Scientific Visualization: Experiments and Observations
W M Beynon, Y P Yung, A J Cartwright, P J Horgan
Dept of Computer Science, University of Warwick, Coventry CV4 7AL

Introduction

In this paper, we consider issues of visualization from a programming perspective,
proposing fundamental concepts that we need for successful visualization systems and
suggesting general principles. We shall argue that there is a close parallel to be exploited
between observation of physical phenomena and the interpretation of programs — in the
real-world rather than abstract computational sense. In particular, we suggest that
developing programming methods well-suited to scientific visualisation is intimately
connected with the problem of making programs intelligible.

The paper is in four main sections. Section 1 considers scientific visualization in the
abstract. Section 2 considers visualization in its relation to computational concerns.
Sections 3 and 4 introduce an experimental system we have developed for visualization,
indicating the principles on which it is based and some of its applications. The experiments
and observations in our title refer both to the nature of our software prototyping and to the
fundamental principles upon which our approach to programming is based.

1. Principles for Visualization
1.1. Visualization - a physicist's perspective

Scientific visualization is an issue of central interest and importance. A physical theory is
most precisely formulated using abstract mathematical equations, but other ways of
viewing equations guide physical intuition. Imagining field lines is essential for
understanding electromagnetic theory, for instance. Feynman [12] §2-1 explains how the
process of interpreting equations through such heuristic models distinguishes physicists
from "mathematicians who study physics". Visualization is not a new subject — it is as old
as physics.

A historical perspective on visualization is useful in understanding what computer
techniques can contribute. The heuristic models of classical physics were based upon
analogy with mechanical systems, as represented by the motion of waves, particles or gear-
wheels, or by stresses in materials. The inadequacy of such models was first highlighted
by attempts to reconcile two views of light, ambiguously associated with both wave and
particle phenomena. This has had a major impact on the epistemology of physics.

In a series of essays [9], Bohr explains how the study of observations supplies a common
framework for the mechanical models of classical physics and the abstract mathematical
models of quantum theory (p.71):
... exhaustive description of atomic phenomena [...] makes use of a
mathematical formalism [that] does not allow pictorial interpretation
on accustomed lines, but aims directly at establishing relations
between observations under well-defined conditions.
Bohr uses the word phenomenon to refer only to observations obtained under
circumstances whose description includes an account of the whole experimental

¥

~1-

arrangement. The paradoxical nature of light is resolved, since wave and particle models
pertain to mutually exclusive experimental arrangements. Visualisation encompasses
observations that cannot be directly perceived as visual, but include "registrations obtained
by means of suitable amplification devices with irreversible functioning, such as
penetration of electrons into emulsion [on a photographic plate]" [9] p73.

Bohr ([9] p.3) sees "the very essence of scientific explanation [as] the analysis of more
complex phenomena into simpler ones". By focussing on phenomena, modern physics
dispels the need for a universal mechanical model. There is no comprehensive model of
'what is actually happening' in electromagnetism. Each mode of visualization is appropriate
for interpreting particular electrical effects. The modern status of visualization is
summarised by two complementary quotations from Feynman [12]. On the one hand, no
single picture of the electromagnetic field can replace the Maxwell equations:

... attempts to try to represent the electric field as the motion of some

kind of gear wheels, or in terms of lines, or of stresses in some kind of

material have used up more effort of physicists than it would have

taken simply to get the right answers about electrodynamics. [12] §1-5
On the other hand, pictures of the electromagnetic field are quite essential:

A physical understanding is a completely unmathematical, imprecise,

and inexact thing, but absolutely necessary for a physicist. [12] §2-1

1.2. Visualization - a computer scientist's perspective

Computer models are not constrained to behave like conventional mechanical systems. A
computer program can represent an exceedingly complicated pattern of state-transition
behaviour that does not conform to familiar physical laws. In principle, this should enable
us to make significant innovations in scientific visualization. In practice, a major obstacle is
that computer programs are themselves hard to interpret with reference to their essential
meaning.

There is a close parallel between the problems of representation in physics and computer
science. An unambiguous mathematical description of the behaviour of a program is not
sufficient to assist the external interpretation of behaviour. It specifies what the computation
does — e.g. computing the value of (1+1+0.5+0.5)*50 as 150 — without indicating what
the computation means — e.g. the price of wood for a picture frame, or the bus fare for a
family of four. To paraphrase Feynman, we may say that the process of interpreting
programs distinguishes the software engineer from the abstract computational theorist.

Better methods of developing programs with reference to their interpretation are needed for
effective use of computers in visualization. The present status of computer programming in
this respect is controversial. A particular concern is whether program specification within a
conventional logical framework can effectively address the problems of relating a program
to its external context. Smith [17], for instance, argues that a radically new framework for
formalising programs is required. If the analogy between physical understanding of
mathematical equations in physics and real-world interpretation of logical program
specifications is appropriate, Feynman's reference to the completely unmathematical,
imprecise and inexact nature of physical understanding points to a similar conclusion.

Object-oriented programming is a paradigm that was originally conceived with modelling of
physical systems in mind. In Simula ([7] p61), programming is viewed as a restricted form
of system description. This paper discusses a new programming paradigm that has similar
philosophical roots to Simula, but is based upon the phenomenon rather than the object as
fundamental concept. The abstractions that are required in this approach relate to modelling

—-2-

observation — a perspective that is well-matched to modern physics. The shift of emphasis
from object to observation is consistent with the epistemological developments in physics
to which Bohr refers. A discussion of related issues in Russell ([16] Chap's XIII and IX)
also endorses our choice of fundamental abstractions.

This paper will describe and illustrate how our approach to visualization is connected with
the observation of physical phenomenon. We contend that our programming paradigm is
well-suited to scientific visualization because of this connection. Related papers advance a
complementary argument — that representing programs in terms of physical phenomena is a
most appropriate way to deal with their real-world interpretation [5, 6].

2. Programming Principles for Visualization
2.1. Interpreting observation in computational terms

The fundamental concepts we adopt in programming relate to the observation of physical
phenomena:

+ a phenomenon is defined by a set of observations made within an experimental
context in which a specified repertoire of state-changing actions is considered.
For example, we may vary the temperature or pressure to which a volume of gas
is subjected.

» different sets of simultaneous observations associated with a phenomenon
typically exhibit functional dependencies; for instance, pressure, temperature and
volume are related by Boyle's law, so that volume changes as a function of
pressure and temperature.

» there are many different ways in which the same physical system can be observed
and manipulated experimentally.

Some elaboration and qualification of these points is helpful.

In an experiment, we may be observing state-changes that are not directly under our
control, as in measuring radio emissions from the sun's corona during a partial eclipse.
This is reflected in the agent-oriented nature of our programming framework, in which we
in general presume that there are state-changing agents other than the experimentor.
Conventions have to be established for the observations that define phenomena. For
instance, when observing a small heavy object falling, the effects of wind resistance may
be discounted.

The concept of 'simultaneous observation' presumes intuitions about physical variables
(e.g. the pressure, volume and temperature of a gas) whose values can be observed in
different states within a single experimental context and are subject to change. It also
presumes conventions about what constitutes indivisible propagation of change — for
instance, we may ignore transient effects associated with abruptly changing the pressure to
which a gas is subjected.

Our concept of dependency is not to be confused with an equational dependency such as is
defined by global constraints on observations associated with a phenomenon. For instance,
we shall interpret Boyle's law as an assertion about how changes in temperature or
pressure indivisibly affect volume. Functional dependency is a more appropriate primitive
concept than equational dependency for several reasons:
+ the relationship between observations typically has the form 'if the parameters x,,
X2, ... ,Xp are changed in a certain manner, then the parameter y changes subject
to y = f(xq, X2, ... ,Xp)'

B

« a relationship between observations is typically uni-directional — there may be no
independent method of changing the value of the parameter y

« it is not sufficient to think of y varying as a function of x irrespective of how x is
changed. In hysteresis phenomena, for instance, increasing the magnetic field
surrounding a metallic crystal will induce greater magnetisation, but reducing the
field has no effect.

Our computational abstractions reflect a particular perspective on modelling a phenomenon.
A phenomenon is conceived as associated with a set of states, as defined by comprehensive
sets of simultaneous observations. Our model describes these states explicitly and
expresses the way in which the values of particular physical parameters are linked in
change. This method of modelling is appropriate even in a context where our knowledge of
a phenomenon is incomplete and speculative. If our knowledge of a phenomena is
comprehensive, it can be encapsulated using equational dependency. These two ways of
regarding phenomena may be compared with procedural and declarative descriptions of
programs, though the parallel is not exact (cf Smith [17D).

2.2. Fundamental principles in geometric representation

The simplest phenomena are those that involve observation and transformation of an object
that has no autonomous behaviour. The experimentor is then responsible for deciding what
parameters to observe and what changes of state to perform. Visualization of such
phenomena involves specifying transformations of a geometric object that correspond to the
observed behaviour of the physical object in a precise way. That is to say, observations of
the physical object should be represented geometrically so as to reflect the way in which
they are indivisibly linked with respect to atomic transformations. The term geometric
symbol will be used to refer to such a representation.

Interpretation of a geometric symbol is enabled by a correspondence between geometric
transformations of the symbol and actions performed on a physical object. As a familiar
example, the icons of a desktop display typically represent accessible files. The nature of
these files (e.g. whether they are executable or are data for a system application program) is
indicated by the form of the icon. The deletion of a file is associated with removing an icon
from the display. A subset of geometric transformations that can be performed on a
displayed set of icons is in 1-1 correspondence with meaningful operations on the
associated physical files, such as deletion, creation or conversion to a new format. The
validity of the geometric interface depends upon the precise correspondence between
geometric transformations of the display and meaningful operations on physical files.

By way of further illustration, consider Figure 1. Under one interpretation, the figure
denotes a counter that is currently displaying "89". If the figure models the behaviour of the
counter faithfully, there are two atomic transformations, one associated with incrementing
the counter to display "90", the other with resetting the display to "00". Such semantically
significant atomic transformations of a symbol will be called interpretable.

Basic operations on files are atomic in the sense that the user cannot observe intermediate
stages in the process of file deletion or creation. They are also discrete, since partial
existence of a file is meaningless. In general, physical objects undergo continuous
transformations and indivisibility of changes in observed values is a concept that is
properly invoked for arbitrarily small transformations. The same principles for the

interpretation of geometric symbols still apply.

Figure 1

As an example, Figure 1 can also be interpreted as a plan for the furniture layout in a pair of
adjacent rooms. The "8" symbol depicts a filing cabinet that is currently open, the "9"
symbol the floor plan of a desk. The rooms have doors that are presently closed. In this
case, the interpretable transformations of Figure 1 are of quite another kind, and
correspond to actions an occupant might perform to change the state of a room, such as
opening the door, moving a desk, or closing a filing cabinet. In this case, continuous
transformations are involved.

There are many different phenomena associated with every physical object. Each
phenomenon is determined by what observations and transformations are permitted. An
experimental arrangement defines the privileges of the experimentor as observer and state-
changing agent. The possible interpretations of a geometric symbol are determined in a
analogous way by what we deem to be its atomic transformations (cf the association
between the semantics of a geometric object and the transformations to which it can be
subjected proposed by Klein [13]).

The class of interpretable transformations of a geometric symbol is determined by what
agent is acting in the application and what privileges these agents have to change the system
state. Conceiving different agents enables us to regard the same image as simultaneously
having several alternative meanings. For example, reorganising the icons on a desktop
display does not affect the status of the associated physical files, but is meaningful as a
mode of presenting file information to the user.

Figure 1 likewise has many possible interpretations. The transformations of Figure 1 that
correspond to updating a counter do not involve changing the presentation format for the
digits. If on the other hand, the agent acting in the application is a graphical designer, it is
necessary to consider transformations that modify the size and choice of representation for
the digits "8" and "9", their relative position, or the colour of the background display.
Similarly, when conceiving Figure 1 as an architectural plan, an architect might wish to
modify the dimensions of the room, or relocate the door.

3. A programming paradigm for visualization
3.1. Basic concepts and techniques

The above discussion motivates the development of a method of representing a geometric
object so that we can formally describe:

« the set of interpretable transformations that can be applied to it
» the set of agents that can perform such transformations upon it
« the conditions that constrain the performance of these transformations.

The drawing process is typically viewed as a means to an end: that of describing a static
image (such as Figure 1) without constructing an abstract representation. From our
perspective, a geometric symbol cannot be adequately represented by a static image; to
reflect its semantics it is necessary to describe its geometric form together with appropriate
protocols for transformation. This reflects the distinction between frozen figures as
displayed in a document and dynamic figures as modelled in an interactive environment.

Traditional programming paradigms for graphics were not designed with the formal
representation of transformations of geometric objects in mind. A procedural drawing
package supplies many transformations that can be used to construct an image, but no
framework in which to represent the "interpretable transformations of an image”.
Declarative methods (e.g. those based upon the use of constraints) give inadequate support
to the concepts of state and transformation. A constraint is effectively an assertion about the
form of a static object. Information about how an object is to be transformed when
maintaining constraints is only supplied implicitly via a constraint-satisfaction strategy.

The fundamental technical problem to be addressed is the formal specification of the set of
interpretable transformations of an image. In a conventional state-based computer model,
such as a procedural graphics package describes, transformations of a geometric object can
be specified informally, but there is no way to distinguish between interpretable and
uninterpretable transformations. For example, a basic drawing package will provide a
sequence of updating operations to modify the counter in Figure 1 so that the display "89"
is transformed into "90", but this might take the form of introducing and deleting line
segments so that the counter coincidentally displayed "88","80" and "90" in sequence. A
method of expressing the indivisible nature of the transition from the state of displaying
"89" to that of displaying "90" is required.

Our representations of geometric objects use variables to represent observed parameters of
a physical object. Transformations of the physical object affect these observations in such a
way that certain functional dependencies are respected. In our representation, the values of
variables are defined by formulae that reflect these dependencies. In this way, a set of
definitions of variables — or script —is used to represent observations of a physical object.
In a script, each definition either specifies the value of a variable explicitly or defines it as
the value of a formula referencing other variables (without cyclic definition). The
redefinition of a single variable changes the values of all variables whose value is
dependent upon it in a conceptually indivisible fashion. The principle is similar to that
applied when updating the cells of a spreadsheet.

The nature of the formulae used in the definitions is determined by an underlying algebra of
data types and operators over which expressions are evaluated. Listing 2 specifies Figure 1
as a room layout using the definitive (definition-based) notation DoNaLD — see below — in
which the underlying algebra consists of points, lines and shapes comprising sets of points
and lines. The basic transformations - such as that corresponding to opening the door - are
described by the redefinition of a single variable. As an example, Listing 2 shows two files
of DoNaLD definitions to describe the symbol "8" in Figure 1. In that on the right, the
symbol "8" is transformed to "9" by incrementing the variable digit; on the left, the open
filing cabinet represented by the symbol "8" is closed by setting the variable open to false.
The protocols below prescribe the interpretable transformations.

openshape cabinet
within cabinet {
Int width, length
point NW, NE, SW, SE
fine N,S,EW

N = [NW, NE]
S =[SW, SE]
E = [NE, SE]
W =[NW, SW]

width, length = 300, 300

SW = {100, 200}

SE = SW + {width, 0}
NW = SW + {0, length}
NE = NW + {width, 0}

openshape drawer
within drawer {

boolean open
int length
line N,S,EW

length = If open then ~/length
else 0
open = true

N = [~/NW + {0, length},
~/NE + {0, length}]
S = [~/NW. ~/NE]
W = [~/NW + {0, length}, ~/NW]
E = [~/NE + {0, length} , ~/NE]
}
}

protocol {
open -> open = false
topen A ! locked -> open = true
locked -> locked = false
1 open A !locked -> locked = true

}

openshape led

within led {
int digit
point p1. p2, p3, p4, pS, pé
line Lt,L2,L3, L4 L5 L6, L7
boolean on1, on2, on3, on4, on5,
oné, on7
digit=8

p1 = {100, 800}
p2 = {100, 500}
p3 = {100, 200}
p4 = {400, 800}
p5 = {400, 500}
p6 = {400, 200}

on1 = digit '= 1 A digit = 4
on2 = digit = 0 A digit |= 1 A digit 1= 7
on3 = digit '= 1 A digit |= 4 A digit = 7
ond = (digit == 0 v digit >= 4) A

digit '=7
on5 = digit == 0 v digit==2 v
digit == 6 v digit ==
oné = digit != 5 A digit |= 6
on? = digit = 2
I1 = If on1 then [p1, p4] else [p1, p1]
12 = If on2 then [p2, p5] eise [p2, p2]
I3 = If on3 then [p3, p6] else [p3, p3]
4 = If on4 then [p1, p2] else [p1, p1]
I5 = If on5 then [p2, p3] else [p2, p2)
i6 = If on6 then [p4, p5] else [p4, p4]
i7 = If on7 then [p5, p6] eise [p5, p5]
}
protocol {
true -> digit = | digit | + 1
true -> digit =0
}
Listing 1

3.2. Software prototypes for visualization

Definitive notations are simple formal notations within which to formulate declarations and
definitions of variables. Each variable may be defined explicitly by supplying a value of
the declared type, or may be defined implicitly via a formula referencing other variables.
Provided that the variables referenced directly or indirectly by the formula do not include
the variable to be defined, the formula is meaningful and acceptable. For example if A, B,
C are integer variables, then "fAis B+ C; Cis B+ 1;Blis 1, is a valid sequence of
definitions. If this sequence is followed by “C is 17, then this definition of C will replace
the previous definition. An attempt to redefine a variable that would lead to circular
definition will be rejected by the system. This would apply, for instance, to the proposed

i

?

redefinition “C Is A”. This restriction upon definition ensures that the variables in a script
always have values consistent with their definitions. Our visualisation techniques are
applied to this consistent environment.

Each definitive notations is conceived with a mode of visualisation in mind. Each has its
own set of data types and underlying algebra, appropriately chosen for the scope of
applications. ARCA, DoNaLD and SCOUT are examples. ARCA was designed for the
display and manipulation of combinatorial diagrams, DoNaLD for 2-dimensional line
drawing and SCOUT for describing screen layout. To complement these special-purpose
notations, the definitive language EDEN incorporates C-like data types and operators to
facilitate more general applications and the implementation of other definitive notations.

The data types in the current implementation of the DoNaLD notation are integer, real, point,
line, circle and shape. A shape is a set of points and lines. There are two kinds of variable of
type shape. An openshape variable resembles a directory in a file system. It provides a
context in which local declarations and definitions can be made. A shape variable is defined
via an implicit formula. The following DoNaLD definition illustrates typical uses of these
variables. A unit arrow is defined using an openshape variable and definitions of arrows to
represent forces are defined in terms of this unit arrow using shape variables.

openshape arrow

within arrow {
line arrowBody, arrowHeadl, arrowHead2
arrowBody = [(0,0, {1, 0}]

arrowHeadl = [{1,0], (0.8, 0.2}]
} arrowHead2 = [{1.0}, {0.8, -0.2}]
shape wind

wind = rot(trans(scale(arrow, windF div 30), 200, 500), {0,0}, Eradient)

Listing 2

The ARCA notation is oriented towards displaying and manipulating mathematical
diagrams. Its data types are diagram, vertex, colour and integer. The kind of diagrams
described by ARCA are combinatorial, as illustrated by Example 5.3. Vertices, colours and
integers are used to specify vector, permutation and scalar information respectively.

The SCOUT notation is designed for screen layout. A SCOUT script defines the way in
which sections of the screen are allocated for the display of diagrams and text defined in
other notations. A SCOUT display is an ordered set of windows. A SCOUT window is
best understood as a collection of area, content and attributes. There are different ways of
defining areas for different kinds of windows. For a graphics window (such as a DoNaLD
or an ARCA window), the area is defined as a box, and the required coordinate system is
specified. For a text window, the area is defined as a list of boxes to allow multi-column
text display. A typical example of a text window is that defining the ‘off’ button for the
vehicle cruise controller status (Example 4.4):

point offBtnPos;
integer cruiseStts;

window crOffBtn = {

type: TEXT,
string: "OFF",
frame: ([offBtnPos, 1, 5]),

/* alist of one box whose size is 1 row by S columns */
bgcolor: if cruiseStts == csOff then "white" else "black" endif,
fgcolor: if cruiseStts == csOff then "black" else "white" endif,
alignment: CENTRE, /* putthe word "OFF" in the centre of the box */
border: 1 /* the border width of the box */

sensitive: ON
/* will cause the system to generate a definition (keep track) of the
mouse state whenever there are mouse actions within this window */

Listing 3
A typical example of a graphics window is that defining the speedometer:

point origin;
integer width, height;

window speedometer = {

type: DONALD,
box: [origin, origin+{width, —height}],
pict: "SPEEDQ",

/* the DoNaLD picture named SPEEDQ is to be displayed */
border: 1,
xmin: —250, /* only the region of the DoNaLD picture bounded */
Xmax: 250, /* by these four parameters will be displayed; */
ymin: -250, /* this region will be scaled to fit in the prescribed %/
ymax: 250 /*box */

};

Listing 4

As the choice of data types and underlying algebra in these definition notations illustrates,
definitive notations are designed to ensure a close correspondence between the definitive
script and the screen display. This makes the interpretation of the script straight-forward.

Special-purpose notations are good for the end-user, but there are problems of
implementation if we need to integrate them in a general programming framework. These
problems are resolved in our system by having a common general-purpose definitive
implementation language. All the definitions are translated to the definitive language EDEN
and are subsequently maintained by the EDEN interpreter. EDEN uses common data types
and operators such as can be found in conventional programming languages. For instance,
the complex data types and operators in DoNaLD or ARCA can be emulated in EDEN
using the list data type and user-defined functions. For details of the implementation
method see [2]. The fact that all the definitive notations are translated into a common
language that incorporates definitions means that a variable in one definitive notation can be
k3

—9_

defined in terms of variables in another. Bridging definitions are introduced to convert a
variable from one definitive notation. As a simple example, the DoNaLD declaration:

intI=ARCAint1

declares a DoNaLD integer I as an image in DoNaLD of an ARCA integer I. Such a
declaration is still a definition in principle and falls within the scope of the definitive
paradigm. In this way, specialisation of definitions is consistent with expressive power and
breadth. Examples 4.3 [4] and 4.4 [3] illustrate how several definitive notations can be
used effectively in conjunction.

4. Applications

In this section, we briefly review four applications of our visualization methods. Definitive
principles are central to these applications, but each application has an experimental aspect
aimed at understanding how best to exploit and develop the theme of this paper.

Example 4.1: The cube

Figure 2 depicts a cube specified in a definitive notation CADNO that is being developed
for geometric modelling. The principles behind the design of CADNO are described in [1].
CADNO illustrates the way in which definitive notations support powerful reference
mechanisms. This is exploited in the notation when abstract labels defined as values in a
complex are interpreted as variable names in a carrier.

As currently implemented, the CADNO data types are the complex, the carrier and the
object. An object is defined by combining combinatorial information of type complex with
geometric information of type carrier. A complex is a set of faces of type simplex, each
of which is a structured list of labels that specifies a combinatorial structure on abstract
vertices. A carrier is a set of points specified using the conventions adopted for DoNaLD
shapes. Object specification currently uses a default mode of realisation: faces are realised
as rectilinear objects such as straight lines, triangles or quadrilaterals. In this process of
realisation, a frame of reference can be specified for the object and for each of its faces.
This is defined by an origin O and a triple of unit vectors X,Y,Z with standard defaults.
(More complex modes of combining combinatorial and geometric information in objects are
envisaged in the full design.)

In Figure 2, each of the 6 faces of the cube is defined as a 2-dimensional face bounded by 4
edges. In the complex faces, the vertices of the cube are assigned the abstract labels
"/corners/a", "/comners/b" etc using the string concatenation operator (::). These labels
reference points in the carrier corners. The object cubes is then realised by interpreting the
combinatorial structure in the complex faces relative to the points in the carrier corners. The
frames of reference of the sliding and hinged faces of the cubes are defined so that
redefining the parameters pos and angle simulate their movement.

Example 4.2: A content addressable memory

Figure 3 illustrates the use of SCOUT, DoNaLD and Eden for visualization of a simple
neural net. The network is based on an original model due to McClelland [14, 15]. The
network represents information on individuals belonging to two gangs, the Jets and

Sharks. Interrogating the network involves specifying initial activation levels for nodes and
observing the activation pattern to which the network converges. For instance, to determine

a8

-10-

the characteristics of Sam, we activate Sam's name unit. On convergence, the property
units associated with Sam are activated.

In this example, visualization is used to animate a system with autonomous behaviour. The
first phase of the visualization process involves specifying the form and layout of the
symbols representing nodes. In Figure 3, this is specified using DoNaLD definitions. Each
unit is represented by a box in which the activation level is indicated by a diagonal line. The
same generic object is used to define for all units. Hidden units are depicted using dashed
lines. In DoNaLD, all name units are defined within the context of a single openshape
person that contains the parameters used to locate this pool of units. This mode of definition
assists the design of the layout, making it possible to relocate the entire pool of units and
the individual units within the pool. The designer can also assess whether the mode of
visualising activation levels is effective by directly assigning activation levels.

Once the screen layout has been designed and specified in DoNaLD the only parameters
that are changed in simulation of net activity are the activation levels of nodes. The mode of
definition of the DoNaLLD symbols automatically guarantees consistency between the screen
display and the internal model. A feature of this approach to visualization is that the
interpretable states and transformations of the neural net are precisely modelled prior to
animation. At the same time, the screen layout can still be redesigned interactively and
retrospectively simply by redefining appropriate parameters.

Animation involves simulating propagation of signals through the net. This is done by
using an action mechanism in Eden, whereby changes to the values of variables triggers
the execution of redefinitions. In the neural net, the trigger is a clock pulse that causes
activation levels in all nodes to be recomputed according to a recipe based on those of
neighbouring nodes and connection strengths. In this way, Eden actions animate the roles
of independent agents that change the system state. These actions are complemented by
actions implicitly specified in SCOUT that serve to define the user-interface. The SCOUT
specification of the on/off button for the vehicle cruise controller in Listing 2 illustrates the
essential principles.

Example 4.3: Simple 4-line arrangements in the plane

Figure 4 depicts an exercise in visualization of abstract mathematical models introduced in
the study of combinatorial properties of planar arrangements. Full details of this are
described elsewhere [4]. This illustrative example was developed using ARCA, DoNaLD
and SCOUT in combination. When the relative distance between the endpoints of lines in
the arrangement (top left) are interactively redefined, the combinatorial characteristics as
depicted in the posets (top and bottom right) and in the Cayley diagram of the symmetric
group S4 (bottom right) are changed accordingly.

There are several points of particular interest in this example. The program is almost
entirely specified by a definitive script — only at one point is it necessary to use an Eden
action to simulate a definition of a particularly subtle nature. The elements of the picture
were first independently specified but were easy to integrate through the use of appropriate
bridging definitions. At stages during the development of the final script, certain parameters
needed to realise the diagrams appropriately had to be supplied interactively, but these
could subsequently be specified by introducing appropriate definitions.

~11-=

Example 4.4: A vehicle cruise control system

Figure 5 is a snapshot depicting an animation of a vehicle cruise control system. This
visualization was devised to illustrate a simulation program that was itself developed using
programming techniques based on definitive principles. Full details appear elsewhere [3].

This example makes use of techniques similar to those in Example 4.2. The interactions
between agents, including the user, are too complex to specify directly using Eden actions
in an ad hoc way. There are both discrete and analogue elements in the physical system and
agents — including the user — act concurrently. A special-purpose notation (LSD), designed
for defining agents and their state-changing privileges, was used to specify the system and
the user-interface. LSD specifies how an agent can observe and affect the system state; it
enables us to specify the privileges introduced in Figure 1, for instance. The use of LSD
represents one way in which we have successfully enhanced definitive principles for
representing state with a view to general-purpose programming.

Conclusions

Scientific visualization involves establishing a relationship between physical phenomena
and computer models. This paper argues that new programming methods are appropriate
for this purpose. The key principle is that of specifying transformations of computational
and geometric objects so that they correspond precisely to observation of physical
phenomena.

Our illustrative examples show that definitive scripts can play an important part in
modelling observation. They also indicate that extensions of our methods are likely to be
needed to represent functional dependencies between observations as they arise in general.
Applications of constraint solving that involve automatic reconfiguration of functional
dependencies represent one important area for future research (cf e.g. [10] Chapter 3).

References

[1] W M Beynon, A J Cartwright, A definitive programming approach to the
implementation of CAD software, Int CAD Sys 2, Springer-Verlag 1989, 126-145

[2] W M Beynon, Y W Yung, Implementing a Definitive Notation for Interactive
Graphics, New Trends in Computer Graphics, Springer-Verlag 1988, 456-468

[31 W M Beynon, I Bridge, Y P Yung, Agent-oriented Modelling for a Vehicle Cruise
Control System, to appear in Proc ESDA, June 1992

[4] W M Beynon, Y P Yung, M D Atkinson, S R Bird, Programming Principles for
Visualization in mathematical Research, in Proc CompuGraphics'91, Portugal, 1991

[S] W M Beynon, S B Russ, The Interpretation of States: a New Foundation for
Computation? in Proc 4th PPIG, Jan 1992

[6] W M Beynon, Programming Principles for the Semantics of the Semantics of
Programs, Research Report RR#205, Comp Sci Dept, University of Warwick, 1992

[7] G Birtwistle, O-J Dahl, B Myrhaug, K Nygaard, SIMULA BEGIN, 2nd Ed.,
Studentliteratur, Lund, Sweden, 1979

[81 G Booch, Object-Oriented Development, IEEE Trans Software Enginerring, SE-
12(2), 1986, 211-221

[9] Niels Bohr, Atomic Physics and Human Knowledge, Science Editions, Inc., New
York 1961

[10] S van Denneheuvel, Constraint solving on database systems, University of
Amsterdam, 1991

[11] M S Deutsch, Focusing Real-Time Systems Analysis on User Operations, IEEE
Software, Sept 1988, 39-50

12—

[12] Richard Feynman, Robert Leighton, Matthew Sands, The Feynman Lectures on
Physics Vol I, Addison-Wesley, Reading, Massachusetts 1964

[13] Felix Klein, The "Erlanger program”, 1872

[14] JL McClelland, Retrieving General and Specific Knowledge from Stored Knowledge
of Specifics, Proc of 3rd Annual Conf of the Cog Sci Society, Berkeley, CA 1981

{15] D E Rumelhart, J L McClelland, Parallel Distributed Programming: Vol 1
Foundations, MIT Press 1986

[16] Bertrand Russell, ABC of Relativity, George Allen and Unwin, 1969

[17] B C Smith, Two lessons of logic, Comput Intell Vol 3, 1987, 214-218

~-13-

label 1 = '/corners/'

simplex

front = [[1::'a',1::'b"],[1::'b" 1", [1:x e L' [d i a'])
back = [[1::'e’, 12", [L::F 10"], 1" 1 h] [L e
left = [[1::'e',1::'a'],[1: e Laa d '], [1e:'d L '), ['R L e]
right = [[L::'b", 12", [L::'F Lx'g 'L [g L e '] [e LD]
sliding = [[l::'e’ '], [L::'f, 1D, [Le: D L a][]l L]

hinged = [[l::'c',l::'d"],[1::'d' L', [e g] [g L e ']

::, size = moo -

point cubes_X = ?Ombwmv.mpi.ﬁwv%ww

z = {0,0,size) cubes_Y = {-sin(.25),c0s(.2), sliding_O = {0,0,pos)
mM M mhwm"ow 0 cubes_Z = {~0.5,0.5,0} int pos = 200

c= Ewoulmﬁo.ow

d = {size,0,0}

e=a+2Z hinged_Z = {0,—sin(angle), cos(angle)}

f=b+z real angle =0.3

g=Cc+z

h=d+z

FIGURE & A CADNO specification of a box with faces that hinge and slide

. Neural Network Interactive Illustration

Clock

JET & SHARK EXAMPLE 0
ON | OFF | RST JPULSE

Jet Sharks

Lance Ralph Art Rick Sam

Figure 3.1: Initial Display of Example 4.2

. Neural Network Interactive Illustration

Clock

JET & SHARK EXAMPLE 100
ON | OFF | RST |PULSE

Jet Sharks

Figure 3.2: The Display after 100 Clock Cycles
Figure 3: A Content Addressable Memory

saul| anoj Jo syuswaBuease seueld dduils Jo uONHEZIENSIA :p INB1y

b g w —=%XTZ-- ZTL 40 LST UTT . .7x37vd,
eousey 0]
LTT°E2“12°E° 11 (PEQEZA+ZTA) ATP (DEREZRZTI) = P
7(39923033)UTIITUM (PEQ+E2A) ATP (PE@+E2R) = p24
uapay < (£2A+2TQ) ATP (E£ZPeZT®) = £74
0°v “0°b “0°2 = pE] ‘£29 “21a < PEG ATP DE® ‘£2Q ATP £29 “ Z1Q ATP 2T® = PES‘EE4ZT4
PTRUOPX <Y <8 <Y <H <B <Y (¥ <8 B <Y <Y <Y <Y <Y <Y

PIX ‘PSR ETX “PEXETX “ZTX IUT
ICRCERCECRCECECECIRCIRCIRG R JG I S IR I IR BT PZLETL PESETL TS TOIL
—

sucys (X

d 33804 CZTEZTE“ZETZTIE “ZIEZE T “ZEIZET> 9OT8ap03B p d 3sod

ps umaleTp RatRe) h ps wesdetp RaTRe)
W 8a8pa JUTUIAOD 9 “ — sa%pa BuTusA0D g -
SUCTIIJ JeTNBURTU] TOWTUTW Z J suOTIaL JRINBUETIY TeRWTUTW 2
2
14
14
14
v

.4 3389d Y wawadueddy .d uuoo& Y Juawddueady

el

1 amiys X

W z e X

® Vehicle Cruise Control System
40
30 | 50
Cruise Speed \ P
T 61.140000 2 60
Jd.| SET IRESUME]MQNURL Engine ~ -~
ON - -~
Cruise Status 10 / \ 70
0 80
Brake Accelerator
100% 100%
wind
-~
0% (6)4
100C100000k000 Throttle
LA 00%
ON | OFF | RST 1
Vehicle Position
~
’/\ \
L 0% o

Figure 5: Sample Output of the Vehicle Cruise Control Simulation .,

