

do NOT use any Footer – it will be added by us later

Dependency by definition in Imagine-d Logo:
applications and implications

Chris Roe, croe@dcs.warwick.ac.uk
Centre for New Technologies Research in Education, The University of Warwick, Coventry, UK

Meurig Beynon, wmb@dcs.warwick.ac.uk
Dept of Computer Science, The University of Warwick, Coventry, UK

Abstract

Dependency is a concept whose importance for learning is strongly suggested by – amongst
other things – the wide range of applications that spreadsheets have found in education. Given
the prominent role that Logo has played in research into computer support for constructionist
learning, there is a natural motivation for studying the relationship between spreadsheets and
Logo programming. The technical issues surrounding the implementation of dependency in
Imagine Logo (Kalas & Blaho, 2000) have been addressed in previous work of Peter Tomcsanyi
(2003). Tomcsanyi's research gives useful insight to the Imagine Logo programmer, but does not
indicate how dependency might be exploited by end-users the high-level way that it has been in
spreadsheets. This paper introduces a prototype extension of Imagine Logo, informally called
Imagine-d Logo, that allows dependencies to be specified using spreadsheet-style definitions.

 Figure 1. A slide from a presentation developed using Roe’s Imagine-d Logo prototype

The current scope and potential for Imagine-d Logo are discussed and illustrated with reference
to practical issues encountered in using Imagine Logo to program a microworld, to implement
spreadsheets and to give computer support for presentations. The broader implications of
introducing dependency by definition into a Logo environment in this manner are briefly
discussed from the perspectives of education and computing.

Keywords

Imagine Logo, dependency, spreadsheets, Empirical Modelling, programming paradigms

EuroLogo 2007 header – do not use it, it will be added by us

do NOT use any Footer – it will be added by us later

Introduction

Spreadsheets and Logo – in all its rich and numerous variants – have been amongst the most
influential applications where computing support for education is concerned. By way of
background, Baker and Sugden (2003) describes the wide range of educational applications for
spreadsheets, and What is Logo? (Logo Foundation) gives a good account of the impact of Logo
on education. It is natural to seek to integrate these two approaches to educational technology.
Such an integration raises challenging issues from several different perspectives:

� Practical programming: What motivating advantages might there be in introducing
spreadsheet principles into Logo and how is this best accomplished technically?

� Pedagogy: What is the significance of spreadsheets and Logo as vehicles for learning, and
what is the relationship between them?

� Computing science: How can we make unified sense of the two different computational
paradigms represented in spreadsheets and Logo?

Our initial and primary emphasis here is on the practical programming perspective. We introduce
a prototype extension of Imagine Logo, developed by the first author, that was motivated by
issues encountered in programming microworlds based on the throwing events of the Olympic
Games (Roe et al, 2005). This prototype - to be referred to as Imagine-d Logo - builds on
previous work by Tomcsanyi (2003), but more closely resembles Geomland (Sendov & Dicheva,
1988) in its exploitation of dependency. Another implicit influence stems from both authors’ work
on the principles and tools of Empirical Modelling [EM], a general approach to computing that
can be viewed as rooted upon a methodology for modelling with dependency (EM website;
Beynon, 2007). The later sections of the paper discuss the Imagine-d Logo prototype from the
broader pedagogical and computational perspectives associated with EM thinking, and conclude
by considering the potential implications for the future development of Logo-like languages.

Adding spreadsheet-style capabilities to Imagine Logo

The spreadsheet is the archetypal example of an application that exploits dependency
maintenance, the mechanism whereby changing one value propagates changes to other values
in a predictable way. The idea of dependency is often informally invoked by programmers in a
much more general context. In implementing object dependencies in Imagine Logo, Tomcsanyi
(2003) is concerned with quite general situations in which an object's attributes depend on the
attributes of another.

Tomcsanyi's approach to implementing dependencies within an object-oriented programming
framework is similar in spirit to that of Perry (2001). Dependencies are introduced by the
programmer through embellishing the underlying classes in ways that demand considerable
technical skill. By contrast, making computer models using spreadsheets is an activity that can
be carried out by non-specialists, and can been viewed as a form of end-user programming (see
e.g. Nardi, 1993). In order to introduce dependency into Imagine Logo in a way that gives similar
scope for the non-expert programmer, certain key requirements must be met. The programmer:

� should not be concerned with the way in which the underlying system maintains the
dependencies between objects in the program;

� should be able to ascertain the definition of an attribute/object/variable by inspection.

To achieve the kind of expressive power that Tomcsanyi (2003) realises in his implementation of
object-dependencies, it is also desirable to support a wider range of dependency relations than
is supported by a traditional spreadsheet. For instance, whereas the spreadsheet is best suited
to maintaining scalar relationships recorded in a tabular format, it is natural to consider
maintaining relationships between geometric objects in the Imagine Logo environment. By way
of illustration, Figure 2 displays what Tomcsanyi (2003) identifies as "a kind of canonical
construction of dynamic geometry" - a triangle together with the common point of intersection of
the perpendiculars dropped from its vertices onto the opposite side.

EuroLogo 2007 header – do not use it, it will be added by us

do NOT use any Footer – it will be added by us later

 Figure 2. A simple dynamic geometry construction

In this construction, the geometric relationships are maintained by dependency when the
position of any of the red vertices p1, p3 and p4 is changed.

Neither of the above requirements is met in Tomcsanyi's implementation of dependency in
Imagine Logo. The Imagine-d Logo prototype addresses these requirements by making it
possible to specify and revise the dependencies between attributes of objects in much the same
way that this is done in a spreadsheet: by formulating and editing explicit definitions for
attributes. This has the advantage of making dependency relationships much easier to
understand and to trace.

From a technical programming perspective, Roe's extension of Imagine Logo is similar to that
described by Tomcsanyi (2003). The same underlying principles are used to maintain
dependency, but the details of the implementation are hidden from the programmer. This
potentially means that end-user programmers can make effective use of dependency. It also
promotes qualities that can be found in modelling with spreadsheets, making models simpler to
specify, quicker to build, and more readily open to extension.

A dependency layer for Imagine Logo

The Imagine-d Logo prototype was developed without access to the Imagine Logo source code:
it accordingly adds a dependency layer at the dialogue-box level to Imagine Logo. This layer
supplies a 'front-end' in which attributes can be given values using definitions that can be
specified and edited dynamically in much the same way as the cells of spreadsheet. This
involves developing a language within which to specify dependencies between many different
kinds of attributes – ideally, a language sufficiently rich to support all aspects of programming
activity afforded by Imagine Logo. A further important consideration is that the extension of the
interface should respect the look and feel of the Imagine Logo programming environment.

The full technical details of the implementation are beyond the scope of this paper. The features
of the prototype will be motivated and illustrated with reference to practical programming issues
that were encountered in the process of building the Olympic Games microworlds.

A simple example of the kind of dependency to be specified is that between the positions of two
turtles that is discussed in Tomcsanyi (2003). The relationship between the position of the cat
and the mouse in Figure 1 illustrates the general idea. In the pane on the right-hand side of this
figure dragging movements of the cat result in left-right movements of the mouse that maintain a
fixed horizontal distance between the two. The way in which the model-builder specifies this
dependency differs between the top and bottom cat-mouse pairs, though the effect is the same.

The specification of the dependency between the positions of the cat and the mouse in the top
cat-mouse pair in Figure 1 typifies the way in which a relationship between attributes is
expressed in an Imagine Logo program. As displayed in Figure 3, the specification takes the

EuroLogo 2007 header – do not use it, it will be added by us

do NOT use any Footer – it will be added by us later

form of a triggered action – located in the Events field – that is invoked whenever the cat (here
implemented by the turtle x1) is dragged about the screen. The effect of this triggered action is
to update the x coordinate of the mouse (here represented by the turtle x2).

 Figure 3. A triggered action associated with “dragging the cat”

In contrast, the specification of the dependency between the positions of the cat and the mouse
in the bottom cat-mouse pair in Figure 1 exploits a spreadsheet-style definition feature that is
implemented in Imagine-d Logo. For this purpose, the Basics field in the specification for the
mouse at the bottom right (here implemented by the turtle x4) is adapted – without any
significant change to its layout and format – as displayed in Figure 4. The x and y coordinates of
the turtle x4 can be specified in this context not only as explicit values but by definitions, so that
the x coordinate of turtle x4 is defined to be the x coordinate of turtle x3 incremented by a
constant number of pixels. This definition, like a spreadsheet definition, can be directly edited by
the model-builder. Figure 1 shows the result of changing the value of the constant increment
from 150 to 100 pixels.

 Figure 4. Defining the x position of the mouse via the modified interface

The Imagine-d Logo prototype introduces a conceptually new feature into the programming
environment. Where the event-driven paradigm of Imagine Logo requires that relationships are

EuroLogo 2007 header – do not use it, it will be added by us

do NOT use any Footer – it will be added by us later

specified by means of triggered actions, the definition of an attribute does not readily admit a
simple interpretation as a state-changing action. The implications of this are complex and subtle.
It is significant for instance, that defining the x coordinate of turtle x4 with reference to the
coordinate of turtle x3 ensures that the value of x4'xcor changes whenever the value of x3'xcor
changes, no matter what the nature of the agency that is operating. This contrasts with the
discriminating way in which a position update may be associated with a specific event, as in
dragging the cat around the screen (cf. Figure 3).

In general, it may be said that definitions afford clearer and more explicit descriptions of
relationships though – a superficial analysis suggests – at the expense of some operational
simplification. Event-driven sequences of actions can support cyclic patterns of update for
instance, whereas the value of an attribute cannot be meaningfully defined in terms of itself. The
potential benefits of expressing a dependency through a definition are best appreciated where
more complicated patterns of dependency are present. Where a value is defined in terms of
many different values, each of which is subject to change through a range of different agencies,
the task of analysing the implicit relationships amongst families of attributes can become
exceedingly complex, and specifying and maintaining the program structure becomes
accordingly more difficult.

Further illustrations

Some additional examples serve to illustrate some of the key issues regarding the introduction of
spreadsheet-style definitions to the Imagine Logo environment.

The distinction between the event-driven and definition-based approaches to specifying
dependencies is relevant even to simple scenarios, such as maintaining the relationship
between the value in a box and the position of a slider (cf. Figure 5). The principal advantage of
using a definition is that the model-builder need only inspect the specification of the box object in
order to determine why it has its current value. This may not pose a serious problem where the
dependency that determines the value in the box relates to the position of a single slider and is
kept up to date by a single triggered action. It can become much more problematic when the
dependency relations are complex.

 Figure 5. Alternative ways to link the value of a box to a slider

Figure 6 shows a control mechanism drawn from the Shotput microworld (Roe et al, 2005). In
this figure, the angle of elevation of the green arrow is determined by the lower slider, and the
angle of elevation of the purple arrow relative to the green arrow by the upper slider. The textbox
values and the headings of the turtles are then dependent on a combination of the positions of
the two sliders. Within the Imagine-d Logo prototype, the heading for the purple arrow can be
defined directly by the formula “angleslider’value + attackslider’value”. When the dependency is
implemented in the traditional way, this formula appears on the right hand side of assignments in
two separate triggering events associated with the two sliders. To understand how the heading
of the purple arrow is determined the model-builder has to search for the events that might have

EuroLogo 2007 header – do not use it, it will be added by us

do NOT use any Footer – it will be added by us later

an impact upon them. If it becomes necessary to update the relationship, this formula has to be
updated in identical ways in two places.

 Figure 6. A more complex dependency relationship involving two sliders

Another feature of the Shotput microworld in which complex dependencies are involved is the
dynamic graph used to display the x and y coordinates of the shotput trajectory. Because of the
wide variety of possible trajectories, it is important to be able to adjust the range of values
displayed on the axes, and the granularity of the xy-grid dynamically (see Figure 7). This
involves setting up dependencies in which multiple turtles and several textboxes are involved. In
this example, dragging the purple point triggers the recalculation of the maximum x and y
coordinates that need to be displayed. These positions of the grid lines are dependent on these
maximum values, and grid lines are only displayed if they are within the range of the graph. The
dependency relationships required to specify the positions and visibility of grid lines are here
expressed by definitions.

 Figure 7. Dynamic graphs implemented using dependencies expressed by definitions

A very rich family of relationships can be programmed by introducing generic dependency
maintenance to the Imagine Logo environment. This is evident from the range of applications
that can be readily implemented using the Imagine-d Logo prototype. Figure 8 displays another
slide from the same presentation from which Figure 1 was drawn. Dependencies framed as
definitions have been used in this presentation in several ways:

� To implement a generalised spreadsheet: A simple spreadsheet has been embedded
within the displayed slide. In addition to the normal dependencies between values, there is
scope to make the presentation of data depend on its content, to exploit slider positions as
if they were cell values and to attach names to "floating cells" that do not have to be located
within the grid.

� To manage the screen layout: The dimensions, organisation and attributes of windows on
the screen can be determined using dependency relationships. The position of bullets in
the text can be determined relative to a reference point.

EuroLogo 2007 header – do not use it, it will be added by us

do NOT use any Footer – it will be added by us later

� To animate the presentation: By dragging the dog icon at the foot of the slide from left to
right across the screen different right hand panes can be slotted into the slide to illustrate
each of the bullet points in turn. This animation effect is obtained by creating a series of
frames that display a different variant of the dog icon according to its horizontal position,
and defining the choice and location of the right hand pane in terms of this position.

 Figure 8. Illustrating dependency in specifying slide content, layout and animation

Discussion

Introducing dependency-by-definition to Imagine Logo has a significant practical impact on
model construction. In implementing features such as dynamic graphs, the convenience of being
able to formulate dependencies as definitions without needing to explicitly set up the underlying
maintenance mechanisms is liberating, and promotes the speed and flexibility of development
that is associated with the use of spreadsheets. Extending Imagine Logo in this way seems to be
particularly topical when we consider the prominent role that dependency plays in many
successful educational products, such as Cabri Geometry and Visual Fractions. However, in this
context, it is worth noting (Kalas, personal communication, 2005) that the designers of Imagine
Logo have long been aware of the expressive qualities of dependencies, yet have been
uncertain about how these can be effectively and coherently exploited. This is consistent with
the fact that understanding the relationship between modelling with dependency and
programming has been a central theme of the Empirical Modelling project (EM Web) since its
inception more than twenty years ago. Over this period, research on this theme has generated:

� practical tools and models to demonstrate that modelling purely with definitions in principle
has expressive power and range encompassing what has been illustrated using Imagine-d
Logo above (see for instance the presentation graphicspresHarfield2007 (EM Web), in

EuroLogo 2007 header – do not use it, it will be added by us

do NOT use any Footer – it will be added by us later

which definitions support geometric modelling and interface management, and implement
notations for formulating definitions that are themselves defined within the modelling tool).

� a methodology for modelling with dependency that is associated with a radical reappraisal
of thinking about computing (Beynon, 2007; King, 2007).

Relevant issues can be exposed by reviewing “programming with dependency” from each of the
three perspectives identified in the introduction: programming practice, pedagogy, and
computing science.

Programming practice

It is a conceptual mistake to suppose that adding features to a programming language that
contribute to ease-of-development and ease-of-use necessarily thereby enhances its value as a
vehicle for constructivist learning. Learning and 'optimisation to achieve a specific programming
goal' are activities that engage the mind in quite different ways, and develop in entirely divergent
directions. In learning, it is vital to pay as much attention to the environment as possible and to
explore every discrepancy between expectation and observation, whereas optimisation involves
specialising the task and engineering the context so as to minimise the information we need to
know about the environment and eliminate all observation and action that can be made
superfluous. The distinction drawn between virtuosity and musicality in performance is one
indication that the speed with which we can accomplish specific tasks is not a good measure of
how much we have learnt about a domain.

It is also well-recognised that adding features to a programming environment does not
necessarily lead to a coherent conceptual enhancement. The challenge to conceptual integrity in
Imagine-d Logo can be gauged from comparing the code developed by Tomcsanyi (2003) to
implement the dynamic geometry depicted in Figure 2 with the following listing, which specifies
the same configuration using the EDEN interpreter – the principal tool for Empirical Modelling:

line AB, BC, AC

point A, B, C

AB=[A,B] // the line joining points A and B

BC=[B,C]

AC=[C,A]

A = {20, 180} // the point p4

B = {260, 490} // the point p1

C = {285, 50} // the point p3

line perpA, perpB, perpC

perpC = perpend(C, AB) // the perpendicular dropped from C on to AB

perpB = perpend(B, AC)

perpA = perpend(A, BC)

point D

D = intersect(perpA, perpB)

In both EDEN and the Imagine-d Logo prototype, the programmer can either specify the explicit
procedural actions that maintain the geometric dependencies in Figure 2, or embody them in a
set of definitions. But by what criterion should one approach be adopted rather than the other,
and is the distinction between these two approaches more than a matter of individual taste?

Pedagogy

In comparing Logo with Boxer, diSessa (1997) stresses the importance of criteria other than
abstract expressive power in relation to learning. His concern is as much with the physical form
that programs take as with the underlying programming constructs. This is consistent with his
observation (diSessa, 2000) that "make it experiential is perhaps the single most powerful
educational heuristic I know". diSessa also seeks to challenge the assumption that educational
software "comes in large units that are so slick and complex as to require many person-years of
effort to create them, usually by highly technically competent software engineers".

EuroLogo 2007 header – do not use it, it will be added by us

do NOT use any Footer – it will be added by us later

 Figure 9. The tick model that defines uniform motion (diSessa, 2000)

diSessa's "tick model" of uniform motion, as depicted in Figure 9, reflects his desire to shift the
emphasis from programs as complex bodies of code for professional analysis towards visual
artefacts that are intelligible to the learner. It also highlights his concern for a close
correspondence between the interpretation of the program in the domain and the components of
a visual representation. Similar concerns for experiential rather than symbolic representations of
programs were influential in the design of Imagine Logo (Kalas et al, 2000).

Beynon and Roe (2006) raise a deeper concern about the suitability of programming languages
as a means to realise constructionist ideals. The traditional and fundamental understanding of
what a program is casts the programmer in the role of a specialist with recondite knowledge
whose job is to ensure that a program carries out specific functional tasks that conform to explicit
user requirements. Under this interpretation, neither the programmer nor the user interacts with
the program as an artefact in a way that is well-matched to the agenda of the active learner. The
kind of conflation of pupil, teacher, developer roles that constructionist learning ideally demands
is much better mapped on to the collaborative moulding of a spreadsheet model to situation by
human agents with different levels of domain knowledge and computational literacy discussed
by Nardi (1993). Empirical Modelling endorses this idea, privileging the use of sets of definitions
to express the latent dependency in situations over the use of conventional procedural
constructs and data abstractions to describe processes and behaviours.

Computing Science

The besetting problems of large-scale complex software development are closely connected
with the need to develop domain knowledge in an incremental and systematic fashion whilst
making computer models in a constructivist spirit. This highlights a strong connection between
pedagogical aspirations for software and fundamental concerns in computing science. Empirical
Modelling identifies the primitive learning that must underpin software development with a
particular way of gaining familiarity and understanding in a domain. This activity has a primary
orientation closer to Papert’s bricolage than conventional programming (cf. Roe (2003), pages
109-116), in that its emphasis is upon modelling concrete situations rather than prescribing
abstract behaviours. As discussed in Beynon (2007), this is achieved through making artefacts
that are appropriately characterised as construals rather than programs. A construal offers
interactive experience to the model-maker in which empirically validated patterns of observation,
dependency and agency in the domain are faithfully reflected.

The notion of giving computer-support to making construals fits in well with diSessa's conception
of material intelligence as "an intelligence achieved cooperatively with external materials". The
close correspondence between the components of the Boxer program in Figure 9 and their
physical counterparts in the domain is well-matched to an analysis of domain observables,
dependencies and agents. Generalising such a correspondence to typical computer programs is
altogether more problematic. The fundamental historical rationale for the program concept has
been that of automating human agency out-of-the-loop. The sharp mathematically defined
abstractions that pervade the theory of programming are its legacy. The difficulty of maintaining
a credible correspondence between objects as experienced in the domain and objects as they
emerge in the design of programs is but one indication of the tension between automated action
and reflective thinking. It is clear for instance that the object-oriented programming activity
associated with implementing the dynamic geometry of Figure 6 in Tomcsanyi (2003) does not
admit the same direct interpretation in geometric terms as the family of EDEN definitions above.

EuroLogo 2007 header – do not use it, it will be added by us

do NOT use any Footer – it will be added by us later

Conclusion

The above discussion highlights the crucial importance in constructionist use of the computer of
the experiential aspects of the modeller’s interaction. For learning to be effective, there must be
a close and – in some sense – directly perceptible relationship between situations, objects and
concepts in the domain and the interactive experience of the model-making. In establishing this
relationship, what is – or comes to be – hidden and implicit in the interaction is quite as important
as what is explicit. Arguably, much learning is associated with acquiring such familiarity with
relationships between significant observables that the procedures for identifying these
relationships that at first must be laboriously followed become routine and internalised. But
where the polished products of professional software development strive to anticipate what kind
of functionality and familiarisation is appropriate and attainable and optimise the user’s
interaction accordingly, the essence of educational software is that it should expose the raw
activities that are associated with identifying functionality and gaining familiarity with procedures.

Dependencies are archetypal examples of relationships that underpin learning. The merits of
spreadsheets for educational applications can plausibly be attributed to the fact that – unlike
conventional programs – they carry out dependency maintenance activity in a way that is both
hidden and intentionally uninterpreted. Programming environments such as Imagine-d Logo and
EDEN in principle support similar sense-making conventions that allow some “program code” to
be explicitly interpreted and some to be as-if-internalised by the model-maker. The problematic
issue is that such a policy of blended interpretation and uninterpretation is not consistent with the
orthodox abstract conception of computational semantics.

Modern variants of Logo, such as Imagine Logo and Boxer, have taken significant steps towards
the concretisation that is essential in supporting a new practice of computing better attuned to
the demands of constructionist learning. The sense-making theories needed to enfranchise such
practice and to promote its mature use have yet to be identified. As Albirini, citing Gärdenfors
and Johansson, remarks: “educational technology still lacks a unifying theory of learning that
would serve as a foundation for its use in the classroom" (Albirini, 2007). The motivating thesis
behind Empirical Modelling is that such a theory of learning has to be developed in conjunction
with a radically new conception of computing (Beynon, 2007).

As diSessa’s “tick model” of uniform motion illustrates (see Figure 9), there are contexts in which
there is an excellent match between experience of a domain and of its representation in a
computer-based artefact. It is evident that the quality of the “tick model” is linked to the fact that
the “turtle” metaphor for change is ideally suited to representing the dynamics of physical motion
and time. One of the problematic aspects of our current conception of computing is that the
professional programmer aspires to a world-view that is equally well-attuned to the very same
turtle metaphor. Under this view, software should ideally fit into a world where the processes of
change are effected through the continuous action of tamed agents operating under the stable
gaze of a benign objective external observer. In this world, constructing software is uncovering
the theory that governs the mind as machine and all change as ultimately explicable with
reference to eternal absolute physical laws.

Papert’s vision for constructionist learning is not well-served by this limited understanding of
computation. Such an objectified conception of change needs to make room for an altogether
wilder perception of the perspectives and vectors that are associated with learning: their
subjectivity, potential incoherence, and the absence of well-rehearsed and practiced trajectories.
The primary emphasis in computing for this purpose is not on processes and behaviours, but on
situations in which human interpretation operates in flux, uncertainty and potential confusion,
and on construals rather than programs.

The above reflections suggest two different ways in which the Imagine-d Logo prototype might
contribute to future research. With a sufficiently robust and comprehensive implementation, the
dependency front-end could become a standard feature of the Imagine Logo environment, to be
used in a discretionary manner as users see fit. The examples in this paper have illustrated the
potential for using such a front-end in several different ways: to link the contents of a screen

EuroLogo 2007 header – do not use it, it will be added by us

do NOT use any Footer – it will be added by us later

display to internal values, to set up dependencies between turtle positions, or to define simple
dynamic geometry configurations. There is scope for school-based empirical testing to explore
the merits of such a mixed-paradigm approach. A more radical research direction would involve
trying to blend the fine qualities of tools such as Imagine Logo and Boxer where accessibility is
concerned with existing Empirical Modelling tools such as the EDEN interpreter (as discussed in
King, 2007). The extensive Empirical Modelling project archive (EM web) already demonstrates
proof-of-concept for dependency-by-definition in a wide range of applications, but as yet has had
little exposure where users without specialist computer science knowledge are concerned. Given
the Jamesian philosophical stance of Empirical Modelling, a better metaphor for mental activity
in that context – rather than a turtle in motion – might be that proposed by Naur (2001): an
octopus jumping in a pile of rags.

References

Albirini, A. (2007) The Crisis in Educational Technology, and the Prospect of Reinventing
Education, Educational Technology & Society. 10(1), 227-236

Baker, J.E. & Sugden, S.J. (2003) Spreadsheets in Education - the First 25 Years. e-Journal:
Spreadsheets in Education 1(1): 18-43

Beynon, M. (2007). Computing technology for learning - in need of a radical new conception.
Educational Technology & Society. 10(1), 94-106

Beynon, W.M., Roe, C.P. (2006) Enriching Computer Support for Constructionism. In Alkhalifa,
E. (ed.) Cognitively Informed Systems, 209-233

Cabri geometry: http://www.cabri.com/v2/pages/en/index.php (27th March 2007)

diSessa, A.A. (1997) Twenty reasons why you should use Boxer (instead of Logo) In M.
Turcsányi-Szabó (Ed.), Learning & Exploring with Logo: Proceedings of the Sixth European
Logo Conference. Budapest Hungary, 7-27

diSessa, A.A. (2000) Changing Minds: Computers, Learning and Literacy. Boston: MIT Press

EM Web: http://www.dcs.warwick.ac.uk/modelling (28th March 2007)

Kalas, I. & Blaho, A. (2000) Imagine…New generation of Logo: Programmable pictures. In
Proceedings of WCC2000, 427-430

King, K. (2007). Uncovering Empirical Modelling, MSc, Computer Science, Warwick University

Logo Foundation. What is Logo? http://el.media.mit.edu/logo-foundation/logo/index.html (25th
March 2007)

Nardi, B. A. (1993). A small matter of programming. MIT Press

Naur, P. (2001) Anti-philosophical Dictionary. naur.com publishing

Perry, M. (2001) Automate Dependency Tracking, Parts 1, 2 & 3, JavaWorld.com, Aug-Oct
2001, http://www.javaworld.com/javaworld/jw-08-2001/jw-0817-automatic.html (26th March 2007)

Roe, C.P. (2003). Computers for Learning: An Empirical Modelling perspective. PhD thesis,
Computer Science, The University of Warwick

Roe, C.P., Pratt, D., Jones, I. (2005) Putting the learning back into e-learning. In Proceedings of
CERME4, Sant Felix de Guixols, Spain

Sendov B., Dicheva D. (1988). Mathematics Laboratory in Logo Style, In Fr. Lovis & E. Tagg
(eds.), Computers in Education, IFIP, ECCE'88, North Holland, 213-217

Tomcsanyi, P. (2003) Implementing object dependencies in Imagine Logo, In Proceedings of
EuroLogo 2003, 27-30 August, Porto, Portugal

Visual Fractions: http://www.logo.com/cat/view/logotron-visual-fractions.html (27th March 2007)

