropping reduces the number of SPN 

components, consequently increasing the intra-class variation of SPNs. To address these issues, the 

contaminated SPN needs to be cleaned or enhanced in some way. Although enhancing the SPN 

extracted with Eq. (1) has been attempted by Chen et al. [25], their objective is to attenuate the 

artefacts due to colour interpolation, row-wise and column-wise operation and JPEG compression, 

rather than to deal with scene interference. To our best knowledge, SPN enhancing methodology 

aiming at attenuating the interference from scene details is currently lacking. It is therefore our 



intention to propose a method for effectively enhancing sensor pattern noise in Section III and to 

report in Section IV a sequence of experiments carried out to test the proposed SPN enhancers. 

 

III.  Proposed Sensor Pattern Noise Enhancer 

Given the fact that the magnitude of scene details tend to be far greater than that of the sensor pattern 

noise, , as demonstrated in Figure 2(c), the hypothesis underlying our SPN enhancer is that  

The stronger a signal component in n is, the more likely that 

it is associated with strong scene details, and thus the less 

trustworthy the component should be.  

This hypothesis suggests that an enhanced fingerprint ne can be obtained by assigning less 

significant weighting factors to strong components of n in the Digital Wavelet Transform (DWT) 

domain in order to attenuate the interference of scene details. There are various mathematical 

models for realising the afore-mentioned hypothesis. In this work, we propose five models, as 

formulated in Eq. (2) to (6) to be applied to the unenhanced SPN extracted with Eq. (1) in 

conjunction with the wavelet-based denoising filter described in Appendix A of [1]. 
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Model 2:  
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 Model 3:        





































   

     ),( if,

0),(- if,

         ),( if ,

  ),(0 if ,

)1(

1

)1(

                 1

),(

),(

                       ),(

),(

),(













jin

jin

jin

jin

ee

e

ee

e

jin

jin

jin

jin

jin

e
                                   (4) 

 

Model 4:        
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Model 5:      
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where n(i, j) and ne(i, j) are the (i, j)th component of n and ne, respectively. These five models can 

also be better presented graphically as demonstrated in Figure 3(a) to (e). Eq. (2) – (4) allow the 

magnitude of ne to grow monotonically in accordance with the magnitude of n if |n| ≤ α (a threshold 

to be decided by the user) and to decrease monotonically and rapidly with respect to |n| if |n| > α 

while Eq. (5) and (6) allow the magnitude of ne, (i.e., |ne|) to decrease monotonically with respect to 

the magnitude of n. We can see that α of Eq. (2) to (6) determines the performance of each model. 

These five models are not picked at random, but are motivated by the following considerations. 

 Stronger SPN components (|n| > α) should be attenuated monotonically and rapidly with 

respect to |n| to suppress the influence from scene details. This conforms to the falling tails in 

all five models, starting from the points where |n| becomes greater than α, although the 

falling rates are different for different models. 

 For weaker SPN components (i.e., |n| ≤ α), different considerations as discussed later are 

reflected in the five models. 

- Linear transformation (Models 1 and 2), as Eq. (2) to (3) and Figure 3(a) to (b) 

suggest: This is to give those weak components the same weight (1/ α) and is the most 



conservative transformation. However, since how scene details can be theoretically 

modelled is unclear, empirical tuning of the significance of the weaker (more 

trustworthy) components in some way other than linear transformation should also be 

studied. As such, the following two types of transformation are also considered. 

- Non-linear exponential transformation (Model 3), as formulated in Eq. (4) and 

illustrated in Figure 3(c):  Like the linear transformation, this non-linear exponential 

transformation is also a moderate operation because the orders of the transformed 

components remain unchanged. However, by the gradients at various points of the 

transformation curves, we can see that the model gives greater significance to the SPN 

components on the lower ends and less significance to those closer to ± α, while 

Models 1 and 2 indiscriminatively give equal weight to every n in the range [-α, α]. It 

is worth noting that not any non-linear exponential model with a monotonically 

increasing (decreasing) transformation curve in the range 0 < n < α (0 > n > α) can 

produce effective SPN enhancement. For example, a non-linear exponential 

transformation (Model 6), as formulated in Eq. (7) and shown in Figure 3(f), does not 

make physical sense and should be avoided because, by the gradients at various points 

of the curves, we can see the model is giving less significance to the weaker but more 

trustworthy components than the stronger but less trustworthy ones. We will discuss 

this in Part A of Section IV. 

Model 6:         
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- Inversely proportional transformation (Models 4 and 5), as formulated in Eq. (5) and 

(6), and illustrated in Figure 3(d) and 3(e): These are the most radical transformations 

among all models because they reverse the order of the magnitude (e.g., 0 in the 

unenhanced n is mapped to the maximum value of 1 in enhanced ne). This is intended 

to lay even more trust on the components with low magnitude. Therefore, they are still 



in consistence with our hypothesis because, throughout the entire spectrum, the weaker 

components are given greater significance than the stronger ones. 

 

IV. Experiments 

In the following experiments, we use 1200 photos of 1536 × 2048 pixels taken in JPEG format (with 

JPEG quality factor approximately ranging from 93 to 97) by six cameras, each responsible for 200. 

The six cameras are Canon IXUS 850IS, Canon PowerShot A400, Canon IXY Digital 500, FujiFilm 

A602, FujiFilm FinePix A902 and Olympus FE210. The photos contain a wide variety of natural 

indoor and outdoor scenes taken during holidays, around campus and cities, in offices and 

laboratories, etc. To enhance a SPN, we first perform Discrete Wavelet Transform (DWT), conduct 

low-pass filtering in the DWT domain, extract the SPN n using Eq. (1) in DWT domain, and finally 

apply an enhancement model to the unenhanced SNP directly in the DWT domain to get the 

enhanced version ne. 

      Each reference SPN, which represents each of the six cameras, is generated by calculating the 

average of the SPNs extracted from 50 photos of blue sky taken by the digital camera. Note because 

the photos of the blue sky do not contain significant high-frequency details and 50 SPNs are averaged 

to generate the reference SPN, therefore we did not apply any enhancing model to enhance those 

photos of blue sky. The 50 photos for creating the reference SPN are not included in the test set in the 

following experiments.  

Source device identification requires similarity comparisons among SPNs, therefore the feasibility of 

the chosen similarity metrics is important. As proposed in [22], Fridrich suggested the use of the 

Peak to Correlation Energy (PCE) measure, which has proved to be a more stable detection statistics 

than normalised cross-correlation when applied to the scenarios in which the images of interest may 

have undergone geometrical manipulations, such as rotation or scaling. The purpose of this work is to 

demonstrate the capability of the proposed SPN enhancers in dealing with the interference of details 

from the scene, geometrical transformations will not be applied in order to prevent biased evaluation 



from happening.  Therefore, in the following experiments, normalised cross-correlation will be used 

to measure the similarity between SPNs. The normalised cross-correlation between signal ni and nj is 

defined as 
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where in and jn are the means of ni and nj, respectively. 

        

 A. Selection of Enhancing Model and Parameter 

       The main theme of this work is the conception of the hypothesis that the stronger a 

signal component in n is, the more likely that it is associated 

with strong scene details, and thus the less trustworthy the 

component should be, while the five models (Eq. (2) to (6)) are just to validate the 

hypothesis. There is no theoretical backing for choosing the optimal model from Eq. (2) to (6) 

because the theory for modelling sensor pattern noise and scene details is not in existence at present. 

Feasible models other than these five can certainly be adopted in the future if found. 

We have carried out a sequence of source camera identification experiments, based on  1200 image 

blocks of 128 × 128 pixels cropped from the centre of the afore-mentioned 1200 photos, to evaluate 

various combinations of the five models (i.e., Eq. (2) – (6)) and 30 different values of α in order to 

validate our hypothesis.  As we will demonstrate in Part B of Section IV and Table 2, the reason of 

using image blocks of this size is that the performance of the models are not close to 100% when 

image blocks of this size is used, which leaves room for revealing the real performance of each 

model. To identify the source camera of an image, the SPN is extracted from the image and the 

similarity between the SPN and each of the six reference SPNs is calculated using Eq. (8). The image 



is deemed as taken by the camera corresponding to the maximum of the six similarity values. The 

results are listed in Table 1 and plotted in Figure 4. The following observations can be made:  

 Models 1 and 2, formulated in Eq. (2) and (3), perform reasonably well with the value of α in 

the relatively smaller ranges of [3, 4] and [4, 6], respectively, when compared to the 

performance of the other three models. However, as can be seen in Figure 4, their 

performance curves drop rapidly as the value of α grows. This indicates that SPN 

enhancement through linear transformation when |n| < α is more sensitive to changes of α. 

Moreover, the only difference between Models 1 and 2 is that the attenuation rate of Model 2 

is greater than Model 1 when |n| > α (See Figure 3(a) and (b)). This factor accounts for the 

more moderate declining rate of performance of Model 2 than that of Model 1 after their 

respective performance peaks, as shown in Figure 4 and Table 1, and indicates that a greater 

attenuation rate is preferable for strong SPN components. 

 Model 3 applies non-linear exponential transformation to SPN components when |n| < α.  

Figure 4 indicates that it performs stably well in a wider range [4, 11] of α, with a peak 

identification rate of 1039 out 1200 images at α = 5, 6 and 9 (see Table 1). Moreover, its 

performance curve drops more gracefully than Model 1 and 2 as α grows. It is worth noting 

that, according to Eq. (3) and (4), the transformation employed in Model 2 for |n| > α is 

basically the same as that employed in Model 3, except that the latter has a factor of ± (1 – e
-

α
) which is ≈ ±1. So we can conclude that the performance difference between the two 

models is due to the non-linear transformation effect when |n| < α, as discussed at the end of 

Section III. The explanation for this effect is that, as shown in Figure 3(b)  and (c), when |n| 

< α, the gradients at various points of the transformation curve of Model 2 remains constant 

while the gradients of Model 3 decreases monotonically with respect to |n|. This means 

Model 2 indiscriminatively assigns an equal weight to every component when |n| < α while 

Model 3 adaptively decreases the weight as |n| grows (i.e., as the influence of scene details 

gets stronger). 



 Model 4 and 5 apply inversely proportional transformation to the SPN components when |n| 

< α. Both models have equivalent peak identification rate of 1039 and 1040 out of 1200 

images, respectively. Model 4 performs at peak level when α = 18, which is far greater then 

the value of α (α = 7) at which Model 5’s performance peaks. This is because when α is 

lower the slope of the straight transformation line of Model 4 is greater, and as a result, the 

small and trustworthy components get over-attenuated. However, as shown in Figure 4, 

Model 4’s performance appears to be marginally more stable than Model 5’s after its 

performance peaks. This is because Model 4 sets n to 0 when |n| > α.  

 Although Model 6’s peak performance level (1014/1200 when α = 3) is only 2.17% lower 

than the global peak (1040/1200 of Model 5 when α = 7), this model is not only counter-

intuitive but also inconsistent with our hypothesis. The main difference between Model 3 and 

Model 6 is that when |n| < α, their transformation curves go up towards ± α with decreasing 

and increasing gradients, respectively. This indicates that, within this range, while Model 3 

gives greater weight to the small and trustworthy components, Model 6 does the opposite. 

Consequently, as its corresponding plot in Figure 4 shows, its performance is highly sensitive 

to the value of α. 

From the above discussions, we can conclude that Model 1 to 5 are all feasible models for enhancing 

SPNs, with Models 3, 4 and 5 being more preferable because they  perform  more stable within wider 

ranges of values of α. Stability is important because it gives the user high confidence in their choices.  

We also observed that the highest performance level (1040/1200) is reached by Model 5 with α = 7. 

However, this does not mean that this is the optimal combination because theoretical approaches for 

finding the optimal model and its parameters are currently lacking and it is in no way possible to 

exhaust the infinite numbers of models and parameters to identify the optimal combination. 

 

 

 



B. Source Camera Identification 

      To validate our hypothesis, we have carried out camera identification tests on the 1200 photos 

using Model 5 with α = 7. Instead of testing the enhancer on the full-sized images of 1536 × 2048 

pixels only, we also test it on image blocks of 8 different sizes cropped from the centre of the full-

sized images. Moreover, in real applications, identification should be based on whether the similarity 

is greater than a feasible threshold. Table 2 shows the true positive rate with and without applying 

Model 5 to the sensor pattern noises extracted with Eq. (1) when a correlation threshold of t = 0.01 is 

applied. Note that in this experiment the SPN of each image is only compared to the reference SPN 

of the camera that actually took the image in question, i.e., the source camera. The image is deemed 

as taken by the source camera if the similarity value is greater than t. It is clear from Table 2 that the 

larger the image blocks are, the greater the performance becomes. We can also see that, in all cases, 

enhancing the SPNs always yields greater performance and the performance differences become 

more significant as the image blocks get bigger.  

       Another useful measure for demonstrating the performance of the methods is false positive. 

Table 3 shows the false positive rates when a correlation threshold of 0.01 is applied. Note that, in 

this experiment, the SPN of each image is compared to the 5 reference SPNs of the cameras that are 

not the source camera of the image in question. The image is deemed as taken by the cameras that are 

not the source camera if their similarity values are greater than a threshold 0.01. From Table 3, the 

performance differences are even more prominent when the image block sizes are small. An 

interesting phenomenon, which can be observed from Table 3, is that for both methods, when 

scanning from the right hand side of the table, the false positive rates decrease slightly and reach the 

minimum when the image block size is 1024 × 1024 pixels. The false rates then increase significantly 

afterwards. This is particularly clear for the case without enhancement. After applying other 

threshold values of 0.005, 0.015, 0.02, 0.025 and 0.03, we observed the same phenomenon. We have 

no explanation for this at present, but it is interesting to look into the reasons in the future.  

       Table 2 and 3 have validated the hypothesis and demonstrated the superiority of the proposed 

SPN enhancing model. Figure 2(d) shows the enhanced version of Figure 2(c) after Model 5, with α 



= 7, is applied. We can see that the influential details from the scene, that are prominent in Figure 

2(c), have been significantly removed from Figure 2(d).   

 

C. Impact of Colour Saturation 

In many photos, the upper-left or upper-right corners are homogeneous background, such as the sky 

or a wall of plain colour, where the sensor pattern noise is less contaminated by details from the 

scenes than other areas. Therefore, if only a block is to be taken from a photo for forensic analysis, 

either one of these two corners are good candidates because the probability of getting a low-variation 

block from these two corners are greater than from other areas. Based on this rationale, we have also 

carried out the same camera identification experiment on image blocks of 128 × 128 pixels cropped 

from theses two corners and the centre of the 1200 photos. The results are listed in Table 4. Each 

number in the “No. saturated blocks” row is the number of saturated blocks out of 1200 blocks 

cropped from different areas of interest. In our experiment, if over 50% of the pixels of a block have 

the intensities of all three colour channels equal to 255, the block is deemed as saturated. The “No. 

saturated blocks” row conforms to our expectation that the two corners at the top of photos are more 

likely to be saturated than the central area. The “Identification rate (%): Saturation included” row of 

Table 4 shows that when the saturated blocks are included in the identification experiment, the 

identification rates based on the blocks cropped from different areas of interest are almost the same. 

Note that conclusion could not be drawn from this row alone, because these three statistics may vary 

when different dataset is used. However, this row is helpful in demonstrating the impact of colour 

saturation when comparing the statistics in the “Identification rate (%): Saturation excluded” row. 

This later row indicates that, when those saturated blocks are excluded, the identification rates based 

on the blocks cropped from the two corners are significantly higher than that based on the blocks 

cropped from the centre of images. This is not a surprising observation because usually the main 

objects appear in the centre of photos, where normal imaging and illumination conditions are met, 

while the two corners at the top of photos are more likely to be saturated due to imaging and 



illumination conditions, thus giving rise to the loss of sensor pattern noise. So we suggest that blocks 

be taken from the centre of photos if the SPNs of small image blocks cropped automatically by the 

system are to be used for forensic applications, such as unsupervised image classification.  

 

V. Conclusions 

In this work we have pointed out that sensor pattern noise, as the fingerprint for identifying source 

imaging devices, extracted with the commonly used model of Eq. (1) proposed in [6] can be severely 

contaminated by the details from the scene. To circumvent this limitation we envisaged the 

hypothesis that the stronger a component of the sensor pattern noise is, the less trustworthy the 

component should be and proposed 5 enhancing models (Model 1 to 5) for realising the hypothesis, 

with Model 3, 4 and 5 being more preferable. The hypothesis is tested by assigning greater weighting 

to the smaller SPN components. Experiments on source device identification have confirmed the 

soundness of our hypothesis.  

 Another related digital forensics application is that there are circumstances where a forensic 

investigator has a large set of images taken by an unknown number of unknown digital cameras and 

wishes to cluster those images into a number of classes, each including the images acquired by the 

same camera. The main challenges in this scenario are:  

 The forensic investigator does not have the cameras that have taken the images to generate 

reference SNPs for comparison. 

 No prior knowledge about the number and types of the imaging devices are available. 

 With a large dataset, exhaustive and iterative pair-wise SPN comparison is computationally 

prohibitive. 

 Given the shear number of images, analysing each image in its full size is computationally 

infeasible.   

In the near future, we intend to devise an unsupervised image classifier based on the enhanced sensor 

pattern noise using our SPN enhancers to address the afore-mentioned issues.  
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Figure 1. The image acquisition process of an ordinary digital camera. 

 

 
 

          
(a)                                                                   (b) 
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Figure 2. (a) A clean reference SPN taken from blue sky images, (b) An image of natural scene, (c) 
The SPN extracted from Figure 2(b) that is contaminated by the details from the scene. (d) The 

enhanced version of Figure 2(c) using Model 5 (i.e., Eq. (6)) with α = 7. Note the intensity of Figure 

2(a) and (c) has been up scaled 9 and 3 times, respectively, for visualisation purpose. 
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Figure 3. Six models for digital fingerprint enhancement. (a) –(f) correspond to Eq. (2) – (7), 

respectively. 



 
Figure 4. Performance, in terms of number of correct source camera identifications out of 1200 

images, of various SPN enhancing models when applied in conjunction with different values of α. 



Table 1.  Performance, in terms of number of correct source camera identifications out of 1200 

images, of various SPN enhancing models when applied in conjunction with different values of α. 

Model 
α 

1 2 3 4 5 6 7 8 9 10 11 1 13 14 15 
1 934 1020 1033 1029 1010 971 947 916 883 859 837 811 794 776 762 

2 940 986 1017 1029 1032 1029 1018 999 987 966 954 932 914 899 880 

3 936 976 1008 1021 1039 1039 1036 1038 1039 1032 1024 1021 1020 1019 1016 

4 582 783 890 940 964 985 998 1012 1020 1027 1031 1033 1037 1034 1033 

5 823 960 1003 1021 1039 1035 1040 1036 1036 1031 1030 1024 1019 1020 1017 

6 931 987 1014 1006 970 904 853 795 741 678 637 619 573 514 473 

 

Model 
α 

1 2 3 4 5 6 7 8 9 10 11 1 13 14 15 
1 934 1020 1033 1029 1010 971 947 916 883 859 837 811 794 776 762 

2 940 986 1017 1029 1032 1029 1018 999 987 966 954 932 914 899 880 

3 936 976 1008 1021 1039 1039 1036 1038 1039 1032 1024 1021 1020 1019 1016 

4 582 783 890 940 964 985 998 1012 1020 1027 1031 1033 1037 1034 1033 

5 823 960 1003 1021 1039 1035 1040 1036 1036 1031 1030 1024 1019 1020 1017 

6 931 987 1014 1006 970 904 853 795 741 678 637 619 573 514 473 

 

 
 

 

Table 2. True positive rates with and without applying Model 5 to the sensor pattern noises with α = 

7. Note that in this experiment the image is deemed as taken by the source camera if the similarity 
value is greater than a threshold 0.01. 

 
True positive rate (%) at different photo sizes 

128 

×128 

128 × 

256 

256 × 

256 

256 × 

512 

512 × 

512 

512 

×1024 

1024 

×1024 

1024 

×2048 

1536 

×2048 

without 

enhancement 
61.68 67.5 71.42 77.92 82.33 87.12 93.25 96.75 97.42 

with 
enhancement 

79.75 85.58 91.00 93.17 94.75 96.33 97.95 98.25 98.25 

 

 

 

Table 3. False positive rates with and without applying Model 5 to the sensor pattern noises with α = 

7. Note that in this experiment the image is deemed as taken by the cameras that are not the source 

camera if their similarity values are greater than a threshold 0.01. 

 
False positive rate (%) at different photo sizes 

128 

×128 

128 × 

256 

256 × 

256 

256 × 

512 

512 × 

512 

512 

×1024 

1024 

×1024 

1024 

×2048 

1536 

×2048 

without 
enhancement 

41.68 38.68 32.60 25.71 16.28 6.75 1.90 2.40 12.03 

with 

enhancement 
8.33 3.22 0.95 0.15 0.03 0 0 0.03 0.4 



 

 

 

 
Table 4. Identification rates with colour saturation taken into account. 

 Area of interest 

upper-left 

corner 
centre 

upper-right 

corner 

No. saturated blocks   113  7  110 

Identification rate (%): 

Saturation included 
86.83 86.67 85.25 

Identification rate (%): 
Saturation excluded 

92.27 86.83 90.65 

 

 

 


