
A COMPUTER-BASED ENVIRONMENT FOR THE STUDY OF
RELATIONAL QUERY LANGUAGES

Meurig Beynon, Abhir Bhalerao, Chris Roe, Ashley Ward
Department of Computer Science

University of Warwick
Gibbet Hill Rd, Coventry, CV4 7AL

 {wmb,abhir,croe,ashley}@dcs.warwick.ac.uk

ABSTRACT
In this paper, we describe an environment
developed to support a rich learning experience in
which practice and theory in relational databases are
better integrated, enabling students from various
backgrounds to appreciate the significance of
relational theory and the logical flaws in SQL. Our
lightweight open source software includes the
aspects of a commercial database system that are
most relevant to teaching relational databases and
can be run on several platforms.

Keywords
Relational Databases, SQL, Relational Algebra,
Computer-Assisted Learning, Empirical Modelling.

1. INTRODUCTION
The core database module for second year students
on computing-related courses at the University of
Warwick combines a practical introduction to SQL
with lectures on relational algebra. For many
students - especially those on joint degrees
involving business and engineering, who have less
prior exposure to basic set-theory, algebra and logic -
relating practical use of SQL to the underlying
algebraic theory of relations is difficult. This problem
is exacerbated by the fact that standard SQL [1]
deviates from the ideal model of a relational query
language as it was originally conceived by Codd [7].
In particular, SQL has what the relational database
proponents Date and Darwen identify as “logical
flaws” that subvert the natural mathematical
semantics that relational theory provides [12]. For
instance, standard SQL allows duplicate rows in a
table, applies loose type checking in creating
unions, and only supports an indirect and clumsy
representation of natural join.

At Warwick, the educational problems identified
above have been addressed by developing an
environment in which students can explore the
relationship between practical use of standard SQL
and the underlying relational algebra. For this
purpose, we have designed and implemented a
pure relational algebra language ("EDDI") and
developed translators both for a variant of SQL
whose semantics is consistent with relational theory
(“SQLZERO”), and for a subset of standard SQL. In
the SQL-EDDI environment, students can study the
evaluation of relational algebra expressions, and
relate these to the translation and interpretation of
SQL and SQLZERO queries.
The paper describes the SQL-EDDI environment
and discusses its implications from an educational
and a computer science perspective.

2. EDDI: RELATIONAL ALGEBRA
The EDDI interpreter1 is a front end to the EDEN2

interpreter, the principal tool that has been
developed in connection with the Empirical
Modelling project at the University of Warwick [2].
EDDI is one of several definitive notations in EDEN
that can be used to formulate scripts that express
spreadsheet-like dependencies between variables.
EDDI is loosely modelled on the Information Systems
Base Language (ISBL) developed in 1976 [13]. The
six basic operations of ISBL are union, difference,
intersection, projection, selection and natural join.
These are defined in EDDI (as in ISBL) as R+S
(union), R - S (difference), R . S (intersection),
R%A,B,...,Z (projection), R:F (selection) and R*S
(natural join), where R and S are relations, A, B and Z
are attributes and F is a Boolean condition. ISBL has
two types of statement. If <exp> is a relational
algebra expression then LIST <exp> prints the
current value of exp, whilst R = <exp> assigns this
value to the relational variable R.

1 The Eden Definitive Database Interface
2 The Evaluator of DEfinitive Notations

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission.
Teaching, Learning and Assessment in Databases, Coventry 2003
© 2003 LTSN Centre for Information and Computer Sciences

ISBL also supports a form of view definition. This
exploits a call-by-name mechanism invoked by
preceding variable names in formulae by “N!”. The
current values of such variables are then used on
evaluation. ISBL allows attribute renaming so that
R%A,B‡C denotes the relation R(A,B) with the
second attribute renamed as C. This feature allows
the specification of a Cartesian product, ensuring
that ISBL satisfies Codd’s criterion for completeness
of a relational query language [7].
EDDI realises all the functions of ISBL but uses
different syntactic conventions. Figure!1 shows the
EDDI code to define a small example database. Lines
2-12 are the EDDI DDL to define the basic tables.
Lines 13 and 14 define two views derived from these
tables, denoted by the is syntax for a definition.
Line 15 defines the explicit contents of a table, using
the = syntax for assignment. A subsequent change
to the contents of the allfruits table will affect
the values of fruits and popcitrus but not that of

nonapplesncox.

3. SQLZERO: A TRULY RELATIONAL
VARIANT OF SQL
A direct translation of standard SQL into EDDI is
problematic (indeed impossible!) because of the
flaws in its design mentioned in §1, which led
Darwen to call SQL the “askew wall” [10]. The flaws
are illustrated by the queries on our example
database shown in Figure 2.
Query 1a) returns duplicate rows for the cox, red
and granny tuples. Queries 2a) and 2b) return
tables with the same contents but different attribute
names (respectively unitsold and qnt) in the
second column. Query 3a) returns a table with six
columns (allfruits.name, begin, end,
apple.name, price, qnt), two of which are
identical. To specify the natural join of allfruits
and apple requires the more complex query 3b).

1. %eddi

2. allfruits (name CHAR, begin INT, end INT);

3. allfruits << ["granny",8,10],["lemon",5,12],["kiwi",5,6],["passion",5,7];
4. allfruits << ["orange",4,11],["grape",3,6],["lime",4,7],["pear",4,8];
5. allfruits << ["cox",1,12],["red",4,8];

6. apple (name CHAR, price REAL, qnt INT);
7. apple << ["cox",0.20,8],["red",0.35,4],["granny",0.25,10];

8. citrus (name CHAR, price REAL, qnt INT);
9. citrus <<["lime",0.30,3],["orange",0.55,8],["kiwi",0.75,5],["lemon",0.50,2];

10. soldfruit (name CHAR, unitsold INT);
11. soldfruit << ["cox",100],["granny",153],["red",70];
12. soldfruit << ["kiwi",23],["lime",15],["lemon",55],["orange",78];

13. fruits is allfruits % name;
14. popcitrus is (fruits.citrus % name).(soldfruit : unitsold > 50 % name);

15. nonapplesncox = allfruits-
 (allfruits*apple%name,begin,end)+allfruits:name==”cox”;

Figure 1: An EDDI extract illustrating the definition of the FRUITS database

Duplicate rows:
1a) SQL: (SELECT name FROM apple) UNION (SELECT name FROM allfruits)
1b) EDDI: ?apple % name + allfruits % name;

Loose type checking in creating unions:
2a) SQL: (SELECT * FROM soldfruit) UNION (SELECT name, qnt FROM citrus)
2b) SQL: (SELECT name, qnt FROM citrus) UNION (SELECT * FROM soldfruit)
2c) EDDI: ?soldfruit + citrus % name, qnt;

Indirect and clumsy representation of natural join:
3a) SQL: SELECT * FROM allfruits, apple
3b) SQL: SELECT allfruits.name, begin, end, price, qnt FROM allfruits, apple
 WHERE allfruits.name=apple.name
3c) EDDI: ?allfruits * apple;

Figure 2: Some example SQL queries and their EDDI equivalents

Each of the above three queries illustrates a different
way in which standard SQL is problematic. In
standard SQL, query 1a) does not return a legitimate
mathematical object, query 2a) - although it is strictly
meaningless - returns a result, and query 3a)
arguably returns an inappropriate result.
We have developed a front-end to EDDI that uses
SQL-style syntax, named SQLZERO. SQLZERO is
faithful to the relational theory developed by Codd
[7] as the foundation for relational databases. It
differs from standard SQL in that

• SELECT is treated as a synonym for SELECT
DISTINCT,

• type checking on constructing union,
intersection and difference of relations takes
account of both domain types and attribute
names,

• SELECT * FROM X,Y is interpreted as a
natural join of relations.

These evaluation characteristics reflect the sound
mathematical foundation on which the EDDI
interpreter operates. They give SQLZERO
characteristics as a query language that are very
different from those of commercial implementations
of SQL. By way of illustration, Figure 2 shows the
EDDI translations of the SQL queries 1a), 2a) and
3a). Following the default evaluation conventions for
SQLZERO, query 1b) returns a set of distinct fruit
names. Query 2c) causes a semantic error when type
checked. Query 3c) returns the natural join of the

two tables.
Figure!3 shows the interpretation of queries 2a) and
2b) in the SQL-EDDI environment [3]. To assist the
user to appreciate the intimate connection between
the relational query language SQLZERO and
relational algebra, the environment includes the
SQLTE interface that displays the results of
SQLZERO to EDDI translation without carrying out
the evaluation. As has been pointed out by Date and
Darwen, the relationship between standard SQL and
relational algebra is much less satisfactory
[8,9,11,12].
The SQL-EDDI environment exposes the
relationship between variants of SQL and relational
algebra. It also serves to distinguish between design
flaws in SQL and essential features of relational
query languages, such as aggregate operators, that
cannot be directly interpreted within relational
algebra. The characteristics of SQLZERO are
determined by two features: the EDDI evaluation
strategy, and the method of translation. More insight
into how SQL subverts the sound mathematical
foundations offered by EDDI can be gained through
trying to derive an EDDI implementation for standard
SQL by modifying the evaluation and translation
strategies in SQLZERO. For this purpose, it proves
helpful to introduce an interface for controlling the
evaluation of EDDI queries. This interface (“The
Uneddifying Interface”) allows the evaluation
conventions in EDDI to be changed interactively
(see Figure 3). The interface has two functions: it

Figure 3 - The SQL-EDDI environment in use

exposes what deviations from relational theory are
required to implement standard SQL, and it also
shows that such deviations have unpleasant
conceptual and practical consequences.
The Uneddifying Interface allows three aspects of
EDDI evaluation to be adjusted: these reflect the
problematic aspects of the SQL queries 1a), 2a), 2b)
and 3a). Using the radio buttons, the user can switch
between different evaluation conventions,
disallowing or allowing multiple rows, imposing strict
or loose type checking and using natural or
“unnatural” join.
Experimentation with the Uneddifying Interface
shows how subverting the mathematical model in
EDDI complicates the semantics of relational queries,
and leads to violations of the laws of relational
algebra. Further analysis shows that the poor design
of standard SQL also makes it harder for the software
designer to implement the query processing. For
example, when the EDDI interpreter returns
“unnatural” join, the interpretation of the query
?allfruits*apple%name; becomes obscure
because of the hidden and context-dependent
conventions for renaming common attributes. This
problem is compounded in more complicated joins.
To solve this we have to make the renaming
conventions more transparent and use natural join
with appropriate renaming to emulate “unnatural”
join. This shows that changing the evaluation
strategy alone is not sufficient to transform
SQLZERO into standard SQL.

4. DEVELOPMENT OF SQL-EDDI
The SQL-EDDI environment has been constructed
using Empirical Modelling principles and tools.
Space does not permit a detailed discussion to this
approach to system development – for more
information, the reader is referred to [4]. From the
perspective of relational theory, the most significant
feature of Empirical Modelling is its use of principles
for representing state that can be seen as
generalising relational tables and views. State
transitions are effected by redefinitions of variables
that are analogous to the modification of a table or
the introduction of a view.
The application of Empirical Modelling principles
allows the flexible development of open-ended
resources that are specifically targeted at supporting
a particular educational requirement in computer-
assisted learning. This is in contrast to educational
software products that take the form of monolithic
environments whose functionality is carefully
preconceived to admit many different applications,
but are effectively not open to modification by its
users. The model-building approach we have
developed is especially well suited to situations in

which there is a specific focus of interest, but a whole
range of different agents and perspectives must be
recruited on-the-fly as a situation evolves.
The development of the SQL-EDDI environment is a
practical illustration of the above approach. The
specific target here is clarifying the relationship
between standard SQL and relational algebra. The
account of the features of the SQL-EDDI
environment given in the previous sections can also
be construed as an account of its development,
much of which was carried out on-the-fly in parallel
with the teaching of the course to undergraduate
students. The functionality of the current system was
not envisaged at the outset, but emerged
incrementally as the development proceeded. For
instance, in the implementation of standard SQL, it
was not clear in advance that it was inappropriate to
use unnatural join, or that modification of the
translator would be necessary. All the required
changes to the evaluation strategy and the parser:
developing, testing and debugging, are effected by
modifying small groups of definitions followed by
experimentation and interpretation.
As another illustration, the specific educational
objectives can be specialised further to consider
issues such as introducing complementary visual
representations to enable students and tutors to
assess the correctness of queries informally, and
integrating formative and summative evaluation
mechanisms into the database environment. To
achieve this, it is necessary to specialise the
database to a particular application domain. For
example, over the last three years, we have used a
specific data set relating to the scheduling of final
year project orals as the basis for practical exercises
and assessment. We would ideally like to show the
results of database queries such as “list all times on
Friday for which Room 104 is available” by displaying
the corresponding time slots on a timetable grid. By
such specialisation of the data set, we envisage
being able to develop a rich resource of special
purpose visualisation and assessment tools that can
grow opportunistically in response to new teaching
needs. In building these visualisation and
assessment tools, we can take advantage of special
characteristics of the data set as we discover them.
For instance, we shall be able to identify classes of
queries that admit simple direct visualisations that are
well suited for giving experience to novices and for
convenient marking. The openness of the Empirical
Modelling approach to development is crucial for
realising these aims.
With regard to the visualisation of the project oral
timetabling we have previously developed a model
that allows semi-automated timetabling of student
projects [5]. The interface to the model enables the
users to visualise the current state of the timetable.

We have also explored the potential for integrating
assessment into the SQL-EDDI environment. In our
database courses, we have assessed students’
knowledge of SQL and relational algebra through
both practical coursework and pencil and paper
based tests. Tests, individualised to avoid plagiarism,
were generated using the underlying EDEN
environment, based on tables relating to the project
timetabling problem. This approach could be
developed further so that students could interact
with an SQL-EDDI environment during a summative
examination of their practical skills. Further
possibilities include providing a formative
assessment environment where students could
gauge their own understanding through question
and answer sessions with individualised feedback
focused on their areas of weakness. Such an
environment could take advantage of peer
assessment strategies such as are to be found in
OASYS [6].
The challenge is to integrate both the visualisation
and testing environments with the SQL-EDDI
environment. The integration task is simplified by
using definitions to establish dependencies
between components in the environment.

5. FUTURE WORK AND CONCLUSIONS
There is much scope for future work. Possible
extensions to the SQL-EDDI environment include:
• supporting a larger subset of SQL features, such

as more sophisticated data definition, integrity
constraints and support for nulls [9].

• implementation of other relational query
languages such as QUEL.

• an interface for studying the optimisation of
relational database queries.

SQL-EDDI has not yet been formally evaluated, but
Darwen’s lectures on the “Askew Wall” [10] in 2003
seemed to be more fully appreciated by students
who had previously gained practical experience with
the issues through SQL-EDDI than their
predecessors. Another significant feature has been
the way in which final year project students have
integrated relational data models in EDDI with
dependency structures in EDEN to obtain richer data
models than relations alone afford. In conclusion, our
research on SQL-EDDI has demonstrated
interesting connections between Empirical
Modelling and relational data modelling through
which each can be of benefit to the other.

6. REFERENCES
[1] International Organisation for Standardisation

(ISO): Database Language SQL, Document
ISO/IEC 9075, 1999.

[2] The Empirical Modelling Research Group
Website.
http://www.dcs.warwick.ac.uk/modelling .

[3] The SQL-EDDI environment. Online at
http://empublic.dcs.warwick.ac.uk/projects/sqle
ddiWard2003 .

[4] W.M.Beynon, R.Cartwright, P-H.Sun, A.Ward.
Interactive Situation Models for Information
Systems Development. Proceedings of SCI’99
and ISAS’99, Vol. 2, pp 9-16, Orlando, USA,
July 1999.

[5] W.M.Beynon, A.Ward, S.Maad, A.Wong,
S.Rasmequan, S.Russ. The Temposcope: A
Computer Instrument for the Idealist Timetabler.
Proceedings of the 3rd International Conference
on the Practice and Theory of Automated
Timetabling, Constance, Germany, August 16-
18, 2000.

[6] A.Bhalerao, A.Ward. Towards Electronically
Assisted Peer Assessment: A case study. In
Association of Learning Technology Journal
(ALT-J), Vol. 9, No. 1, April 2001.

[7] E.F.Codd. A Relational Model of Data for Large
Shared Data Banks. CACM 13, No.6, 1970.

[8] H.Darwen. The Duplicity of Duplicate Rows. In
C.J.Date (with H.Darwen), Relational Database
Writings 1991-1994. Reading, Mass., Addison-
Wesley, 1995.

[9] H.Darwen. The Nullologist in Relationland. In
C.J.Date (with H.Darwen), Relational Database
Writings 1991-1994. Reading, Mass., Addison-
Wesley, 1995.

[1 0] H.Darwen. The Third Manifesto Lecture
(Formerly entitled The ASKEW Wall). Online at
http://www.hughdarwen.freeola.com/TheThirdM
anifesto.web/TTM-TheAskewWall-printable.pdf

[11] C.J.Date. What’s wrong with SQL? In C.J.Date,
Relational Database Writings 1985-1989.
Reading, Mass., Addison-Wesley, 1990.

[1 2] C.J.Date, H.Darwen. Foundations for Future
Database Systems: The Third Manifesto (2nd
Edition). Addison-Wesley, 2000.

[13]S.J.P.Todd. The Peterlee Relational Test
Vehicle--A System Overview, IBM Systems
Journal 15(4), pp. 285-308, 1976.

