The role of theory in computing

The main themes of modern computer science theory emerged about 25
years ago when the first high level languages (FORTRAN, ALGOL, COBOL)
were developed. The foundations for much of this theory has a much longer
pedigree: in the study of mathematical algorithms (Euclid, Gauss, Turing)
and algebra and logic (Boole, Frege, Hilbert, Church).

In broad terms, computer science theory is concerned with the study of
abstract programs or algorithms, encompassing issues such as: what
notations we use to represent algorithms, how we design correct
algorithms, how we measure and analyse the complexity of algorithms,
how we classify and relate algorithms. The remarkable achievement of the
British mathematician Turing (1936) was to propose a formal notion of
“algorithm" which provides a satisfactory mathematical foundation for

this theory.

During the 1960s, the emphasis in theoretical computer science was upon
conventional representations of algorithms (such as are represented today
in BASIC programs) closely linked to a machine architecture which was
invented by von Neumann in the 1940s (and is still used in almost all
modern commercial computers). The inspiration for much theoretical work
during the period 1960-70 came from the problems of compiling
(translating computer programs from a high-level language into machine
code), and this has provided the basis for many important practical
programming tools (such as program generators, or compiler-compilers).
Other influences which became important later in the 1960s were the
development of operating systems (programs to give many users
simultaneous access to a single machine) and early researches in
Artificial Intelligence. Over the last decade, computer science theory has
broadened very significantly in response to more sophisticated
applications of computers, and to the challenges of concurrent
programming in particular.

To give a flavour of why theory is crucially important in computer science,
here are some questions and brief answers intended to illustrate some of
the achievements and limitations of our present understanding.



Complexity and feasibility

Can we write a program which will statically analyse programs to decide
whether they terminate on a given input?

No - Turing's fundamental work (1936) show this to be outside the
scope of any conceivable algorithm. We can't even use static analysis to
decide whether a program which accepts as input an arbitrary polynomial
equation with integer coefficients and searches for a solution will
terminate. Gauss showed in 1801 how to solve the latter problem if the
input polynomial is quadratic, but the problem is still apparently
infeasible ie takes too much computational time in relatively simple
cases. The problem of factorisation: "solve xy=N" is one example of a
problem to which Gauss's algorithm applies, but is too inefficient.
Factorisation is topical because it has been used as the basis of a new
method of encryption, such that

factorising a very large number = breaking the code.
Important progress on this problem has been made very recently by Hendrik
Lenstra.

Can we write practical programs which will - automatically generate
timetables? - find an optimal tour for a travelling salesman? - reduce
Boolean expressions to a standard form?

Probably not! - each of these problems has been shown to be closely
related to a particular kind of "decision problem" of the form

given an instance of an object, does it have a specified property?
for which no efficient solution has been found. For instance: given a set of
cities is there a tour which visits them each once and once only of less
than some specified length?

Our scepticism about the existence of an efficient solution to such a
decision problem rests on the fact that it lies in a large class of decision
problems - the NP-complete problems which have all been shown
essentially equivalent, but none of which is known to be efficiently

soluble. This result has practical implications, in that seeking an efficient
algorithm to solve such a decision problem is the kind of task best avoided
in @ commercial environment - however great the pay-off for success
might be!

o



How fast can we multiply integers and matrices / sort records /factorise
integers / test for primality ?

Theory has produced some fast algorithms for integer multiplication based
on Fourier transform techniques which are of direct practical interest. For
matrix multiplication - contrary to intuition - the obvious algorithms

aren't necessarily the best. In effect it is possible to devise esoteric

matrix multiplication algorithms which would outperform conventional
matrix multiplication algorithms on very large matrices. At present, this
result is of little practical relevance, since "very large" is "larger than is
practically interesting"! This may well change in time however.

Sorting records is a well-researched and understood problem, for which a
variety of efficient methods are known, and where we can be confident
that radical improvements can no longer be made in a conventional
framework. An interesting feature of one of the most practically

important methods of sorting a large number of records (quicksort) is that
it exploits random selection, and can be shown to be behave very badly in
the worst-case (which "never” arises), and exceptionally well on average.

Testing numbers-for primality is an interesting example of a problem for
‘which simple algorithmic solutions of the form: "the given number is
shown to be probably prime with a specified probability” have been
obtained. Such ideas raise significant philosophical issues!

Data representation and semantics

How do we interpret all the syntactically correct programs in PASCAL (or
your favourite programming language)? (A program is syntactically
correct if it's structure accords with the definition of a valid PASCAL
program.) For instance, when is a syntactically correct program
"meaningless"?

This topic - the theory of interpretation of programs - is one of the
deepest areas of research, otherwise known as semantics. The problem
has generated very sophisticated mathematical models within which valid
programs can be given formal interpretations. The original motivation for
such formal models was the need to tell the compiler writer what his/her
compiler should do with programs which "look OK ", but whose intended
behaviour is obscure.



An important development in this area has been the introduction of
programming languages quite unlike PASCAL for which much more
satisfactory mathematical models have been devised, and which in

principle can be unambiguously interpreted. Making practical Systems

based on such languages is an important focus for modern research.
Functional programming (as in pure LISP) and logic programming (as in

pure PROLOG) are examples. Many controversial issues remain eg can such
languages be implemented as efficiently, would non Von Neumann
computers be more appropriate for their implementation?

What is an appropriate mathematical model for the representation of
“knowledge"? How do we best organise data for reasoning?

The representation of data in a computer system was traditionally based
on files of records. As greater awareness of the advantages of
centralisation of data within a data base became apparent in the 1970s,
the need for more flexible and mathematically sophisticated wa ys of
representing dala became apparent. The models which were developed in
the early 70s by theorists (relational data bases) are now becoming
commercially established. Meanwhile modern applications, especially in
connection with CAD and Al, make still greater demands upon data base
organisation, and many different new approaches are being explored.

Design, specification and verification of programs

What mathematical principles are appropriate for the design of complex
software / hardware systems? How should we specify and communicate
formally about a complex software / hardware system?

The need for ways of specifying programs in an abstract fashion first
became critical as larger programs came to be written, and communication
between many programmmers within a team became essential. The
development of moderately large and tolerably reliable software systems
proved to be very unexpectedly difficult, and remains problematical
despite the advent of new programming tools and techniques. Automatic
verification, transformation and translation are expected to play a bigger
role in the future, but there remain many challenging research issues both
technical and administrative if effective use is to be made of such
techniques.

~



As computer technology advances, the considerations which have
traditionally applied to software design become as relevant for hardware
systems, and the need for a techniques which make appropriate use of
enormous resources feasible has become very clear. These techniques will
have to be based upon richer theoretical foundations than we have at
present discovered.

Is it realistic to test complex software / hardware systems, and to what
extent can we reason about their correctness?

One of the lessons of modern computer science is that pragmatic
"intuitive” approaches to system design are hopelessly inadequate. For
relatively trivial problems in telecommunications, for instance, such as
describing appropriate protocols for the reliable transfer of data between
two processes over a noisy channel, it has proved impossible to rely upon
informal methods of specifying an algorithm such as are typically used by
the most programmers. Even international standards for protocols have
proved to contain bugs. Testing has shown the presence of such bugs, but
exhaustive testing of such protocols is impossible, and there is no wa y in
which testing can validate the protocol in the absence of better
theoretical insights.

The concept of systematically developing and simultaneously Jjustifying a
correct specification is central in current research into system design,
but there are as yet no satisfactory ways to do this in such areas as
software for telecommunications.

Horizons for computing

What will be the form of programming languages and computer systems in
the future? How can we exploit the enormous computing resources which
. are becoming available effectively?

Functional languages, logic languages, object-oriented languages ... it
seems reasonable that the significance of languages will be determined
more and more by the mathematical principles which they support.
Theoreticians will continue to be interested in finding the mathematical
techniques needed to ensure that languages admit satisfactory
interpretation and implementation. It's difficult to see how the potential
complexity of future computer systems can be exploited without richer
mathematical theories of computation.

(./\



Special purpose hardware of many different types has been studied in the
last decade. These include refinements of the traditional Von Neumann
model which incorporate features allowing parallel computation (eg DAP
and Cray architectures), and more radical designs motivated by functional
and logic programming ideas. Because of the scope of modern techniques
for fabrication, the distinction between hardware and software is

becoming less important, and the central relevance of theoretical
principles for software design for future developments is becoming
apparent.

How do we develop - perhaps even can we develop? - programs which
"learn” and "show intelligence"?

Despite appearances, we still don't understand very much at all about
"learning” and "intelligence”. The techniques used by modern chess
programs have been developed to a stage where fundamental problems
must be solved before further progress can be made. Areas such as vision,
automatic translation and theorem proving raise exceedingly difficult
issues, many of which centre around the significance of "knowledge" in
human reasoning and interpretation (cf above).

Logic is the mathematical discipline which is central to the study of
Artificial Intelligence, and some progress has been made towards the
automation of reasoning. A crucial question is how far the problems of
unsolvability and infeasibility (cf above) will necessarily obstruct
progress: they certainly exclude the possibility of comprehensive
solutions to some basic problems.

Finally, it is worth remarking that (arguably!) the apparent woolliness of
some basic Al concepts shouldn't deter us from further investigation. 100
years ago it would probably have seemed outrageous to suggest that the
concept of an algorithm could be given a formal interpretation as precise
as that proposed by Turing in 1936, and the search for an appropriate
theory of intelligence may well generate other surprises of this nature.



