
Empirical Modelling in Support of Constructionist Learning:

A Case Study from Relational Database Theory

Meurig Beynon, Antony Harfield

Department of Computer Science, University of Warwick, Coventry CV4 7AL

{wmb,ant}@dcs.warwick.ac.uk

Abstract

Conventional programming paradigms have

limitations where support for constructionist learning

is concerned. This paper illustrates the merits of an

alternative approach to giving support for

constructionist learning, based on the principles of

Empirical Modelling (EM), with reference to an

algorithm from database theory. Effective model-

building for constructionist learning has to support

activities relating to three roles: that of student,

teacher and developer. This paper aims to show that

EM brings far greater conceptual unity to interactions

in these roles than is typically found in conventional

approaches to educational software development.

1. Introduction

Constructionist computer-assisted learning can be

seen as ideally unifying three roles: that of the student,

the teacher and the developer. The learner first

explores in ignorance and confusion in the role of a

student, then identifies concepts and objectives for

model-building to support and direct their exploration,

then constructs appropriate models with which to

repeat a similar cycle of interaction (see Figure 1a). As

discussed in [1], with conventional programming

techniques, each role corresponds to a radically

different perspective on a program, corresponding to its

use, design and implementation. This paper illustrates

an alternative scenario, where the constructed model

acts as a common construal to support concurrent

interaction in the three roles (see Figure 1b).

2. An EM construal for the TLJ algorithm

The Testing_Lossless_Joins (TLJ) algorithm, as

specified in Ullman [3] (see Algorithm 7.2 on p227), is

a standard component of the relational database theory.

The essential principles of the algorithm can be

inferred from the following brief informal description.

The first stage of the algorithm is to set up an array in

which each entry is a symbolic element of the form ai

or bij, where i (respectively j) is the index of the row

(respectively column) in which the element is located,

and an aj appears in location (i,j) if and only if the

attribute associated with the j-th column appears in the

i-th subscheme. The algorithm then proceeds step-by-

step by taking account of the functional dependencies

(FDs) in turn in cyclic order. At each step, when a

particular FD of the form X→Y is being considered,

the array is processed so that if any two rows have

identical entries in the columns associated with all the

attributes in X, they are modified so as to agree on all

attributes in Y. In this process of modification, bij

entries are replaced by aj entries wherever possible, and

agreement is otherwise established by assigning the

same indices to all the relevant bij entries. The

algorithm terminates when no further modification of

the array results from the application of any of the

given FDs, at which point the join is declared lossless

if and only if there is a row comprised of aj entries.

An EM construal is a computer-based model that

embodies the patterns of observation, dependency and

agency that are observed in its referent [1]. A detailed

account of the principles and tools used in developing

construals in EM is beyond the scope of this paper (cf.

[2] for more details), but the essential ideas can be

illustrated with reference to our chosen case-study.

For the TLJ algorithm, the primary observables are

the contents and attributes of the table that is generated

in executing the algorithm and the associated FDs.

Both teacher and student come to understand the

algorithm in terms of just these observables; building a

Figure 1: Roles in constructionist learning

(a) (b)

construal to embody these observables, and the patterns

of dependency and agency to which they are subject, is

also a most appropriate way for the developer to

provide support for the manual, semi-automated or

fully automated interaction that must accompany the

learning of the algorithm.

Learning the TLJ algorithm is linked to a pattern of

observation that applies at each step. The learner

consults the current state of the table with a specific FD

X→S in mind, observes the pattern of tuples that arises

in the columns associated with the left-hand side X of

the FD to detect where there are duplicates, then

observes how this pattern applies to the column

associated with the right-hand side S of the FD. The

core step of the algorithm is the substitution of the

resulting transformation of the column associated with

S for the original column.

For a particular table and FD, the above ingredients

of the core pattern of observation can be displayed

pictorially as in Figure 2. The arrows in this figure

represent dependencies between observables,

expressing the way that a given state of the TLJ table,

and a given FD determines the set of columns LHS and

a column RHS, and how the duplicate rows in the set of

columns LHS then determine the updated entries in the

column RHS. In the modelling environment used to

develop the construal, these dependencies can be

directly specified and are automatically maintained.

This makes it possible to explore, in an experimental

fashion, the way in which the current instance of this

pattern of observation is affected by changing the

current state of the TLJ table, or the current FD.

3. Developing and deploying the construal

The exploratory activity that surrounds the

identification of observables and dependencies is a

core activity that is central to the interests of the

student, the teacher and the developer. As Figure 2

illustrates, the contexts for observation with which the

student must become familiar in learning the TLJ

algorithm are rich and subtle: they involve moving

from global observation of the entire table to localised

observation of the entries in specific rows and columns.

It is also significant that the activities denoted by the

arrows in Figure 2 are best conceived as mental

operations on the part of the student, preparatory to the

action of updating the table. From a teacher's

perspective, each of the arrows can be interpreted as a

link in a chain of observation involved in executing a

step of the TLJ algorithm. As such, it can be the subject

of an exercise: for instance, identifying the columns

LHS and RHS, given a table and a FD. Decomposing

the pattern of observation into a chain of simpler

observations also has potential value as a diagnostic

tool: for instance, helping the teacher to detect where a

student understands the updating mechanism correctly,

but is mistaken in their interpretation of a FD relation.

From the perspective of this paper, the relevance of

Figure 2 for the developer has particular interest. There

is a very direct correspondence between Figure 2 and

the EM construal for the TLJ that was first constructed

as an open interactive environment by the first author,

and subsequently extended by the second to provide

specific interfaces to the construal. This

correspondence is best appreciated by interacting with

the dynamic script development environment that is

supported by the EM tool used in this development: the

tkeden interpreter, but it is to some extent apparent

from the relationship between Figure 2 and Listing 1.

Just as the pattern of observation depicted in Figure 2

is the core of the TLJ algorithm, so the script of five

definitions linking observables and dependencies in

Listing 1 is the core of the TLJ construal. The names of

the observables in Listing 1 have been made more

expressive, and the code for operators (such as

index_duplicated, and makelistcol) has

been omitted, but the definitions are essentially as they

Figure 2: The TLJ pattern of observation

appear in the tkeden source. Since our aim is to

illustrate the convergence of viewpoints of student,

teacher and developer suggested by Figure 1b, a brief

explanation of how this script was developed, and

relates to the pattern of observation in Figure 2, is

appropriate.

As is evident by inspection, the values of all the

observables in the script in Listing 1 are determined

from the index of the FD that is currently of interest

(current_FD) and the current contents of the TLJ

table (current_table). The first two definitions

determine the contents of the columns that correspond

to the LHS and RHS of the current FD respectively.

The third definition identifies the pattern of duplicate

rows in the columns in the LHS of the FD; the fourth

expresses the way in which the new contents of the

RHS column is to be updated by consulting the pattern

of duplicate rows. The final definition expresses the

relationship between the original value of the table and

the value that it takes after the FD has been processed.

These definitions correspond closely to the links in the

pattern of observation in Figure 2: in establishing the

definitions using the tkeden interpreter, the operators

introduced to specify the relationship associated with

each link are tested in isolation by supplying different

test values for the parameters in much the same way

that the student might confirm that they have

understood each observational link in mastering the

algorithm. Though the development otherwise has

more of the characteristic flavour of conventional

programming, it remains anchored in this way to the

learning domain. The missing elements of the tkeden

source are the specifications of the operators

themselves, which take the form of rather

straightforward procedural code to compute an output

from an input without side-effect. The script illustrates

other features that are of interest from a computational

perspective. These include:

• the re-use and adaptation of standard operators

(such as the operator project, borrowed from

the relational database extension of tkeden).

• the use of definitions to maintain dependencies

between different modes of observation that are a

common concern for traditional programmers,

namely those that are associated with two or more

data structures for a particular application (such as

the conversion function makelistcol).

For the experienced developer using tkeden, the

model-building task is greatly simplified by a

combination of these three techniques: programming of

relatively simple functions without side-effects; re-use

of existing functions and scripts; and the use of

definitions to maintain many different consistent

concurrent representations of a given family of

observables.

4. Conclusion

The difficulty of unifying the roles of student,

teacher and developer is one of the obstacles to

constructionist computer-assisted learning. In activities

such as developing micro-worlds for children current

development techniques do not enable the learners to

build the models. Our case study is of interest because

it proves that in principle there can be a high degree of

synergy between interactions that are demanded of the

learner in the roles of student, teacher and developer.

For the target group of learners (viz. computer science

students following an advanced module in database

theory), there is no great conceptual or practically

significant distinction between the kind of activity

involved in learning about the lossless join algorithm

and that involved in constructing the associated EM

construal. It remains to be seen to what extent, subject

to appropriate tool refinement and suitable training in

the application of EM principles and tools, the same

synergy between learning and model-building can be

demonstrated in other learning contexts.

5. References

[1] W.M.Beynon, C.Roe, Computer Support for

Constructionism in Context, In Proceedings of the 4
th

IEEE International Conference on Advanced Learning

Technologies (ICALT), 2004, .216-220.

[2] W.M.Beynon, A.Harfield, Empirical Modelling in

support of constructionism: a case study, CS-RR-412,

University of Warwick, April 2005

[3] J.D.Ullman, Principles of Database Systems,

Computer Science Press, 1982.

project_table_LHS_FD is project(current_table, makestrlist(FDs[current_FD][1]));

project_table_RHS_FD is project(current_table, [FDs[current_FD][2]]);

pattern_duplicate_rows is index_duplicated(tail(project_table_LHS_FD));

newcol is transformcol(makelistcol(project_table_RHS_FD), pattern_duplicate_rows);

newtable is apply_current_FD_current_table(current_table, newcol);

Listing 1: Observables and dependencies in the TLJ construal

