DEFINITIVE NOTATIONS FOR INTERACTION

Meurig Beynon
University of Warwick, Coventry CV4 7AL, England

Abstract.

This paper explores some methodological and pragmatic aspects of the
design of the human-computer interface. In particular, it argues that many
interactive dialogues can be formulated conveniently and clearly using notations
based upon sequences of definitions ("definitive notations’). Such a notation is
an implicit ingredient in the "spread-sheet" packages which have recently
become so popular in business applications. To apply similar principles to more
complex tasks, such as CAD applications, requires abstraction and
generalisation, and poses challenging technical problems.

The three sections of the paper respectively consider: background and
motivation, elementary definitive notations (illustrated by an unconventional
desk calculator), and complex definitive notations (with particular reference to
the design of ARCA, a definitive notation for the interactive description and
manipulation of combinatorial diagrams).

Introduction.

The purpose of this paper is to investigate a generic class of programming
notations for conducting dialogues. Use of the term "programming notation”
rather than “programming language” - as advocated by Dijkstra ([4] p.B) - is
more than usually appropriate here, since the applications contemplated are
special purpose rather than general purpose. Indeed, the dialogues under
consideration are of a relatively simple kind, typically resembling the use of a
spread-sheet or some generalisation thereof. Because diélogues in these
notations consist of sequences of definitions, the term "definitive notation" is
adopted; a pun for which "functional language" is perhaps a good precedent - if
indeed definitive notations are as definitive as functional languages are
functional. Since a description of the concept of "a definitive notation” is
beyond the scope of this brief introduction, the reader may find it helpful to
refer to §2 below for details at this point.

The paper is in three sections. §1 is concerned with background and
motivation, and considers in particular how both procedural and declarative
elements are useful in formalisms for dialogue. In §2, the concept of an
elementary definitive notation is introduced and illustrated by a simple but
unconventional desk calculator based on principles abstracted from spread-
sheets. §3 examines the problems encountered in developing generalised
definitive notations suitable for more ambitious applications, and is illustrated
with reference to ARCA, a definitive notation for the interactive description and
manipulation of combinatorial diagrams.

e e o A e S0 S o e et Pk N a5 e et o 4 i s

Beynon: Definitive notations for interaction 2

Background and motivation.

Definitive notations are conceived as a suitable medium for dialogues over
some limited universe of discourse. Such a dialogue can be viewed as a
sequence of human-computer / computer-human transactions which (it may be
reasonably assumed) have common points of reference. In the context of this
paper, the term "interaction" is used in its narrow sense to mean "a dialogue in
which many transactions occur”. In view of the variety of connotations which
"Interaction” has acquired in computing, some clarification may be helpful.
Firstly, the nature of the physical interface (e.g. graphical or textual) is not
considered here. Secondly, it is important to recognise that interaction often
plays a more incidental role than it might superficially appear. For instance, in
solving a problem, interaction may merely entail editing a computer program
which is then used directly to determine the required solution. In such a case,
the dialogue itself is quite unrelated to the problem to be solved.

Typical pertinent examples of interaction are activities (such as the
maintenance of a personal file system, the use of a relational data-base, or the
use of a spreadsheet) which are primarily concerned with describing and
manipulating a conceptual model with the aid of a computer, rather than the
solution of a specific problem. As far as "problem solving” is concerned, the
emphasis is on problems in which human experimentation and possibly
aesthetic judgement play a part in the solution.

As a motivating example, consider the interaction involved in maintaining a
personal system of computer files. The most rudimentary file system provides
only a variable for each file (viz. a filename) and at any time simply stores the
value of each variable (viz. the contents of the appropriate file). In practice,
the user has a conceptual model of her file system far richer than the mere set
of "variable values" stored by the computer. For example, certain families of
files relate to particular subjects, and within such families there are functional
relationships between files, such as

"“S is the source of the object file 0",
Problems of interaction typically arise when a user resumes a dialogue about
her file system after a lapse of time. Though file/subject association can be
assisted by filename mnemonics on the part of the user, or the existence of
directories in the file system, the identification of functional relationships often
remains difficult.

The example illustrates difficulties which are common to many dialogues.
When a suspended dialogue is resumed, it is desirable that - as far a possible -
the conceptual model which the user requires can be readily reconstructed.
Taking the above example as a paradigm, it will be assumed that the user's
conceptual model can be represented by a set of variables together with

(a) aset of current values
and (b) a set of functional relationships between variables.

It will be convenient to refer to (a) as the set of transient values, and (b) as
the set of persistent relations. This terminology reflects the fact that, in the

Beynon: Definitive notations for interaction 3

context of a particular dialogue, relationships between variables tend to be
stable, whilst values are generally subjec't to change. Thus (in the above
example) the contents of the source file S may be revised many times, but the
relationship between O and S will be maintained through re-compilation. As
explained below, it is significant that neither "transience” nor “persistence” is
interpreted too literally. In practical terms, fixing the value of a variable can be
viewed as "defining a functional relationship”, whilst it is sometimes appropriate
to modify an existing functional relationship in the course of a dialogue e.g. O
might be defined by compiling S with different options at different stages of
program development. More generally, a mode of dialogue which does not
permit convenient modification of both values and relations is too inflexible.

The manipulation of "transient values” and the specification of "persistent
relations” are the respective characteristics of the procedural and declarative
approaches to programming. Strictly speaking, the term "declarative" is
legitimate only where "referential transparency” pertains, which in this context
would preclude re-definition of variables once defined. It is nevertheless useful
to think in terms of these classifications, using "declarative” in a relative sense
to describe definitions which apply throughout a series of transactions, but are
not necessarily eternally valid.

Subject to this qualification, the above discussion suggests that a good
formalism for a dialogue requires both procedural elements (viz. re-assignment
of transient values) and declarative elements (viz. functional' definition of
persistent relationships). In particular, a purely procedural formalism is not
well-adapted for dealing with persistent relationships. For instance, the
traditional procedural emphasis of most operating systems means that the user
must update the object file O explicitly whenever the source file S is modified. In
effect, monitoring persistent relations is the responsibility of the user. Even
where some provision is made for relationships between files to be recorded (as
in the "make" utility in UNIX), the updating procedure still has to be invoked
explicitly.

As for purely declarative formalisms for dialogue, referential transparency
is a strong restriction. A paradigm for a declarative program is "specifying a
system of equations to be solved by the computer’: a single transaction which -
if dialogue is to be meaningfyl - may either be seen as defining a function (as in
"programming with equations” [5]) or as defining a functional relationship
between variables (as in "programming with constraints” [3]). In the former
case, such a function might correspond to the aggregate of (strictly) persistent
relations, and its parameters to the (implicit) variables to which transient
values can be assigned, but not in general in such a way as to make the updating
required for dialogue convenient. In the latter case, the cumulative adjunction
of equational constraints, whilst appropriate when iterating towards the solution
of a specific problem, inhibits dialogue unless some provision is made for
modifying or forgetting constraints. Despite these difficulties, the use of
declarative principles has a distinguished pedigree in such remarkable "object-
oriented language" systems as APT (Douglas Ross [8]), SKETCHPAD (1.Sutherland

Beynon: Definitive notations for interaction 4

[10]) and ThingLab (Alan Borning [3]). The objectives of Thinglab in particular
are topical in this context, and it would be interesting to understand how the use
of definitive notations is related to the constraint-oriented approach taken in
(3]).

The formalism for interaction proposed in this paper reflects the ideas
above. It will be assumed that the user's conceptual model is defined with
reference to an underlying algebra appropriate for the universe of discourse.
This algebra might be "integers with arithmetic operators” (using a spread-
sheet), “relational algebra” (using a relational data-base) or "files with file
operations such as concatenation, compilation, compaction ete.”" (maintaining a
file system). The dialogue between user and computer is then expressed in
terms of variables which may if defined have associated values in the underlying
algebra. The values of these variables play the role of the “transient values",
and the persistent relations are formulae which define the value of a variable in
terms of the values of other variables and constant values using the operators of
the underlying. algebra. In the context of the illustrative example above: the file
variables S and O respectively denote source and object files, the values of the
variables S and O are their respective contents, and "O=compile(S)" is a
persistent relation defining the contents of the corresponding object file.

Use of a spread-sheet is a simple example of interaction along these lines.
In a spread-sheet system, in its simplest form, scalar variables can be
prescribed to correspond with entries in a displayed table. Each variable can
then be given an explicit scalar value, or assigned a arithmetic formula
specifying how its value is to be computed from the values of other variables.
Spread-sheets have proved to be a very popular and effective medium for
numerical calculations in which experiments with parameters play a part.
Perhaps the most attractive feature of this approach is that both persistent
relations and transient values are stored by the computer, and the effect of
changing the value of a particular variable can be automatically computed and
displayed.

The same pattern of interaction is used in the relational algebra query
language ISBL ([11] p.177-181). In this context, the relationship between the
"intension" of a data-base relation (or equivalently, a view) and its extension at
a particular time corresponds precisely to the relationship between a defining
formula and its current value. The definition of views by "delayed evaluation” is
then semantically equivalent to formula definition in a definitive notation based
upon relational algebra. Indeed, the distinction between ISBL and a definitive
notation is purely syntactic - the syntax in ISBL being biased towards value
assignment rather than formula assignment.

Flementary definitive notations.

In this section, the basic concept of a “"definitive notation” is described and
illustrated with reference to a simple but unconventional desk-calculator (ude)
based upon principles abstracted from spread-sheets. In the interest of brevity
and readability, formal details are omitted, but the reader should require little

-

Beynon: Definitive notations for interaction 5

imagination to supply these.

Informally, a definitive notation is associated with an "underlying algebra’
which is chosen to reflect the universe of discourse. Variables in the definitive
notation are used to denote elements of the underlying algebra, and a typical
program consists of a sequence of statements, each of which defines a variable
or interrogates a variable. Definitions in such a notation can be conceptually
regarded as being of two types: formula assignment such as

a = f(b,c,...2)
(semantically: unless and until a is re-defined, its value is determined as
required by evaluating the formula f(b,c,...,z) over the underlying algebra), and
value assignment
a=C

(semantically: unless and until a is re-defined, it has the explicit value C). In
this context, formulae are defined in terms of the operators of the underlying
algebra, and the expression |g| can be used to denote "the value of the formula
g as required. - After a sequence of definitions, the value of a particular variable
- which may be undefined - will in general depend upon the definitions of a set of
variables in a non-recursive manner. Interrogation of a variable or formula can
then be used to determine the family of definitions upon which its value
notionally depends, and to determine its value if it exists.

In the simple case of the udc, the underlying algebra is the set of integers
together with an appropriate set of operators, which is here assumed to contain
standard arithmetic and relational operators, and an arithmetic
“if --- then --- else”. It should be clear that the udc is essentially a
primitive spread sheet from which the tabular interface has been removed. It
may also be observed that in any udc dialogue, the current values of variables
and algebraic relationships between variables are easily determined at any
stage. The essential characteristics of udc dialogue are illustrated below; the
formal specification of the udc is left as an exercise to the imaginative reader.

In the udc, the assignment "a = b+c*4" associates the formula "b+c*4" with
the identifier a, specifying that (until a is re-defined) the value of a is to be
determined, as and when required, by evaluating the formula "b+c*4". Thus the
value of a is implicitly rather than explicitly defined, and the values of b and ¢ at
the point of definition are irrelevant, and need not be defined. There is then a
distinction between "a is undefined" (ie. there is no formula currently associated
with a), and "the value of a is undefined" (ie. either a is undefined, or the value of
a is defined by a formula which currently has no evaluation).

As a simple example of a udc dialogue, consider the following sequence of
definitions:

Beynon: Definitive notations for interaction 6

e=if b<d then b else d
b="7

a=b+c*4

c=b+d-2

d=8

b=8+d

o0 s LN e

Definition 1 ensures that, throughout the dialogue, e has the same value as the
smaller of b and d. Assuming that all variables are initially undefined,
definitions 2-4 will ensure that b is defined by the formula "7’ and has value '7', 2
and c are respectively defined by the formulae "b+c*4" and "b+d-2", but have
undefined values, and the variable d is still undefined. Definition 5 defines the
variable d explicitly, and in the process the values of a and ¢ become defined.
Thus, the value of ¢ is now
(the value of b) + (the value of d)-2=7+8-2=13

and the value of a is (similarly) 7 + 13 * 4 = 59. Definition 6 then re-defines b, so
that the values of a,b,c and d now become 79, 11, 17 and B respectively.

Some semantic restrictions on assignment are of course needed. For
example "a=a+2" is meaningless, as it leads to a circular definition of the value
of a. Indeed, it is necessary to prevent sequences of assignments after which a
variable is implicitly defined in terms of itself. For instance, in the context of
the above illustration, it would be meaningless to follow the sequence of
definitions 1-6 by "d=a", since the value of a is indirectly defined in terms of d.
It is not difficult to detect such circularity of definition automatically.

As in a conventional calculator, it is often convenient to specify an explicit
value as "the value of an algebraic expression”. Thus (after the sequence of
definitions 1-6 above) the assignment "c=[a+b|*d" will re-define ¢ by the formula
"90*d", and (it should be noted!) is not circular, though the value of "a+b”
depends upon the value of ¢ at the point of definition.

Facility in handling undefined values is a feature of definitive notations, and
it is useful to be able to erase redundant definitions as necessary. For this
purpose, the symbol '@’ is used to represent 'undefined’, so that "a=@" deletes
the current definition of the variable a.

The semantics of definitions and expressions have been explained in general
terms above, but there are some subtle points. The rules for associating values
with expressions are complicated when (in the course of evaluation, or through
user-unfriendliness) undefined values occur in the context of conditional
expressions.

The semantic rule adopted by the udc assigns values to conditional
expressions by "lazy evaluation”. Under this convention, an expression has a
value provided that all subexpressions which need to be evaluated have a value.
Thus

"if1 <2then3else@"
has value 3. as the alternative supplied by the else-clause is not needed for
evaluation. Such semantic considerations also bear upon validating

Beynon: Definitive notations for interaction 7

assignments: thus .
"a=if1<2thenaelse@"

would be valid if the RHS were interpreted as ‘undefined’, but is invalid when lazy
evaluation is invoked.

Limited as an elementary definitive notation is, it has some merits. The
success of spread-sheets probably depends on two characteristics of the udc: its
suitability as a medium for experiments with numerical parameters, and the
conceptual simplicity of the transient values and persistent relations.

It is natural to consider whether persistent relations can be better
modelled by equational constraints, but there are two main problems. Firstly,
constraints can be hard for the user - if not infeasible or undecidable for the
computer - to interpret, and the semantic content of persistent relations can
easily become obscure. Secondly, a graceful method of eliminating or modifying
constraints is needed if relations are not to be too persistent.

In this context, purely declarative principles may be more appropriately
used to permit the definition of additional arithmetic operators, as in
" fact(n) = if n=0 then 1 else n*act(n-1) ".

Complex definitive notations.

The essential characteristics of a definitive notation have been outlined in
the previous section. In most practical applications, the underlying algebras
which are required for useful interaction are very much more complicated than
have so far been considered. To illustrate this, and indicate how definitive
notations may be developed for more ambitious applications, some of the
problems of designing a definitive notation for a graphical application will now be
discussed. This discussion focuses on general principles rather than specific
details, but is loosely based upon experience in the design of ARCA, a definitive
notation for the description and manipulation of combinatorial diagrams. (For
more background on ARCA, the interested reader should refer to [1] and [2].)

Graphics is an obvious application area for definitive notations. Displaying a
diagram is a task which may involve human experimentation and judgement. It
must be emphasised however that if displaying a diagram is seen as an end in
itself (which it sometimes is), the value of a definitive notation is dubious. Only
if diagram display is the prelude to further interaction can the use of an
appropriate definitive notation be clearly advantageous, for only in these
circumstances is the a need for a conceptual model of the final diagram
apparent.

In practice, it is often the case that a diagram has semantic content of a
non-geometric nature, and that graphical systems which can depict a diagram
easily provide no assistance when subsequent interaction and interpretation is
required. In designing a definitive notation to display such diagrams, the
underlying algebra is chosen to reflect all relevant semantic information. In
- using the notation, the emphasis is not on facile generation of an image, but on
systematic specification of a conceptual model (i.e. a set of transient values and
persistent relations) which enables display and interaction.

Beynon: Definitive notations for interaction 8

Where ARCA is concerned, the objects to be displayed are combinatorial
graphs of a type introduced by Arthur Cayley in connection with algebraic
research in group theory. A Cayley diagram is a geometric model of a group
which encodes the multiplication table and gives direct visual interpretation to
algebraic relations within it. For example, Fig.'s 1 and 2 below are Cayley
diagrams respectively representing the cyclic group Cg, and the symmetric
group Sg: the two abstract groups of order 6. The mathematical details are
unimportant here: suffice to say that all semantic information in a Cayley
diagram can be expressed in a definitive notation for which the underlying
algebra is chosen to include scalars, vectors, permutations, and a class of
graphs resembling partial Cayley diagrams. In this algebra, there is a plethora
of operators (c.f. [1]), including

arithmetic operators on scalars,

scalar product of vectors,

vector addition,

product of permutations,

selection of a vector component,
together with special operators (such as are needed to combine subgraphs)
reflecting the peculiar character of the semantic domain.

The choice and design of the underlying algebra for a particular application
area is a very significant and difficult exercise in general; the adoption of
relational algebra as a framework for interaction with data-bases illustrates this.
The algebra of arrays and operators in APL, designed by Iversen as a medium for
computational linear algebra, is another interesting precedent. It is clear that
in many potential application areas the underlying algebra will be many-sorted,
and inciude a wide range of operators. A definitive notation which made it
possible (say) to describe a VLSI circuit comprehensively would doubtless
require a very complicated underlying algebra, but clear semantics of
expressions is guaranteed provided that each operator is semantically simple.

When the underlying algebra is many-sorted, the variables of the associated
definitive notation have to be typed. Thus, in ARCA, there are variables to
represent scalars, vectors, permutations and graphs. Declarations can be used
to distinguish variables of different types, but there are additional complications
where higher data-types are concerned. (The limitations of ISBL, which does not
cater for manipulation of relations ([11] p.181), probably testify to this.) To
illustrate the difficulties, it will be enough to consider a definitive notation in
which scalar and vector variables co-exist; the reader should be able to imagine
how the problems and proposed solutions generalise.

Suppose first that there are precisely two types of variables: scalar and
vector. If the underlying algebra has operators
[,]:SxS>Vand'':SxV->V
(where S and V respectively denote the scalar and vector elements), v is a vector
variable and s and t are scalar variables, then a typical definition of v assigns an

expression of vector type, asin
"v =s.[t,R]".

Beynon: Definitive notations for interaction 9

Though a formalism based on such definitions is both simple and elegant, it has
serious practical limitations (c.f. ISBL). One of the main reasons for using
higher-order types is to allow incremental definition of values, as in
"v[2] = s*2; v[1] = s*t".
It is also very convenient to be able to re-define a single component of a vector
(or more generally "move a single vertex of a graph'). However, a sequence of
definitions such as _
"v =s.[t,2]; v[2] = 3"

is semantically quite unacceptable.

The above argument suggests the need for two distinct kinds of vector
variable: the abstract variable, whose value is defined by a formula of vector
type, and the explicit variable, which is semantically equivalent to an indexed
family of scalar variables, and whose value is defined component by component
by formulae of scalar type. (This distinction between "abstract” and "explicit"
variables is a refinement of the "abstract” vs. "actual” distinction described in
[1] and is incorporated in the revision of ARCA to which the illustrations below
refer.) Where abstract and explicit vector variables are concerned, different
semantic conventions then govern declaration and assignment. Thus, if vand w
respectively denote abstract and explicit variables, v can only be appear in

definitions of the form 'v = ...", whilst w has a fixed dimension ¢ specified on
declaration and is to be defined component by component using definitions of
the form "w[a] = ...", where 1<a<§, and a and 6 denote parameterless scalar

expressions. (With a little ingenuity, some assignments of the form "w = ..’
also be interpreted in this manner.)

can

Introducing explicit vector variables makes a limited form of recursive
definition possible. For instance, it is reasonable to constrain components
within an explicit vector variable w by definitions such as "w{2]=w{1]+w[3]". The
semantic conventions which apply in this context are subtle: if i were a scalar
variable, it would not be acceptable to introduce the definition

"w[R]=w[i]+w[3*]"
since the possibility of circularity cannot be ruled out. In interpreting formulae,
a subexpression of the form w{f(x,y....,2)] is deemed to depend functionally upon
the vector variable w unless the indexing expression f is parameterless. In the
latter case either f defines an invalid index for w, or w[f(x,y,....z)] is deemed to
depend functionally on the component w[a] of the variable w which it
represents, but not upon the variable w itself. The definition

"w[1] = g(x.y.....2)"
is then valid subject to the formula g being neither functionally dependent upon
w nor w{1]. '

Introducing vector variables has other consequences. Constructs for
iteration are required for convenient indexing, and permit sequences of
definitions of the form

" for 1=2 to |dim(w)| do w[I] = I*w[I-1]".
A capital letter is used here to emphasise that 'T' is a dummy variable, which is
used purely for notational convenience. The scope of the variable 1 is confined

Beynon: Definitive notations for interaction 10

to the forloop, and it can take only explicit scalar values. Such dummy
variables can neither hold transient values, nor participate in persistent
relations.

The above discussion indicates how complex data-types can be treated in a
definitive notation. In generalisation, the difficulties are largely cosmetic; the
syntax of declarations and assignments can easily become cumbersome.
Similar considerations apply to the most appropriate way to enhance a definitive
notation: by adjunction of user-defined data-types and operators to the
underlying algebra.

In ARCA, there are two types of vector variable (vert, col), whose values are
interpreted as vectors and permutations respectively, and a variable type (diag)
for representing entire graphs. (User-defined operators are also available in
ARCA, but their use is not illustrated. For more details, see [1].) The following
program generates an ARCA diagram which represents the abstract graph of
Fig.1 or Fig.2 according to whether the integer variable i is 0 or 1, and defines
different planar realisations subject to the current values of v, D!1 and D2 :

vert: v
int:i
'ab'-diag (abst vert , abst col 6) : D
a_D = {1,3,5{${2,4,6]@(1-2*)
b_D = §1,2]8{3,4]8{5.6}
withint:1=1,2 do
DI{(2*1+2) = rot(D!2,1%3,v)
D!(2*1+1) = rot(D!1,1%3,v)

© @0 2O p» W

od

Line 3 is the declaration of an explicit diag variable D to represent a graph
with 6 vertices, and edges of two colours: 'a’ and 'b’. Both coordinate and
incidence information for D are represented by "abstract vector variables” in
the sense explained above. The vertices of D are represented by the variables
D'1,...D'6. Incidence information in ARCA is represented by (partial)
permutations; the variables a_D (resp. b_D) represent the permutation of the
vertex indices defined by the edges of colour 'a’ (resp. 'b’). Lines 4-5 specify the
incidences by formula assignment; '$' and '@" denote "superposition” and
"inversion" of partial permutations. Lines 7-B specify the coordinates of vertices
by formula assignment: ‘rot’ is a ternary operator in which the parameters are
respectively X

(point to be rotated , angle of rotation , centre of rotation).
The angle of rotation is represented by an integer modulus, and the parameter
"27%3" denotes an angle of 4n/3 radians.

Beynon: Definitive notations for interaction 11

Concluding remarks.

In a panel discussion on "Programming language issues for the 1980's" [9],
Terry Winograd frequently refers to current interest in "profession-oriented
languages': special purpose programming formalisms intended for a particular
computing application, such as geology or auditing. In this context, Winograd
cites the need for "a coherent theory and understanding and collection of tools
for developing [such] languages”. Definitive notations are conceived as a
framework within which some profession-oriented notations for interactive use
can perhaps be developed.

Over any universe of discourse, "human computer interaction" and
"problem solving” can be viewed as separate concerns. A definitive notation is
not intended as a formalism for problem solving per se, but rather as a mode of
interaction. Its limitations are clear, but these appear to complement those of
existing "problem solving systems” in some respects. Its potential merits, like
those of spread-sheets, have as much to do with human psychology as
computational novelty, and must be evaluated in these terms (cf.[7]).

Though the derivation of a definitive notation from a specification of the
underlying algebra still requires some clarification, it is essentially a simple
process, which could doubtless be automated. The main contention of this
paper is that in many application areas an underlying algebra can be chosen so
that the associated definitive notation is a convenient framework for interaction
within which different semantic issues can be clearly separated, and
independently addressed. To illustrate the latter point, it is appropriate to
think of the underlying algebra as abstractly specified, and of "dialogue in the
context of a particular concrete model”. From this perspective, "changing
directories in a file system" may be seen as "selecting another model".
Assuming further that the definitive notation is interpreted with reference to
the axioms: "formula manipulation"” is "working over the abstract model"”, whilst
"imposing a constraint” - as might be appropriate in solving a specific problem -
is "adding a relation to the underlying algebra”.

In the same panel discussion referenced above [9] - to the amusement of
the audience! - Alan Kay is quoted as having said that "the most important
programming language development in the last 5 years was VISICALC".] am glad
to escape the credit for having originated this particular joke, but - many a
truth is taken for jest.

Acknowledgements.

I am grateful to Martin Campbell-Kelly for many helpful suggestions on the
form and content of this paper. I am also indebted to Robin Milner, Roy Dyckhoff
and Derek Andrews for ideas and encouragement.

Beynon: Definitive notations for interaction 12

References.

(1]
(2]

W.M.Beynon, A definition of the ARCA notation, Theory of Computation
Report 54, University of Warwick, Sept. 1983,

W.M.Beynon, ARCA - a notation for displaying and manipulating
combinatorial diagrams, (submitted)

Alan Borning, The Programming Language Aspects of Thinglab, a
Constraint-Oriented Simulation Laboratory, ACM Trans. Prog. Lang. and
Sys., Vol.8(4), October 1981.

Edsger Dijkstra, A Discipline of Programming, Prentice Hall, 1976.

Christopher M. Hoffman and Michael J. O'Donnell, Programming with
Equations, ACM Trans. Prog. Lang. and Sys., Vol.4(1), January 1982.

M.McDonald, VisiCale, Practical Computing, June 1980, p.64-67.

Thomas P. Moran, An Applied Psychology of the User, ACM Computing
Surveys, Vol.13 (1), March 1981.

Douglas T. Ross, Origins of the APT Language for Automatically Programmed
Tools, ACM SIGPLAN Notices Vol.13 (B), August 1978.

L.ARowe _(ed.) Programming Language Issues for the 1980's, ACM SIGPLAN
Notices, Vol.19(B), August 1984.

[10] 1.Sutherland, Sketchpad: A Man-Machine Graphical Communication System,

Ph.D. thesis, Dept. Electrical Engineering, M.1.T., Cambridge, Mass., 1963.

[11] Jefirey D. Ullman, Principles of Database Systems, 2nd ed., Computer

Science Press, 1982.

- Fig.2: The symmetrie group Ss.

Fig.1: The cyclic group Cg

