
“Chapter” — 2016/12/5 — 13:37 — page 1 — #1

Chapter 9

Image provenance inference through
content-based device fingerprint analysis

Xufeng Lin and Chang-Tsun Li

9.1 Introduction

The last few decades have witnessed the increasing popularity of low-cost and high-
quality digital imaging devices ranging from digital cameras to cellphones with built-
in cameras, which makes the acquisition of digital images become easier than ever
before. Meanwhile, the ever-increasing convenience of image acquisition has bred
the pervasiveness of powerful image editing tools, which allow even unskilled per-
sons to easily manipulate digital images. As a consequence, the credibility of digital
images has been questioned and challenged. Under the circumstance where digital
images serve as the critical evidence, e.g., presented as evidence in courts, being
able to infer the provenance of an image becomes essential for recovering truth and
ensuring justice.

As an important branch of digital forensics, image provenance inference aims
to determine the original source of a digital image. The provenance of an image
provides forensic investigators with rich information about the originality and in-
tegrity of the image. It does not only look for answers to the question of which
device has been used to acquire a given image, but also conveys other implications
of the credibility of an image. For example, the inconsistent provenance information
from different regions of an image indicates that the image may have been tampered
with. This chapter mainly introduces and discusses several intrinsic device finger-
prints and their applications in image provenance inference. These fingerprints arise
from either the hardware or software processing components in the image acquisition
pipeline and exhibit themselves as specific patterns or traces in the image. Analyses
of these fingerprints provide useful information for inferring the image provenance
and uncovering underlying facts about the image.

In the remainder of this chapter, we will first discuss why the techniques that
based on digital watermark and metadata are impractical or unreliable for image
provenance inference in Section 9.2 and 9.3, respectively. In Section 9.4, we will
introduce several intrinsic device fingerprints arising from different processing com-
ponents in the imaging pipeline of a device. In Section 9.5, we will concentrate on
Sensor Pattern Noise (SPN) and discuss in detail its applications in image prove-
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nance inference. Section 9.6 concludes this chapter and points out several directions
of future research.

9.2 Why Not Digital Watermark?

Digital watermark is an extra message that is embedded, usually in an invisible way,
to digital contents like images, audio and video, for the purpose of protecting the
ownership of digital contents. It offers an imperceptible way to insert digital object
identifier, serial number or other image source information in host images, and thus
provides a promising approach for inferring the provenance of an image. The robust
watermark, which is able to survive a variety of image processing operations such as
image compression, image filtering, and geometric modifications, can be used to ver-
ify the provenance of an image that has been redistributed over untrusted networks.
The fragile or semi-fragile watermark [1–9], which is readily altered or destroyed
when the host image is modified, has been intensively used to determine whether the
image has been altered since its original recording.

In spite of the effectiveness of the techniques based on digital watermark, they
can only be applied when the image is protected at the origin. Nowadays, the majori-
ty of images do not contain a digital watermark mainly due to the following reasons:

• Camera manufacturers have to devise extra digital watermark embedding com-
ponents in the camera, so only some high-end cameras have watermark em-
bedding features.

• The embedded watermark may degrade the image quality and significantly
reduce the market value of cameras equipped with a watermark embedding
component.

• The successful implementation of watermark-based protection requires close
collaborations among publishers/manufaturers, investigators and potentially
trusted third-party organizations. This restricts the wide adoption of digital
watermark in digital devices.

9.3 Why Not Metadata?

Another way to determine the provenance of an image is through the use of metadata
created by the source device. In particular, the Exchangeable Image File Format
(EXIF) is the most ubiquitous metadata standard supported by many digital camera
manufacturers. Part of the information retrieved from the EXIF header of an image
is shown in Fig. 9.1. By accessing the EXIF header, some information, such as
the “Make” and “Model” of the camera that has been used to take the image, can
be retrieved. Other information, such as the “Create Date” and “Modify Date”, can
serve as useful clues to determine whether the image has been modified since its
original recording. A few attempts [10, 11] have been made to exploit the EXIF
information for forensic purposes.
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Figure 9.1: Part of the EXIF information retrieved from an image with an EXIF
editing tool [12].

However, EXIF metadata is not always available. On the one hand, not all imag-
ing devices and image file formats support EXIF standard, especially the older ver-
sions of devices and image formats. As a result, images taken with such devices or
stored in such formats may not contain EXIF information. Early versions of image
editing software, such as Adobe Photoshop 5.0, do not recognize the EXIF standard
and strip the EXIF metadata when they resave the images. On the other hand, with
the rise of photo sharing on social networks like Facebook, Instagram, and Twitter,
there has been increasing concern and fear about the personal information embedded
in the photos shared online. At the same time, the latest generation of cameras and
phones are able to add location information or GPS coordinates to the EXIF metada-
ta, which makes photo sharing a privacy hazard. For this reason, the EXIF metadata
is stripped out by almost all the major social networks when the images are being
uploaded.

Moreover, the EXIF metadata is easily removable or replaceable. Anyone who
wishes to remove or edit EXIF metadata will find a range of tools at their disposal on
the Internet. With these EXIF editing tools at hand, experienced photographers can
even develop their own techniques to edit EXIF metadata. Therefore, even if EXIF
metadata is present, it is not a reliable or trustworthy indicator of the image source.

9.4 Device Fingerprints

Illustrated in Fig. 9.2 is a simplified image acquisition pipeline in typical cameras.
The light from the scene goes through the lens (usually covered by an associated
color Filter array (CFA)) and projects on the surface of the sensor, which converts
the optical signal into the raw image signal. Sequentially undergoing different pro-
cessing components such as CFA interpolation, white balancing, camera response
function (CRF), JPEG compression, etc. the raw image signal finally forms the
image data suitable for visualization or display purpose. The final image carries spe-
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Figure 9.2: A simplified image acquisition pipeline in typical cameras.

cific patterns or traces left by each processing component in the image acquisition
pipeline. Such patterns or traces are intrinsic to the imaging pipeline, so they can
be considered as some sort of fingerprints of the source device and used for image
provenance inference. It is similar to bullet scratches allow forensic investigators
to match a bullet to a particular barrel. In the following subsections, we will intro-
duce different device fingerprints arising from different processing components in
the image acquisition pipeline.

9.4.1 Optical Aberrations

Each camera is equipped with a complex optical system. In an ideal imaging system,
the light rays from a point of an object pass through the lens and converge to a cor-
responding point on the sensor. However, realistic optical systems deviate from such
an ideal model and introduce optical aberrations in the captured images. It should
be noted that optical aberrations are caused by the optical specifications designed by
device manufacturers (due to the wave nature of light) rather than any flaws in the
optical elements. Different camera models are typically equipped with different op-
tical systems, which have their own aberration characteristics. Therefore, the optical
aberrations appear in an image can be used for inferring the provenance of the image
or even verifying the content of the image. Optical aberrations can be categorized
into different types, such as chromatic aberrations, spherical aberrations, coma and
radial lens distortion. We refer readers to the Chapter 3 of [13] for a detailed descrip-
tion of each type of aberrations. Some of the optical aberrations have been exploited
for image provenance inference. Johnson and Farid [14] modeled the lateral chro-
matic aberration , which occurs when different wavelengths of light do not converge
to the same point on the sensor, as the expansion/contraction of the coordinates of
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the red and blue channel with respect to the coordinate of the green channel:(
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where (xc,yc),c ∈ {r,g,b} is the coordinate of channel c, and (xi,yi), i ∈ {1,2} and
αi, i∈ {1,2} are the coordinate of the center and the magnitude of distortion, respec-
tively. In such a way, the red to green channel and blue to green channel distortions
are characterized by the parameters (x1,y1,α1) and (x2,y2,α2), respectively. By
maximizing the mutual information between each pair of color channels (i.e., the red
and green channel, or the blue and green channel), the parameters can be globally
estimated from the entire image. Any inconsistency between the globally estimated
parameters and the parameters estimated locally from a suspect image region can be
used as evidence of image forgery [14]. In [15], these six parameters estimated from
images captured by four cellphones (two of them are of the same model) are used as
features to train a support vector machine (SVM) classifier, which will be used for
classifying images of unknown provenance. Testing on 180 images taken by three
cellphones of different models shows an average classification accuracy of 92.2%.
But the accuracy of differentiating the two cameras of the same model is as low as
50%, which is akin to a random guess.

(a) (b) (c)

Figure 9.3: Radial lens distortion of a rectangular grid. (a) Undistorted grid. (b)
Barrel distortion. (c) Pincushion distortion.

Another pronounced and visually distinct aberration is the radial lens distortion,
which arises from the fact that the magnification of an image is non-uniformly across
the image plane but depends on the radial distance, r, from the optical center. When
the magnification increases with r, the distortion is known as the “barrel distortion”
(Fig. 9.3(b)). Conversely, it is known as the “pincushion distortion” (Fig. 9.3(c)), if
the magnification decreases with r. Choi et al. [16, 17] adopted a simple polynomi-
al model [18] to formulate the relationship between the distorted image coordinate
(xd ,yd) and undistorted image coordinate (xu,yu):

ru = rd + k1r3
d + k2r5

d , (9.2)
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where rd =
√
(xd− x0)2 +(yd− y0)2 and ru =

√
(xu− x0)2 +(yu− y0)2 are the ra-

dius from the optical center (x0,y0) in the distorted and undistorted image, respec-
tively. The parameters (k1,k2) characterizing the radial distortions can be estimated
using the algorithm proposed in [18]. Similar to the work in [15], Choi et al. trained
an SVM classifier using the distortion parameters estimated from images of different
cameras and classified images of unknown provenance. On a small dataset con-
sisting of 180 images taken by three cameras of different models, they reported an
average accuracy of 91.5% [16]. The accuracy decreases to 89.1% on a larger dataset
consisting of images from five cameras [17].

The results on small datasets show that the optical aberrations are promising in
image provenance inference, but their limitations are apparent:

• Cameras of the same model are equipped with the same optical specifica-
tion, therefore the optical aberrations are insufficient for identifying individual
source cameras of the same model [15].

• The optical aberrations are closely related with camera settings, such as focal
length [16, 17, 19], focal distance and even aperture size [20]. Different cam-
era settings may introduce considerable intra-model variations and make the
classification over a range of camera settings more problematic.

• The estimation of aberration parameters is influenced by JPEG compression,
random noise and image cropping. Van et al. [15] showed that the classifi-
cation accuracy declines when testing on images processed by some common
image operations.

The above limitations of optical aberrations restrict their applicability to more di-
verse datasets in the sense of camera models, camera settings and image processing
operations.

9.4.2 CFA and Demosaicing
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Figure 9.4: The process of CFA interpolation (demosaicing).
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In consequence of cost considerations, most consumer digital cameras are e-
quipped with only one imaging sensor and an associated color filter array (CFA).
Only one color component passes through CFA is captured at each pixel and conse-
quently forms a mosaic-like monochrome image, as shown in Fig. 9.4. The missing
components have to be interpolated based on the captured components to recover the
full-color image. The process of CFA interpolation is also known as demosaicing
(Fig. 9.4), which will introduce specific inter-pixel and inter-channel correlations in
the recovered full-color image. Therefore, by detecting the specific patterns intro-
duced by demosaicing, we are able to infer the provenance of images.

Demosaicing has been extensively exploited for forensic purposes. Popescu and
Farid [21] modeled the correlation between each pixel I(x,y) and its neighboring
pixels using a linear model

I(x,y) =
N

∑
i=−N

αiI(x+∆xi,y+∆yi)+n(x,y), (9.3)

where n(x,y) is the modeling error, (2N + 1)×(2N + 1) is the size of the neighbor-
hood, {αi|−N ≤ i≤ N} are the interpolation coefficients, and (∆xi,∆yi) is the offset
of the ith pixel within the neighborhood. They assumed that image tampering will
likely destroy the inter-pixel correlations or produce inconsistent correlations. To
reveal the potential tampering, they employed the expectation/maximization (EM)
algorithm to simultaneously estimate the interpolation coefficients αi and the proba-
bility map p indicating how likely one pixel conforms to the neighboring correlation
characterized by Eq. (9.3). An image region without the presence of periodic pat-
tern in the probability map p is considered as tampered, otherwise it is non-tampered.
They also observed that the magnitude spectrum of the probability map p varies from
one demosaicing algorithm to another. Motivated by this observation, Bayram et al.
[22] used the peak locations and magnitudes in the DFT spectrum of the probability
map p, along with the interpolation coefficients α , as features to differentiate camera
models. With the LibSVM classifier [23] and the sequential forward floating search
(SFFS) algorithm [24] for feature selection, they reported an average classification
accuracy of 83.3% on three cameras of different brands. The accuracy on the same
dataset was improved to 96% when the smooth and non-smooth image regions were
handled differently [25].

In [26], Long and Huang formulated the Mean Square Error of n(x,y) across the
entire image in a quadratic form

1
WH

W

∑
x=1

H

∑
y=1
|n(x,y)|2 = XT AX , (9.4)

where X = {α−N , ...,αN ,αN+1}T and

A(i, j) =
1

WH

W

∑
x=1

H

∑
y=1

I(x+∆xi,y+∆yi)I(x+∆x j,y+∆y j),−N ≤ i, j ≤ N,

with αN+1 = −1 and ∆xN+1 = ∆yN+1 = 0. Instead of using the interpolation coef-
ficients, they represented A in a 13×13 neighborhood as a 169-dimensional feature,
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the dimension of which will be reduced to 15 using the principal component analy-
sis (PCA) [27]. Instead of using the SVM classifier like in [22, 25], a 3-layer feed-
forward neural network was trained using the 15-dimensional features for classifying
different camera models. Almost perfect results were reported on the uncompressed
images produced by digital cameras (four cameras and one class of cartoon images).
But their algorithm tends to be sensitive to JPEG compression and median filtering.

Considering that the demosaicing algorithm may handle different image regions
differently, Swaminathan et al. [28, 29] firstly divided the image regions into three
categories:

• Region containing pixels with a significant horizontal gradient,

• Region containing pixels with a significant vertical gradient,

• Region that is mostly smooth.

Then they estimated the interpolation coefficients in each of the three regions by
minimizing the approximation error over 36 CFA configurations. The estimation was
performed in a 7× 7 neighborhood in each of the three color channels (red, green,
and blue), and thus results in 7× 7× 3× 3 = 441 coefficients per image. Theses
coefficients serve as 441-dimensional features that are fed into a probabilistic SVM
classifier for training and classifying images of unknown provenance. An average
classification rate of 90% was reported for 9 cameras of different brands, but it drops
to 86% on a larger dataset consisting of 19 cameras of different models [29]. In the
latter case, the classification errors were largely attributed to the ambiguities among
cameras of the same brand.

Most advanced demosaicing algorithms often exploit the color difference and in-
evitably introduce strong inter-channel dependencies. However, the aforementioned
algorithms only consider the inter-pixel correlations in the same color channel but
ignore the inter-channel correlations. Cao and Cot [30] found that demosaicing is
equivalent to estimating the second-order derivatives of neighboring pixels. Thus,
they modeled the pixel dependencies using a partial second-order derivative corre-
lation formula, which takes both the intra-channel and inter-channel correlations in-
to consideration. Additionally, they proposed an expectation/maximization reverse
classification (EMRC) algorithm to simultaneously classify the pixels demosaiced
by the same formula into one of 16 demosaicing categories and estimate the inter-
polation coefficients representing the underlying demosaicing formulas. Based on
the outcomes of the EMRC algorithm, a total of 1536 features were computed for
each image. Similar to the work in [22, 25], the SFSS algorithm and the LibSVM
classifier were jointly used to classify the images of unknown source. With 250 fea-
tures selected by SFFS, an average accuracy of 97.5% was achieved over a dataset
of 14 cameras, some of which are of the same brand. The leading-edge performance
was also confirmed by the results on a dataset of 15 mobile cameras [31]. But as
expected, the algorithm tends to confuse the cameras of the same model due to the
identical in-camera demosaicing algorithm [31].
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9.4.3 Camera Response Function

In digital cameras, the camera response function (CRF), which is generally a non-
linear mapping, is used to transform the wide-ranging irradiance (i.e., the output
of demosaicing) to a limited range of measurable image intensities. The principle
of using CRF for image provenance inference is that cameras of the same model
are expected to employ the same CRF. By adopting the CRF estimation algorithm in
[32], Lin et al. [33] defined three features to measure the properties and consistencies
of the CRFs recovered from the CRFs of different color channels. Positive samples
(i.e., the normal CRFs collected from the DoRF database [34]) and negative samples
(i.e., the abnormal CRFs estimated from forged images) are used to train an SVM
predictor, which will be used to predict a confidence indicating the normality of the
CRFs estimated from an image in question. The effectiveness of the algorithms was
validated via comparison experiments on a few forged and non-forged images.

Hsu and Chang [35–37] proposed a CRF-based image splicing detection algo-
rithm. They modeled the CRF using the Generalized Gamma Curve Model (CGCM)
and estimated the parameters of CGCM using geometry invariants (GIs) calculated
from locally planar irradiance points (LPIPs) in an image [38]. By automatically
segmenting an image, they first obtained the suspect spliced regions and the bound-
ary segments between neighboring regions. If the image is authentic, the GIs in the
region on one side of a boundary segment is expected to fit well to the CRF estimated
from the region on the other side of the boundary segment. Otherwise, if the regions
on two sides of a boundary segment are from different cameras, it is expected to see
large cross fitting errors. Therefore, they calculated 20-dimensional features for each
boundary segment to measure the cross fitting errors as well as the fitness of CRF
estimation, and classified the segments as authentic or spliced using an SVM classi-
fier. They reported an image-level classification accuracy of 70% precision and 70%
recall rate, on a dataset consisting of 180 spliced and 183 authentic images taken by
four cameras.

While early works focused on exploiting the abnormality or inconsistency of
CRFs from different sources for detecting image manipulations, the concept of cam-
era CRF signature for distinguishing different camera models was introduced later
in [39, 40]. The authors extended their CRF estimation algorithm [38] and defined
a CRF signature as the histogram of the fitness scores of selected points with regard
to the estimated CRF. Visual examination on the CRF signatures of four different
camera models shows that cameras of different models are prone to have CRF sig-
natures of different shapes, and the CRF signatures extracted from images with the
same CRF tend to be consistent. However, the above-mentioned experiments related
to CRF, for either image manipulation detection or image source identification, were
conducted on datasets involving only a few cameras. Further studies on the distinc-
tiveness of CRF over a large set of different camera models are yet to be conducted.
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9.4.4 Quantization Table

In the last step of the imaging pipeline, most digital cameras export images in JPEG
format. This lossy compression standard employs quantization tables to control the
desired amount of compression. Although the Independent JPEG Group (IJG) rec-
ommended using the standard quantization tables, the JPEG users (e.g., camera man-
ufacturers and computer programs) are free to specify their own quantization tables.
In fact, the majority of cameras employ a different set of quantization tables. There-
fore, comparing the quantization tables of different images offers a simple way to
distinguish different image sources.

The idea of using JPEG quantization tables for camera ballistics was first pro-
posed by Farid in [41], where an initial investigation on 204 cameras revealed that
62 (30.4%) out of the 204 cameras had a unique quantization table. While in the
remaining cameras, not only the cameras from the same manufacturer may share the
same quantization table, but even different makes and models are likely to have iden-
tical quantization tables. His followup study on a larger database [42] shows that the
distinctiveness of quantization table can be even lower, with only 517 (5.1%) out of
10153 entries having a unique table. But an independent investigation carried out by
Sorell [43] leads to a different interpretation. He found that, among the 330 distinct
quantization tables extracted from 5485 images, over 92% of them are unique to one
camera series. Furthermore, even after recompression of an image, residual artifact-
s of double compression continue to provide useful information for source camera
identification.

Given the above attempts to discriminate image source via quantization tables,
there is no denying that the quantization table is a reasonable discriminator between
model series and effective at narrowing down the source of an image to a smaller set
of possible cameras, but apparently it is insufficient to uniquely identify the image
source. Besides, as pointed out in [43], the distinctiveness of quantization tables
can be obscured by the smaller valued quantization tables adopted in high quality
cameras for acquiring higher quality images.

9.4.5 Image Thumbnail

Another in-camera operation is the generation of an image thumbnail, which is a
thumbnail sized version of the full resolution image and typically stored in the header
of a JPEG image. A thumbnail is used to quickly preview the image without loading
and displaying the full-sized image. The creation of a thumbnail involves a series
of operations including cropping, blurring, down-sampling, sharpen, contrast and
brightness adjustment, and JPEG compression. The parameters of these operations
vary across camera brands or even models, and thus can be used to identify the source
device of an image. Experimental results on 1514 images covering 142 cameras
of different makes and models show that 40.8% of the cameras can be uniquely
identified by using the thumbnail parameters [44].

To increase the accuracy of camera identification, one can simply incorporate
more information. For example, by jointly using quantization tables, thumbnails
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parameters and full resolution image size, the percentage of cameras that can be
uniquely identified increases from 40.8% to 72.2% [11]. The results on a much larger
database [11] show that a 576-valued camera signature, consisting of the information
from quantization tables, Huffman codes, thumbnail parameters and EXIF metadata
parameters, is capable of uniquely identifying 69.1% of 9163 camera configurations.
It should be noted that the percentage of cameras that can be uniquely identified
varies from one database to another, and also depends on what “fingerprints” are
used for identification. But any of the device fingerprints we have discussed so far
is only sufficient for brand-level or model-level image provenance inference. So
even involving all of the aforementioned fingerprints, ambiguities still abound in
identifying the individual devices of the same brand or model.

9.5 Sensor Pattern Noise

Pattern noise

DSNU PRNU

Figure 9.5: Pattern noise of imaging sensors.

A promising method for uniquely distinguishing individual devices is based on
sensor pattern noise (SPN) [45]. As shown in Fig. 9.5, pattern noise consists of two
main components. One is the fixed pattern noise (FPN) (or dark current noise as it
is more commonly referred to as), which is the pixel-to-pixel differences when the
sensor array is not exposed to light. The dominant component in SPN is the photo
response non-uniformity (PRNU) noise. It is primarily resulted from the variation
among pixels in their sensitivity to light, which is caused by the manufacturing im-
perfections and the inhomogeneity of silicon wafers during the sensor manufacturing
process [45]. It has attracted much attention from researchers in the past decade be-
cause of its desired characteristics:

1. Universality. Every imaging sensor exhibits SPN, therefore the methods based
on SPN are widely applicable to any device equipped with an imaging sensor.

2. Stability. SPN is not subject to the influence of environmental conditions,
such as temperature and humidity, and essentially time-independent.

3. Robustness. SPN is robust to common image processing operations, such as
JPEG compression, gamma correction, and image filtering.
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4. Uniqueness. SPN can be considered as unique to each sensor because of the
large number of pixels of the sensor and the randomness of SPN.

Therefore, SPN is considered as the fingerprint of imaging devices and has been
widely and successfully applied image provenance inference. In the following sub-
sections, we will introduce the estimation of SPN, and its use in source camera i-
dentification, device linking, source-oriented image clustering and image forgery
detection.

9.5.1 Estimation of SPN

The SPN of a device can be estimated from the noise residuals extracted from a
collection of images acquired by the device. The noise residue is defined as the
difference between the original image I and its denoised version Î(0) [46]:

W =I− Î(0) (9.5)

=(1+K)I(0)+ΘΘΘ− Î(0) (9.6)

=IK+ I(0)− Î(0)+(I(0)− I)K+ΘΘΘ (9.7)
=IK+ΞΞΞ, (9.8)

where Î(0) is the estimation of the noise-free image I(0) and can be obtained by ap-
plying a denoising filter F(·) to I, i.e., Î(0) = F(I), K is the noise-like multiplicative
factor responsible for PRNU noise, ΘΘΘ stands for a complex of independent random
noise components containing the interferences from image content and other noises,
and ΞΞΞ is the sum of ΘΘΘ and the two additional terms I(0)− Î(0) and (I(0)− I)K. IK
can be reasonably assumed to be independent of ΞΞΞ as the term (I(0)− I)K in ΞΞΞ is
very weak [46].

The estimation of SPN is usually referred to as the reference SPN (RSPN), which
is considered as the unique fingerprint of a source device. It can be obtained by
averaging the noise residuals of N images taken by the source device:

R =
1
N

N

∑
k=1

Wk, (9.9)

where Wk represents the noise residual of the kth image. Alternatively, the PRNU
term K can be explicitly estimated through a maximum likelihood estimate (MLE)
method [46]:

K̂ =
∑

N
k=1 WkIk

∑
N
k=1 I2

k
. (9.10)

By comparison, Eq. (9.9) not only considers the PRNU noise but also implicitly
includes the FPN in R. It is worth mentioning that the FPN is not as stable as PRNU
and may have been removed by dark-frame subtraction in device, but it facilitates
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the image provenance inference if it remains in the image. To better estimate the
SPN, the image intensity Ik should be as high as possible but not saturated because
of the multiplicative nature of the PRNU noise IK [46]. Also note that in Eq. (9.8)
the smaller the variance of undesired signal ΞΞΞ, the more accurate the estimation in
Eq. (9.9) and Eq. (9.10). Therefore, images of bright and smooth scenes, such
as blue sky and flat field (i.e., intensities are approximately constant) images, are
commonly used for SPN estimation. In the case of flat field images, there is no much
difference between the simple averaging method in Eq. (9.9) and the MLE method
in Eq. (9.10). Unless otherwise stated in the rest of this chapter, RSPN refers to the
estimation of SPN using the simple averaging method in Eq. (9.9).

9.5.2 Source Device Identification

As shown in Fig. 9.6, to identify the source device among a set of candidate devices
C for a test image of unknown source, the typical process is to calculate the normal-
ized cross-correlation (NCC) between the noise residual W of the test image and the
RSPN Rc of each device c ∈ C [45]:

ρ(Rc,W) =
∑k,l(W(k, l)−W(k, l))(Rc(k, l)−Rc(k, l))√

∑k,l(W(k, l)−W(k, l))2
√

∑k,l(Rc(k, l)−Rc(k, l))2
, (9.11)

where the mean value is denoted with a bar and || · || is the L2 norm. The test image
is deemed to be taken by the camera c∗ with the maximal NCC value that is greater
than a predefined threshold τ:

c∗ = argmax
c∈C

{ρ(Rc,W)},ρ(Rc∗ ,W)> τ, (9.12)

where τ is usually determined by Neyman-Pearson criterion [46]. Although more
advanced detection statistics such as the peak-to-correlation energy (PCE) [47] and
the correlation over circular cross-correlation norm (CCN) [48] have been proposed
to improve the identification performance, NCC is still the most widely adopted SPN
similarity measurement probably because of its simplicity.

SPN has demonstrated great promise in discriminating individual devices. Large-
scale tests on millions of images spanning 6896 individual cameras covering 150
models show a very high detection rate 97.6% at a false positive rate as low as 2.4×
10−5 [49]. The great potential of SPN has attracted much attention from researchers,
and many efforts have been devoted to improving the performance of SPN-based
source device identification. A feasible direction of improvement is to adopt more
advanced denoising filters because the performance of the denoising filter F(·) has
a direct impact on the quality of the noise residual. The basic and probably the
most prevailing denoising filter for estimating the SPN is based on the Mihcak filter
[50]. It works by calculating the fourth-level wavelet decomposition of the image
and applying the Wiener filter in the high-frequency subbands in each of the four
levels. Chierchia et al. [51] proposed to use a non-local denoising filter, block-
matching and 3D filtering (BM3D) [52], which works by grouping 2D similar image
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Figure 9.6: Source device identification based on SPN.

patches found across the entire image into 3D arrays and collectively filtering the
grouped image blocks. The sparseness of the representation due to the similarity
between the grouped blocks makes it capable of better separating the true signal
and noise. The results in [51] show that BM3D better prevents the image scene
from propagating to the noise residual than the Michak filter. Another denoising
filter, edge adaptive SPN predictor based on context adaptive interpolation (PCAI)
[53, 54], was proposed to suppress the effect of scene edges. It first predicts the
value of a pixel from its neighboring pixels, then a Wiener filter is applied to the
difference between the predicted image and the original image to obtained the noise
residual. Because the prediction of pixel values is edge-aware, the noise residual
obtained with PCAI is expected to have less scene details than that obtained with the
Michak filter.

Another line of research is dedicated to selecting or weighting the components
in the noise residual W aiming to strengthen the PRNU signal IK and suppress the
undesired signal ΞΞΞ in Eq. (9.8). Li [55] proposed five models to attenuate scene
details by assigning less significant weighting factors to the strong components of
SPN in the wavelet domain. The underlying rationale is that the stronger a com-
ponent in W is, the more likely it is associated with strong scene details, and thus
the less trustworthy the component should be. Lin and Li [56] further improved the
quality of W by abandoning the components that have been severely contaminated
by denoising errors. As mentioned in the last subsection, SPN is better preserved
in images with high intensity and low textured scenes. For this reason, McCloskey
[57] suggested giving a smaller weight to the pixels with a larger local gradient. A
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more sophisticated weighting scheme in [58] predicts the correlations between the
blocks in noise residual W and the corresponding blocks in the RSPN R using image
intensity and texture features. A block with a larger predicted correlation is expected
to contain SPN of higher quality, so a larger weight is assigned to the center pixel
of the block. While all the aforementioned weighting schemes deal with the noise
residual W of the test image, some other works shifted the focus to the RSPN R.
Hu et al. [59] assumed that the larger components of R are more reliable while the
smaller components are more sensitive to random noise. So they proposed to involve
only a certain percent (e.g., 10%) largest components of R into the calculation of
correlation. Li and Li [60] proposed an estimator to construct a reliable RSPN from
a limited number of images. Specifically, each image Ik and the corresponding noise
residual Wk are segmented into non-overlapping blocks. The quality of each block
is then measured and sorted based on the entropy and average intensity of the block.
The block with a higher ranking (i.e., higher quality) is assigned a larger weight.
Finally, the RSPN in different block locations is estimated as the weighted average
of the noise residuals in the same block location. A similar RSPN estimator was pro-
posed in [61], where the equal weighting factor 1/N in Eq. (9.9) is replaced with a
new weighting factor related with the variances of the undesirable noise in the noise
residual Wk.

Interestingly, while some of the processing components in the image acquisition
pipeline introduce specific patterns or characteristics that are useful for identifying
the source device, they may become the interference sources for the accurate esti-
mation of SPN. For this reason, some works have been proposed to alleviate the in-
fluence of the “interferences” introduced during the image acquisition process. For
example, the artificially interpolated color samples obtained through demosaicing
are not physically captured by the sensor, thus the SPN components extracted from
the artificial samples are expected to be less reliable than those extracted from the
physical samples. Based on this assumption, Li and Li [62] proposed a Couple-
Decoupled PRNU (CD-PRNU) extraction method to prevent the interpolation noise
from propagating into the PRNU noise extracted from physical components. They
first decomposed each color channel into four sub-images and extracted the noise
residual from each sub-image. Finally, they assembled the noise residuals of the
sub-images to obtain the CD-PRNU. Another source of interfering is the in-device
lens-distortion correction, which allows users to take high-quality photos at a wide
range of zoom. The lens-distortion correction desynchronizes the pixel-to-pixel cor-
respondence between images taken at two different focal lengths and thus leads to
a low accuracy for SPN-based source device identification. To reestablish synchro-
nization between an image and the RSPN, Goljan and Fridrich [63] adopted the
barrel distortion model in [18] and search for its parameter to maximize the detec-
tion statistic between the noise residual and the RSPN. In [64], they extended their
method to make it work for single images (i.e., without the RSPN) by searching for
a maximum energy of the linear pattern [46] introduced into the image prior to lens
distortion correction.

The processing components in the image acquisition pipeline not only inflict dis-
tortion but also introduce non-unique artifacts (NUAs) in the noise residual. These
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NUAs are shared among the devices with the same or similar in-camera processing
procedures. The unwanted artifacts including the demosaicing artifacts, JPGE block
artifacts, and the diagonal artifacts reported in [65], may give rise to false positives1

and thus should be suppressed for improving the reliability for SPN-based device
identification. Chen et al. [46] proposed two preprocessing operations to suppress
the NUAs in RSPN. One operation is zero-meaning (ZM) operation, which removes
the linear pattern in RSPN by subtracting the column average from each pixel in
the column and subtracting the row average from every pixel in the row. The other
operation is Wiener filtering (WF) in the frequency domain, which attenuates the
periodic artifacts in RSPN. Kang et al. [48] suggested only keeping the phase com-
ponents of the noise residual when constructing the RSPN. The underlying rationale
is that the SPN is usually modeled as an additive white Gaussian noise (AWGN) in
its estimation process, so it is reasonable to assume that the RSPN is a white noise
signal with flat frequency spectrum to facilitate the removal of the contamination in
the frequency domain [48]. Only keeping the phase components whitens the noise
residual in the frequency domain and helps to remove the periodic artifacts. In view
of the fact that the periodic artifacts manifest themselves as peaks in the DFT spec-
trum, Lin and Li [66] proposed a spectrum equalization algorithm (SEA) to detect
and suppress the peaks in the magnitude spectrum of RSPN.

9.5.3 Device Linking

Another important application of SPN is device linking. As the name suggests, it is
about linking the images acquired by the same device. But in the scenario of device
linking, the source device or any other image from it is not available. In a typical
case, we would like to know whether or not two given images came from the same
camera, as shown in Fig. 9.7. Device linking is particularly useful in the analysis
of digital evidence in law enforcement when the source device is unavailable to the
forensic investigators. One such example is the forensic investigation of on-line child
abuse, where the criminals record moments of the ongoing crime by taking videos
or images and share them over the Internet. These criminal recordings (not necessar-
ily taken by the same device) are often accessible to the forensic investigators. By
matching the recordings to those posted in social networks accounts that belong to
suspected persons, the forensic investigators are able to find out the criminals [67].
Note that because the absence of the source device and the images taken by it pro-
hibits the acquisition of a reliable RSPN, device linking can only be carried out based
on the noise residual from each image, which may have been severely contaminat-
ed by other SPN-irrelevant interferences. Therefore, SPN-based device linking is a
more challenging problem than the SPN-based source device identification.

The goal of device linking can be achieved by simply calculating the similarity
(e.g., NCC) between each pair of the noise residuals extracted from the images under
investigation and comparing it with a predefined threshold. But the images under in-
vestigation may differ in size, e.g., when one or several of them have been cropped.

1The SPN signals estimated from two devices may be slightly correlated due to the presence of NUAs.
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In view of this problem, Goljan et al. [68] recommended padding the images of
different sizes with zeros and calculating the normalized circular cross-correlation
[47], rather than the NCC, between each pair of the noise residuals of the images. If
the ratio of the primary peak to the secondary peak (PSR) of the normalized circular
cross-correlation is higher than a threshold determined by Neyman-Pearson criteri-
on, the images are believed to be from the same device. Unlike the abundant research
in enhancing the performance of SPN-based source device identification, there have
been few studies on SPN-based device linking in spite of its many potential appli-
cations. As far as we know, among the methods aiming to enhance the performance
of source device identification, only Li’s enhancer [55] has been applied to boost the
performance of device linking. This is partially because that the absence of RSPN
invalidates the enhancing methods that attempt to improve the quality of RSPN. Fur-
ther studies are still needed to verify the effectiveness of the enhancing methods in
section 9.5.2 for device linking.

Figure 9.7: Device linking based on SPN.

9.5.4 Source-Oriented Image Clustering

There are circumstances where forensic investigators want to cluster a set of im-
ages taken by an unknown number of devices into a number of groups, such that
the images in each group are acquired by the same device. Taking the aforemen-
tioned on-line child abuse as an example, if the forensic investigators can cluster
a set of criminal images into groups, each including the images taken by the same
device, they are able to link different crime scenes together and may obtain extra
information from the grouped images (e.g., the images appearing in different social
network accounts are associated to the same criminal). We refer to this task as the
source-oriented image clustering. Since SPN is considered as the unique fingerprint
of a device, source-oriented image clustering can be accomplished by extracting SP-
N from each image and then clustering the images based on the similarities between
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corresponding SPNs. Similar to SPN-based device linking, we do not have the ac-
cess to the source devices or the reference SPNs for source-oriented image clustering,
so only the SPNs (i.e., noise residuals) extracted from single images are available.
Source-oriented image clustering is seemingly similar to but actually differs from
device linking. Device linking checks whether a limited number of (typically two)
images are taken by the same device, so it involves only one device though the device
itself is not available. While for source-oriented image clustering, both the number
of devices and the number of images taken by each device are unknown. It may in-
volve a large set of images, which makes the pairwise comparison in device linking
computationally prohibitive for source-oriented image clustering. Moreover, to ob-
tain accurate clustering, the dimension of SPN has to be very large, e.g., 512×512
pixels or above. The high dimension of SPN will impose a heavy burden on com-
putation. All these difficulties make source-oriented image clustering much more
challenging than device linking.

Bloy [69] presented a heuristic algorithm for clustering images iteratively based
on SPN (i.e., noise residual), with the aim of forming one cluster in each iteration. To
form a cluster, the algorithm randomly selects pairs of images until a pair is found to
have an SPN correlation (i.e., NCC) higher than a threshold. The average SPN of the
image pair, which serves as the cluster centroid, is correlated with the SPN of each re-
maining image. If one correlation exceeds a threshold that adaptively increases with
the number of SPNs (images) in the cluster, the corresponding image is assigned to
the cluster and the SPN of the image is averaged into the cluster centroid. When the
number of images in the cluster reaches 50, the algorithm stops updating the centroid
but continues to add more similar images to the cluster until the entire dataset has
been exhausted. Once a cluster is formed, the algorithm starts another iteration to
form a new cluster until no further clustering is possible. The cluster centroid actual-
ly plays the same role as the RSPN in Eq. (9.9) and becomes more reliable as more
SPNs are averaged into it. Note that the threshold used for determining whether or
not one image belongs to the cluster should be able to well characterize the change of
correlation after updating the centroid. However, the adaptive threshold in [69] was
obtained by fitting a quadratic threshold curve based on the SPN correlations calcu-
lated from images taken by four cameras. It does not generalize well across different
cameras and results in unsatisfactory clustering results. Moreover, one image (or
its SPN if all the SPNs have been extracted beforehand) will be repeatedly loaded
into the RAM until it has been clustered, which incurs extra I/O cost and makes the
algorithm computationally infeasible for large-scale image databases.

Li [70] proposed to cluster a subset of images (training set) randomly chosen
from the entire database and use the clustering results of the training set to classify
the remaining images. Prior to the actual clustering, SPNs of the training set are ex-
tracted for constructing a pairwise similarity matrix, with the element at index (i, j)
being the NCC between SPNs Wi and Wj. Based on the pairwise similarity matrix,
a reference similarity and a membership committee are set up for each image to es-
timate the likelihood probability of assigning each class label to the corresponding
image. The class label of each image is updated as the one with the highest like-
lihood probability in its membership committee. The clustering process terminates
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when there are no label changes in two consecutive iterations. Finally, the remaining
images are attributed to their closest clusters identified in the training set. In spite
of the good performance (an overall error rate of 1.444% using SPNs of 512× 512
pixels), this clustering algorithm is very slow because the calculation of the likeli-
hood probability involves all the members and their class labels in the membership
committee. The time complexity is nearly O(N3) in the first iteration, where N is
the number of images in the training set. For large-scale image databases, the size
of the training set has to be sufficiently large to well represent the entire database, so
the algorithm becomes computationally prohibitive for large-scale image databases.

Liu et al. [71] formulated the source-oriented image clustering as a weighted
undirected graph partitioning problem, where each image is considered as a vertex
in the graph and the weight of an edge is the SPN similarity (i.e., NCC) between the
two images linked by the edge. Instead of a fully connected graph, a sparse k-nearest
graph is constructed to avoid calculating the similarity of every pair images. An
m-class spectral clustering algorithm [72] is then employed on the k-nearest graph
to partition the vertices (images) into m clusters. The m-class spectral clustering
algorithm has a time complexity of O(N

3
2 m + Nm2), so it is more efficient than

Li’s algorithm [55] when N � m. But the spectral clustering algorithm requires
an input of the cluster number m, which is unknown to the user. To determine the
optimal cluster number, the same spectral clustering algorithm needs to be repeated
for different value of m until the smallest size of the resultant clusters equals 1, i.e.,
one singleton cluster is generated. However, it is easy to form singleton clusters
because some SPNs may have been severely contaminated by interferences, such
as scene details [55] and CFA interpolation artifacts [62]. So the feasibility of such
manner of determining the optimal cluster number is still an issue for source-oriented
image clustering based on SPN.

Caldelli [73] proposed a hierarchical clustering algorithm for source-oriented
image clustering. Similar to [70], only a random subset (training set) of the whole
dataset is used for clustering, followed by a classification stage for the remaining
images. Initially considering each image as a cluster, the algorithm first calculates
the pairwise similarity matrix of the SPNs in the training set. It then merges the two
most similar clusters into one and updates the similarity matrix by replacing the cor-
responding two rows and columns with the similarities between the merged cluster
and all the other clusters. After the update, a silhouette coefficient, which measures
the separation among clusters and the cohesion within each cluster, is calculated for
each SPN. The silhouette coefficients are averaged to give a global measure of the
aptness of the current partition. This procedure repeats until all the images have
been merged into one cluster. Upon completion of the clustering, the partition corre-
sponding to the highest aptness is taken as the optimal partition. Villalba et al. [74]
proposed a similar algorithm for smartphone image clustering. Its difference from
[73] is that the calculation of the silhouette coefficient is performed for each cluster
rather than for each fingerprint and only the separation to the nearest neighboring
cluster is measured. As reported in [73], with comparable accuracy, the hierarchical
clustering based algorithm is faster than [70]. But the time complexity O(N2 logN)
of the hierarchical clustering still too high for large-scale image databases.
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It can be seen that the large-scale source-oriented image clustering problem can-
not be well resolved by the above algorithms due to the large-scale number of images
and the high dimension of SPNs. To alleviate the problem, the algorithms in [55] and
[73] first cluster a training set randomly sampled from the entire database and classi-
fy the remaining images based on the clustering results of the training set. They work
well if the training set can sufficiently represent the entire database, i.e., the training
set includes a portion of images taken by all or most of the devices appearing in the
entire database. However, sometimes the Number of Classes (i.e., the number of
devices) is much higher than the average Size of Class (i.e., the number of images
acquired by each device), which was referred to as the NC� SC problem in [75].
The NC� SC problem makes it difficult, if not impossible, to form a training set at
random that can sufficiently represent the entire population.

To overcome these challenges, Lin and Li [75] proposed a clustering framework
capable of handling large-scale image databases. By taking advantage of dimension
reduction and the inherent sparseness of the pairwise similarity matrix, the algorithm
first roughly but efficiently partitions the entire database into small subsets, with
larger classes having a higher chance to be partitioned into the same subset. It then
clusters each subset using the Markov cluster algorithm [76] to produce many small
but highly pure sub-clusters, with each of them represented by an SPN centroid, the
cluster size and a cluster quality coefficient (calculated from the pairwise correlations
of SPNs within the sub-cluster). If the similarity between the SPN centroids of two
sub-clusters is higher than an adaptive threshold, the two sub-clusters will be merged
and the SPN centroid of the merged cluster will be updated at the same time. It is
worth mentioning that the adaptive threshold in [75] takes both the size and the
quality of clusters into consideration and thus is more accurate than the threshold in
[69], which only considers the cluster size. The centroids of the merged clusters will
be used to attract the remaining images in the database, but unlike the classification
stage in [70] and [73], an adaptive threshold is used to reduce the false attributions2,
and the centroid and the quality of the clusters will be updated accordingly after
attracting a certain number of images. The above procedures are repeated until no
more notable clusters can be discovered. Because the algorithm allows larger classes
to be clustered preferentially, the majority of images can be clustered in the first
few iterations. The results on the 15840 images in the Dresden image database [77]
show that the algorithm is much more efficient than the algorithms in [55, 71, 73]
and delivers a high level of clustering quality using SPNs of 1024× 1024 pixels,
with a precision rate of 99% and an F1-measure of 68%. It also demonstrates a high
capability of solving the NC � SC problem. On synthetic datasets consisting of
50000 images, about 92% of classes are discovered when NC = 1250 and SC = 40,
and more than 76% of classes are discovered when NC = 2500 and SC = 20.

2False attribution happens when one image is attributed to the cluster with the highest similarity, but
actually it does not belong to the cluster and their similarity is still very low.
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9.5.5 Image Forgery Detection

Detecting image forgeries is an interesting while very challenging task due to the
variety of image manipulations a user can perform with increasingly powerful image
editing software. SPN exists in every original image taken by the source device,
while the image forgery may damage or remove the SPN signal that is supposed
to present in the forged regions. Therefore, when the RSPN of the source device
is available, image forgeries can be exposed by detecting the absence of the SPN
in suspect regions. Since SPN is the intrinsic fingerprint of the source device and
not associated with any type of image forgeries applied after the image acquisition,
techniques based on SPN can detect the image forgeries irrespective of the specific
type of forgery. In addition, SPN is robust to some common image processing op-
erations, such as JPEG compression, filtering, or gamma correction [45, 46]. These
characteristics make SPN a promising tool for detecting image forgeries.

Lukas et al. [78] proposed two approaches, respectively, for detecting the forg-
eries in a selected Region of Interest (ROI) and for automatically identifying the
forged areas of an image I captured by a device, whose RSPN R is first constructed
as in Eq. (9.9). In the first approach, to calculate the statistical evidence that a suspect
region Ω in I has been tampered with, a large set of image regions Qk,k = 1, ...,N
of the same size and shape as Ω is collected either from the images taken by the
same device (but from regions different from Ω), or from the images taken by oth-
er devices. These image regions are considered as “tampered” regions because the
SPN presents in them are different from that presents in region Ω of the RSPN. The
correlations ρ(RΩ,Wk) are supposed to be subject to a generalized Gaussian distri-
bution, where RΩ is the RSPN in the same region as Ω and Wk is the SPN (i.e., noise
residual) extracted from Qk. The smaller the correlation between the RSPN and the
noise residual in Ω, i.e., ρ(RΩ,WΩ), the more likely Ω has been tampered with. By
fitting the generalized Gaussian distributing using the correlations calculated from
the “tampered” regions, the probability that Ω has been forged can be calculated as

p = 1−Φ(ρ(RΩ,WΩ)), (9.13)

where Φ(·) is the cumulative distribution function of the estimated generalized Gaus-
sian distribution. Ω is forged if p > α(= 10−3), and not forged otherwise.

Figure 9.8: Window shapes used for automatic ROI detection in [78].

The second approach is capable of automatically identifying the forged area. To
detect forgeries of different shapes, twelve detection blocks of different shapes and
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sizes are prepared, as illustrated in Fig. 9.8. Each detection block i ∈ {1, ...,12}
is moved across the image under investigation and the RSPN of its source device
(overlapping approximately 50%−75%), and the correlation between the RSPN and
the noise residual within the region covered by the detection block is calculated. For
each block i, m regions with the smallest correlations, i.e., the m most likely forged
regions, are selected (m was set to 8 in [78]). So there will be total of m×12 regions
Bk and their union B=

⋃m×12
k=1 Bk are initially identified as the forged regions. Then

the algorithm tries to refine the initial result: For each pixel q ∈B, if the number of
selected regions covering q, i.e., t(q) = |{Bk|q ∈Bk}| is no higher than the median
value of t(q) across the initially detected regions B, i.e., q ∈B, pixel q is corrected
as non-forged.

The work in [78] was improved by Chen et al. in [46]. They modeled the SPN
detection problem as a binary hypothesis testing problem:{

H0 : W = ΞΞΞ,

H1 : W = R+ΞΞΞ,
(9.14)

where W is the noise residual extracted from the image region in question, R is
the RSPN of the source device c, and ΞΞΞ is the combination of other independent
interferences. The forgery detection at each pixel q is formulated as a hypothesis
testing problem applied to a sliding block surrounding q. As illustrated in Fig. 9.9,
a detection block3 is sliding across the image and the test statistic ρq = ρ(Rq,Wq)
within the block is calculated, where Rq and Wq are the RSPN and the noise residual
in the detection block centered at pixel q, respectively. This produces a correlation
map ρρρ , with the value at pixel q being the correlation ρq. Note that because SPN
is pixel location sensitive, even if the forged region comes from the image taken by
the same device c, it is still able to detect the forgery as long as the forged region
does not exactly lie in the same position as in the image it comes from. To facilitate
the decision-making, both the correlation distribution under hypothesis H0, p(x|H0),
and the correlation distribution under hypothesis H1, p(x|H1) need to be estimated.

p(x|H0) can be easily estimated from the images taken by other devices, while
the estimation of p(x|H1) is difficult, because the correlation is heavily affected by
the image content (e.g., the correlation between SPNs tends to be higher for the im-
ages with brighter and smoother scenes) and is most likely to be over-fitting to the
available images [46]. Therefore, instead of directly estimating p(x|H1) from corre-
lations, the authors constructed a correlation predictor that maps the image features
to the correlation value. Specifically, K image blocks of 128×128 pixels are cropped
from several images taken by the source device. Four image features that affect the
quality of SPN are extracted from each of the K image blocks: Image intensity fea-
ture fI , texture feature fT , signal flattening feature fS, and texture-intensity feature
fE . Let ρρρ be the correlations between the noise residuals of the K image blocks
and the reference SPN in the corresponding positions, and fff I , fff T , fff S, and fff E be
the corresponding K-dimensional feature vectors. ρρρ is modeled as a linear combina-
tion of the features and their second-order terms, i.e., ρρρ = Hθθθ +ΨΨΨ, where ΨΨΨ is the

3The size of the detection was set to 128×128 pixels in [46].
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Figure 9.9: Image forgery detection based on SPN.

modeling noise, H is a K×15 matrix containing the features and their second-order
terms, and θθθ is the modeling coefficients to be determined. By applying the least
square estimator (LSE), the estimated coefficients θ̂θθ = (HT H)−1HT ρρρ are obtained.
So the expected correlation ρ̂ of an unseen image block can be predicted based on
the image features extracted from it:

ρ̂ = [1, fI , fT , fS, fE , ..., fE fE ]θ̂θθ . (9.15)

With the predicted correlation, the actual correlation ρ is modeled as a random vari-
able following a generalized Gaussian distribution G(ρ̂,σ1,α1), where the predicted
correlation ρ̂ is the mean, while the scale parameter σ1 and the shape parameter α1
can be estimated from the difference between the actual and predicted correlations
of the K images blocks, i.e., ρρρ−Hθ̂θθ . Then the decision is made for each pixel inde-
pendently: If ρq < t, pixel q is labeled as forged. Here the threshold t is related with
a constant false acceptance rate (CFAR) α(= 10−5):∫

∞

t
p(x|H0)dx = α. (9.16)

Like in [79], we refer to this method as the constant false acceptance rate (CFAR)
method in this chapter. However, for a highly textured, black or saturated block, even
if it is authentic, its correlation still tends to be low due to the attenuation of SPN.
So to reduce the false positives (i.e., labeling non-forged pixels as forged), a pixel q
will be labeled as non-forged if

∫ t
−∞

p(x|H1)dx > β , where β was set to 0.01 in [46].
The resulting binary map ûuu ∈ {0,1}M×N signifying the forged pixels (1 for forgery
and 0 for genuine pixel) will be further dilated with a square 20×20 kernel to obtain
the final result.

The CFAR method does not take into account the spatial dependencies exhibited
by natural images but makes decisions independently for each pixel, which may
generate inconsistent and fragmented binary map. To penalize the isolated points
or the small disjoint regions and produce a smooth output, Chierchia et al. [79]
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adopted the Bayesian approach and Markov random field (MRF) model to improve
the detection result. This Bayesian-MRF method is based on the CFAR method but
differs in both formulation and solution to the problem. It formulates the forgery
detection as an optimization problem of finding the label map û ∈ {0,1}M×N that
has the maximum posterior probability given the prior information:

û = argmax
u∈{0,1}M×N

p(ρρρ|u, ρ̂ρρ)p(u), (9.17)

where M×N is the image size, ρρρ is the actual correlations calculated in a block-wise
manner (i.e., the correlation map in Fig. 9.9), and ρ̂ρρ is the predicted (or expected)
correlations given by the correlation predictor in Eq. (9.15). In the above equation,
p(ρρρ|u, ρ̂ρρ) is the conditional likelihood of observing ρρρ , and p(u) is the prior proba-
bility that takes into account the spatial dependencies of the pixels, which is modeled
by the Markov random field model:

p(u) =
1
Z

e−∑c∈C Vc(u), (9.18)

where Z is a normalizing constant, and Vc(u) is the potential defined on cliques c (i.e.,
small groups of neighboring pixels). Only the single-site cliques and 4-connected
two-site cliques are considered in [79]. By assuming the likelihood probability to be
Gaussian under both hypotheses, with zero mean and variance σ2

0 under hypothesis
H0, and mean ρ̂i and variance σ2

1 under hypothesis H1 (obtained using the above-
mentioned correlation predictor [46]), Eq. (9.17) is formulated as

û = argmin
u∈{0,1}M×N

{
M×N

∑
i=1

ui

[
(ρi− ρ̂i)

2

2σ2
1
− ρ2

i

2σ2
0
− log

σ0

σ1
− log

p1

p0

]
+βR(u)

}
. (9.19)

where p0 and p1 are the prior probability of forged and non-forged, respectively,
and β is the edge-penalty parameter indicating how strong the interaction between
pixels, and the regularization term R(u) = ∑

M×N
i=1 ∑ j∈Ni |u j−ui|, with Ni the set

of 4-connected neighbors of pixel i, is the sum of all class transitions over all 4-
connected cliques of the image. By resorting to the convex-optimization algorithm
proposed in [80], the ûuu that gives the maximal probability can be obtained. This
method incorporates the prior information and spatial dependencies between pixels
and therefore produces a more consistent and smooth binary map.

As can be observed in the detection results presented in [46] as well as the au-
thentication map in Fig. 9.9, the falsely identified areas are largely located along the
boundary of the forged area. The reason is that, when the detection block falls near
the boundary between two different regions (i.e., forged and non-forged regions),
the decision statistic ρ is a weighted average of two different contributions and more
likely to exceed the decision threshold. As a result, missing detection occurs along
the boundary between forged and non-forged regions.

Chierchia et al. [81] alleviated this problem by first segmenting the image un-
der investigation and then calculating the decision statistic on the intersection of the
detection block and the segmented objects. However, this method heavily depend-
s on the performance of image segmentation, which itself is an ill-posed problem.
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In view of this, Chierchia et al. [82] proposed an algorithm based on the guided
filtering [83] to avoid the unreliable image segmentation. The basic idea is to post-
process the calculated correlation map ρρρ by resorting to a pilot image, which can
be a combination of the color bands of the original image or its denoised version,
or any suitable field of features extracted from images [82]. The pilot image bears
some valuable information, such as geometrical structures, of the image content and
can be viewed as the soft-segmented version of the original image. By incorporating
the structure information from the pilot image, the guided filtering is aware of the
object boundaries and thus facilitates the decision-making process near boundaries.
However, both the segmentation based method [81] and the soft segmentation based
method [82] will fail when objects in the original scene are hidden by placing a ho-
mogeneous background on them, e.g., an airplane is covered by a patch of blue sky,
or objects are removed by image inpainting or texture synthesis. One such example
is shown in Fig. 9.10, where the paraglider and the pilot are removed by inpainting
without leaving any visible traces. The segmentation based methods are unable to
detect the forgeries in this case because no structure information is available in the
forged regions.

In view of the limitations of the segmentation based detection algorithms, Lin
and Li [84] proposed an algorithm to alleviate the missing detection problem along
the boundary between forged and non-forged regions. They first applied the CFAR
method [46] with two thresholds α and β to obtain an initial detection result Ω.
Although the CFAR method suffers from the missing detection problem, it provides
an indication that the nearby forged regions of the boundary of Ω may have been
missed. So they modeled how the distribution of decision statistics changes as the
detection block moves across the boundary of Ω and adjusted the threshold t in Eq.
(9.16) for each pixel q:

∫
∞

t ′(q)
pΩ(x,q)dx = α, (9.20)

(a) (b)

Figure 9.10: Object removal by image inpainting. The segmentation based methods
are unable to detect the forgeries in this case. (a) Authentic image. (b) Forged image.
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where t ′(q) is the adjusted threshold for pixel q, and pΩ(x,q) is the distribution of
decision statistics depending on the initially detected forged region Ω and how far
pixel q is from Ω. With the adjusted threshold, a pixel q is labeled as forged if the
decision statistic ρq < t ′(q). Similar to [46], to reduce the false positives, a forged
pixel will be labeled as non-forged if

∫ t
−∞

p(x|H1)dx > β . The algorithm does not
require to segment the image but makes use of the detection result of the CFAR
method to identify the forged pixels that have been missed.

9.6 Summary and Outlook

We have introduced different intrinsic device fingerprints and their applications in
image provenance inference. Although with varying levels of accuracy, the de-
vice fingerprints arising from optical aberration, CFA interpolation, camera response
function and in-device image compression are effective in differentiating devices of
different brands or models. Although they can not uniquely identify the source de-
vice of an image, they do provide useful information about the image provenance and
are effective at narrowing down the image source to a smaller set of possible devices.
More than half of the chapter was spent on Sensor Pattern Noise, which is the only
fingerprint that distinguish devices of the same model. Because of its merits, such as
the uniqueness to individual device and the robustness against common image oper-
ations, it has attracted much attentions from researches and been successfully used
for source device identification, device linking, source-oriented image clustering and
image forgery detection. In spite of the effectiveness of SPN, it is by nature a very
weak signal and may have been contaminated by image content and other interfer-
ences. Its successful application requires jointly processing a large number of pixels,
which results in very high dimensionality of SPN. This may bring huge difficulties
in practice, e.g., in large-scale source-oriented image clustering based on SPN, so it
is essential to conduct research on the compact representation of SPN for fast search
and clustering.

With the development of Internet and the rise of big data, the amount of data
generated in different knowledge areas has explosively increased. Big data opens
new opportunities in identifying potential evidence from massive information, but
the large scale size of digital images also presents new challenges for image prove-
nance inference. Taking the source-oriented image clustering for example, the large
scale size of image database impose a heavy burden on computation. One feasible
solution would be combining the information from different fingerprints of an image
to reduce the computational cost. For example, if we make use of the information
from optical aberration, CFA interpolation, or even metadata of an image, and first
partition the images of “similar” provenance into the same group, the computational
complexity of the source-oriented image clustering algorithm in [75] can be signifi-
cantly reduced.

Another line of research is the information integration of different fingerprints.
Although attempts have been made to jointly use different fingerprints for image
provenance inference, such as the work in [11], a universal and effective tool that
allows the forensic investigators to synergically exploit these fingerprints and finally
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reach a decision based on their output, is still lacking. This is by no means an easy
task, because it requires to carefully investigate the performance of each fingerprint
under different application scenarios and employ a decision fusion engine to reach
a comprehensive and informative conclusion. Further research will be required to
integrate the information from different device fingerprints.
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[78] J. Lukáš, J. Fridrich, and M. Goljan. Detecting digital image forgeries using
sensor pattern noise. In SPIE, pages 362–372, 2006.

[79] G. Chierchia, G. Poggi, C. Sansone, and L. Verdoliva. A Bayesian-MRF ap-
proach for PRNU-based image forgery detection. IEEE Transactions on Infor-
mation Forensics and Security, 9(4):554–567, 2014.

[80] P. L. Combettes and J.-C. Pesquet. Primal-dual splitting algorithm for solv-
ing inclusions with mixtures of composite, lipschitzian, and parallel-sum type
monotone operators. Set-Valued and Variational Analysis, 20(2):307–330,
2012.

[81] G. Chierchia, S. Parrilli, G. Poggi, L. Verdoliva, and C. Sansone. Prnu-based
detection of small-size image forgeries. In IEEE International Conference on
Digital Signal Processing, pages 1–6, July 2011.

[82] G. Chierchia, D. Cozzolino, G. Poggi, C. Sansone, and L. Verdoliva. Guided
filtering for prnu-based localization of small-size image forgeries. In IEEE In-
ternational Conference Acoustics, Speech, Signal Processing (ICASSP), pages
6231–6235, 2014.

[83] K. He, J. Sun, and X. Tang. Guided image filtering. In European Conference
Computer Vision, pages 1–14. Springer, 2010.

[84] X. Lin and C.-T. Li. Refining PRNU-based detection of image forgeries. In
Proceedings of Digital Media Industry Academic Forum (DMIAF), pages 222–
226, July 2016.


	Image provenance inference through content-based device fingerprint analysis
	Introduction
	Why Not Digital Watermark?
	Why Not Metadata?
	Device Fingerprints
	Optical Aberrations
	CFA and Demosaicing
	Camera Response Function
	Quantization Table
	Image Thumbnail

	Sensor Pattern Noise
	Estimation of SPN
	Source Device Identification
	Device Linking
	Source-Oriented Image Clustering
	Image Forgery Detection

	Summary and Outlook




