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Abstract
Flexible modelling tools are needed to address the demands of
modern software development. Historically, software development
was concerned with the classical computer as the sole computa-
tional agent. Here the environment and problem are both well un-
derstood and so the emphasis is on abstract specification. There
is, however, an increasing awareness of the central importance of
sense-making activities throughout the software lifecycle. Empiri-
cal Modelling (EM) provides a broad conceptual framework within
which to approach software development of this kind. We briefly
discuss our progress towards developing tools that enable this ini-
tial sense-making activity and discuss how they could be utilised
for software development. We also outline our vision of how soft-
ware development could be radically altered by considering EM
principles.

1. Introduction
The term “modelling” has exceptionally rich connotations. In rela-
tion to software development, it can refer to activities in all aspects
of the traditional life cycle. This is illustrated in UML, where there
are ingredients that relate specifically to modelling processes to be
implemented by programs, and others to the structure and config-
uration of the computational agents to be programmed. Different
emphases in modelling activity may be appropriate according to
the application: whether we are concerned with 1-person program-
ming, or reactive systems [9], whether our system development is
an exercise in routine or radical design [10], whether the solution
is designed by an individual or collaboratively.

Flexible modelling tools are needed to address the diverse vari-
eties of modelling activity that modern software development en-
tails. To put the research outlined in this position paper in perspec-
tive, it is helpful to distinguish different varieties of modelling that
are represented in software development in general. In broad terms,
this modelling activity can be classified according to different states
of knowledge about the domain in which the software system is
being developed. In framing this classification, the term ‘compu-
tational agent’ is used to refer to any component of the system
whose behaviour is specified by rules conceived by the developer.
Such an agent may be a conventional computing device, a human
agent observing the conventions set out in a ‘user manual’, or a
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programmable peripheral capable of sensing and acting on its envi-
ronment.

• Type A: The nature of the computational agents within the ap-
plication domain may be very clearly identified. In this case, the
emphasis is on specifying exactly what protocol the computa-
tional agents follow.

• Type B: The computational agents and the core features of
the application domain are clearly identified, but the extent to
which situations arising within the domain are constrained and
the capabilities of the agents and the interfaces supporting their
interaction are still to be fully explored.

• Type C: The potential for agency that can support computa-
tional interpretation within the domain is unexplored, and the
framework within which the system is to be conceived has yet
to be identified.

Type A modelling is directly related to ‘specification’ and what
is termed ‘programming’ in the narrow sense. High-level programs
can be seen as models of this type. Software development was ini-
tially concerned with the classical computer as the sole computa-
tional agent. In that context, the primary emphasis was on the prob-
lems of accurately specifying procedures in the abstract, since the
context for interacting with the computer and interpreting this in-
teraction was so tightly constrained.

Type B modelling is motivated by the realisation that program-
ming of computational agents (however well understood in the ab-
stract) is only effective in practical situations if a whole range of
concrete engineering factors is taken into account. Such factors in-
clude assumptions about the application domain, the speed and re-
sponse of devices, the characteristics of the interfaces and the per-
ceptions, knowledge and skill of the users etc. Type B modelling
is associated with a ‘software engineering’ rather than a ‘theory of
computation’ perspective on progamming.

Type C modelling reflects awareness of the limitations of rou-
tine design in respect of modern software system development, and
the problems encountered in modifying even well-engineered soft-
ware systems to meet new functional requirements. It is motivated
by many factors: new technologies, new paradigms for interaction,
new applications outside the scope of traditional business, science
and engineering, and the speed of change. Type C modelling is as-
sociated with the preliminary sense-making activities that precede
the articulation of requirements.

In broad terms, the practice of software development has
evolved from type A towards type C modelling. Conceptually, in
the context of modern software development, and the call for ‘flex-
ible modelling tools’, it is more appropriate to view these activities
as moving in the opposite direction, from type C to type A. Once
a system is sufficiently complex, all three types of modelling are
entailed in its development and maintenance. Type A modelling is



closest to the computer, and to the formal abstract perspective on
computation. Type B modelling invokes experiential and physical
ingredients that demand empirical investigation. Type C modelling
is the furthest from formalisation, and on the face of it is not well-
suited to the application of computers.

Our perspective on software development is informed by a well-
established programme of research on Empirical Modelling (EM),
as developed by the second author and his collaborators [1]. Where
the potential application of EM to software development is con-
cerned, a crucial contribution has been made by the first author
through his development of the DOSTE environment. DOSTE sup-
plies the basis for a radically new kind of software development
that can be seen as extending the range of EM, where the principal
focus to date has been on modellingenvironmentsandagents, to
encompass modellingprocessesandobjects. EM provides a broad
conceptual framework within which to enact software development
through transition from type C to type A modelling. As we shall
briefly outline in this paper, environment-agent EM gives a ground-
ing and proof-of-concept for a study of software development using
process-object EM that has yet to be fully explored.

2. EM for sw development: orientation
The aspiration in EM is to build artefacts which exhibit interactive
characteristics similar to those observed in the situation to which
they refer. The relation between an artefact and its referent is
established through a close correspondence between dependencies,
observables and instances of agent action. Specifically, different
kinds of agent interaction with the referent have counterparts in
the model that are recognisably congruent in that they disclose
similar dependencies between observables. The full elaboration of
this notion is beyond the scope of this paper - it is central to the
body of publications at the EM website [1]. A crucial aspect of
the approach is the emphasis that is placed upon the experiential
nature of the correspondence between an artefact and its referent.
This is a radical departure from the conventional functional and
operational manner in which a computer program is interpreted. It
means that the interpretation of an artefact is open and fluid. For
instance, it is subject to evolve over time (“facility in recognising
dependencies can be learned”), can be dependent on the observer
(“relationships can only be discerned if the observer isn’t colour-
blind”), and on the specific situation within which interaction and
observation is being conducted (“whether changes to observables
can be identified may depend on the level of lighting”).

Exploiting EM makes it possible to rethink software develop-
ment as a variety of type C modelling. A key contribution of EM
has been to give philosophical grounding to informal sense-making
that can justify the claim to meaningfulness without abstraction and
formal knowledge representation [4]. This draws on theradical em-
piricism of William James [11], making a direct appeal to the idea
that all knowledge is rooted in connections between one experience
and another that are themselves given in experience. From an EM
perspective, software development can be seen as analogous to de-
vising a walk across terrain that is unexplored or little documented.
The finished program corresponds to the route plan and instructions
for following the walk and actually running the program is like fol-
lowing these instructions. The pivotal point of our analogy is that
devising such a walk is rooted in an exploratory activity that is di-
rectly enacted within the external environment. We experience the
lie of the land and its distinctive concrete features, but have yet to
abstract the conception of the walk, to determine what direction our
walk will take, and which landmarks it will follow.

A precedent for software development of this nature can be
found in the use of spreadsheet models to create business applica-
tions (as discussed by Nardi [12], for instance). Such models make
a direct connection between the current state of a computer model

and the current situation in the application domain. This connection
with real-world semantics is so immediate that to a large extent it
can be experienced by all those who interact with the application,
whether as naive users, sophisticated users, managers, developers
etc. The way in which the software application is then created is
closely linked to the business practices that surround it, each help-
ing to shape the other. A common feature of such software de-
velopment is that activities and processes that are first developed
informally through using spreadsheets to model the business en-
vironment evolve seamlessly into program-like activities that are
supported by user protocols and appropriate macros.

Spreadsheets are limited as tools for software development.
The metaphors they afford for modelling situations are well-suited
to environments such as are encountered in science and business
where there are well-established relationships between numerical
data values. They are not so well-adapted to deal with the data
structures and interface components that feature in general soft-
ware development, nor with other kinds of relationship that feature
in everyday experience. Whilst additional modes of data visuali-
sation can broaden the expressive range, these techniques are not
enough to enable experiential connections between the model and
its referent that are needed to sustain type C modelling in a more
general setting.

3. Environment-agent EM for sw development
EM is a general conceptual framework for studying how comput-
ing technology can support type C modelling. In EM, the primary
activity is makingconstruals- interactive artefacts that serve a role
in sense-making (cf. [8]) - rather than programs. Applying EM to
software development involves making construals that metaphor-
ically represent the environments in which computational agents
interact as construed by the modeller. The construction of the EM
construal is grounded (in much the same way that the current state
of a spreadsheet model is grounded) through direct appeal to the
correspondence between interactions with the construal and inter-
actions with the external environment it purports to represent. Re-
producible trajectories can be constructed through interaction with
the construal, and these serve to identify potential computational
agents and disclose a systematic framework within which they can
act. In this way, as has been illustrated in a wide variety of exam-
ples [3–5], EM makes it possible to craft program-like behaviours
out of initial exploratory interactions.

The primary tool that has been used to support EM to date - the
EDEN interpreter - can be seen as generalising spreadsheet prin-
ciples by supporting dependency maintenance on much richer data
types. It has been used extensively in student project work over
many years. By way of illustration, a Sudoku-solving construal de-
veloped using the web-enabled variant of the EDEN interpreter [3]
can be accessed online. Making such a construal involves identi-
fying ‘all’ the observables and dependencies that contribute to the
human solver’s perception of a concrete puzzle. These include at-
tributes such as the location, size, background / foreground / border
colour, current contents, status (i.e. whether given or to be deter-
mined), row / column / region number and index, potential contents
etc for each cell of the grid. The spreadsheet-like dependencies that
relate these observables are then recorded in a set of definitions. As
an example, the plausible digits for cell 11 (as deduced from the
simple criterion of not replicating a value that can already be found
in the same row, column or region) are given by the definition:

possdig11 is all - (reg1digs + row1digs + col1digs)

where the four observables on the right-hand side are relational
tables that respectively represent the set of digits{1, 2, ..., 9} and
the set of digits in the first region, row and column in the grid.



The construal can be exercised in several ways: as a learning
environment for teaching solution techniques; as the basis for an
environment for creating puzzles; to develop automatic solving
procedures in which each step is explicable to a human solver. It
is significant that writing a program to solve Sudoku puzzles does
not necessarily shed light on any of these tasks, whilst making a
construal helps to address all three. Interaction with the Sudoku-
solving construal is open-ended in character: it can involve freely
modifying dependencies and adding new ones. One extension of
the construal we have explored (“colour Sudoku”) involves making
the background colour of a cell dependent on the set of plausible
digits for that cell. One way to derive a program-like behaviour
from the construal by exploratory interaction is then to redefine
the value of the observableall so that a specific digit (say X)
is eliminated from the set of admissible digits. By inspecting the
impact of this redefinition on the background colours of cells, the
human solver can infer the contents of cells to which simple rules
such as “there is only one digit not already represented in the same
row, column or region” or “there is only one cell in this row, column
and region in which the digit X can be placed”. This activity can
then be automated, and reveals the potential and limitations of a
solving strategy based solely on applying these simple rules.

Construals developed using EDEN reflect the exceedingly rich
and potentially confusing nature of human cognition and agency,
especially in unfamiliar contexts. Environment-agent EM is con-
cerned with exploring the instrumental potential of devices, as illus-
trated by the new possibilities for solution that introducing “colour
Sudoku” affords. But as far as making the transition from type C
to type A modelling is concerned, the use of EDEN is problematic.
Even for the Sudoku solving construal, more than five thousand
observables are introduced. These observables take many different
forms (display elements, tables, lists, scalars, strings etc), and link-
ing them is syntactically complex. More complex aspects of the
state of the construal have to be managed through importing files
of definitions, and so may rely heavily but implicitly on appropri-
ate configuration of the file system containing the construal. The
modes of interaction with the construal are obscure to those unfa-
miliar with it, and have to be reinforced through regular practice.
Whilst the flat space of observables may be well-matched to the
Jamesian conception of “pure experience”, there is no satisfactory
way of devising, organising and recalling observable names. For all
these reasons, any attempt to deploy EDEN in practical software
development is confounded by the problems of scale and compre-
hension.

Despite these limitations, the EDEN interpreter has served to
disclose potential for an EM approach to software development [2,
13] that has yet to be fully realised (cf. section 5). For instance,
we have deployed a practical timetabling application based on
EM [5], and shown in principle how formal systems can be con-
ceived within the context of type C Modelling, and emerge from it.
Experience of EM endorses the common sense idea that identifying
reliable and stable patterns of agency and interaction in the appli-
cation domain and empirically aligning the behaviour of software
so as to accord with these patterns is prerequisite for successful for-
mal specification. This is in keeping with the concern expressed by
Jackson [10], echoing Vincenti [17], for formal specification to re-
spect the need “to do justice to the incalculable complexity of the
real-world”.

4. Process-object EM for sw development
By comparison with a spreadsheet, the EDEN interpreter supports
more extensive (and extendable) modes of perceptualisation, but it
still relies on a repertoire of notations (for scalars, strings, lists, 2d
points and lines, display elements such as panels and buttons, 3d
graphics, geometric models, relational tables etc) which constrain

the kinds of metaphor that can be invoked. The emergent structures
and processes associated with an EDEN model can be exceedingly
complex and subtle, but these are maintained in the mind of the
modeller. As a result, EDEN has the same limitations as the spread-
sheet in respect of scale and comprehensibility where authentic
software development is concerned. This motivates an enhanced
tool for EM that gives the explicit support for objects, structures
and processes that is needed to smooth the transition from type C
to type A modelling.

The DOSTE environment has been developed by the first author
as an interactive tool that can enable concrete and exploratory mod-
elling in the spirit of type C modelling. The conception of DOSTE
draws on the object-oriented software development tradition, incor-
porating features similar to those invoked in Smalltalk, Self [16],
GAUCHO [14] and SubText [7]. In its intended use, the focus is
not however upon specifying abstract structures and processes, but
upon realising the same kind of vivid live correspondence between
a model and its referent that is illustrated in the spreadsheet-style
development described above. The kernel of the model is the ob-
ject structure as dynamically established by links between object
components. The current disposition and the latent dependencies
between these links are at all times explicit and open for reconfig-
uration by the modeller. It is the configuration of these links that is
the counterpart of setting up the network of definitions within the
spreadsheet: an activity that is informed by the need to maintain a
semantic connection in immediate experience.

In a spreadsheet, the semantic force of a relation is not in the
fact that there is an abstract relation ‘a is b-c’, but that ‘profit is
income - expenditure’, and that all the interactions with the spread-
sheet conform to and endorse this interpretation. The spreadsheet
engine maintains dependencies between values whose meaningful-
ness resides in how they are manipulated by and mediated to the
modeller rather than in their formal operational interpretation. In a
similar spirit, the configuration of links is defined by dependencies
that either serve to maintain “static” current relationships similar to
those in a spreadsheet or to express the way in which a link will
be updated from one moment by the next. Of course, the semantic
significance of such links can only be apprehended through making
their current state perceptible to the modeller at all times. To this
end, within the DOSTE environment, the immediate structure of
the object representation is made explicit to the modeller through
maintaining a concrete perceptual representation of it.

The rethinking of software development that DOSTE affords
was first motivated by designing a new kind of operating system. To
date, perhaps its most significant application has been to computer
games development. Whilst DOSTE draws inspiration from object-
oriented software development ideas, it is entirely different in char-
acter from a conventional class-based object-oriented approach. As
its associations with operating systems and computer games sug-
gest, it is a framework for development that gives a high priority
to concrete physical and experiential considerations. Whilst it cre-
ates explicit object and process structures, these are exceptionally
fluid, and can be shaped as their perceptual counterparts are being
experienced.

Our current research is focused on developing a new tool that
integrates the DOSTE and EDEN environments, and in the process
demonstrates the qualities of both environment-agent and process-
object EM.

5. Our vision in summary
Existing modelling tools for software development tend to assume
that we ultimately want conventional Turing-style programs to
come out of it. They also assume that we have an understanding of
the domain we are attempting to model. What these tools provide
is a means of modelling a program to work out how to construct it



and to communicate this to others. In advocating type C modelling
as a basis for software development, we look at things in a different
way. Where appropriate, rather than modelling rule-based mecha-
nisms, we model the environment in which such mechanisms are
identified and interpreted. This has radical consequences both for
the tools and thinking:

• Challenging preconceptions about the need for paradigms
and languages. We do not regard it as essential to develop con-
ventional programming language representations, and consider
that dealing entirely with visual or other representations is ac-
ceptable and desirable. This poses fundamental issues relating
to semantics and how meaning can be conveyed, but - drawing
on James [11] - we are not daunted by these.

• Accepting that a rigid program may not actually be the out-
come. We instead envisage the products of software develop-
ment as constantly evolving and adapting to changing circum-
stances. Some software projects cannot reasonably be deemed
to finish and to require a final state limits the kinds of software
we can construct as well as how it can be used. Blurring the
distinction between using a program and creating a program in
the way we have discussed would enable software to constantly
evolve in a changing environment.

• Linking the construction of software to learning about the
domain. The central problem in software development is not
how to make a program to perform some task but how to better
understand that task and construct a model of it. By establish-
ing an intimate connection between constructing software and
gaining experience of the environment in which it operates, our
approach enables one or more individuals to use the computer
to learn about the problem domain.

• Maintaining that abstraction is not necessarily required or
desirable. This is a key point. It seems that a lot of effort goes
into adding ever increasing layers of abstraction to modelling
tools and programming languages. We argue that what is actu-
ally required in many contexts is as little abstraction as possi-
ble and necessary. Abstraction distances the development from
original domain of the problem and isolates the developer from
their experience. By staying as close to the experienced prob-
lem as possible we can more easily construct, understand, alter
and use the model.

• Recognising the transformative role of dependency in pro-
gramming-as-modelling. The object-oriented paradigm has al-
ways aspired to establish a strong association between program-
ming and modelling [6] - a vision that can be seen as quite
different from that endorsed by the classical Turing view of
programming. In our view, it is the introduction ofdependency
that has the most significant role to play in relating program-
ming to modelling. What is more, the benefits of introducing
dependency cannot be appreciated without the kind of radical
shift in perspective that EM affords. As argued in [15], where
the implications of adding dependency to the object-oriented
Imagine Logo are considered, they cannot be realised by invok-
ing dependency in anad hocfashion. This applies in particu-
lar to emerging practices in the software industry, such as the
use of dependency injection and of Microsoft’s implementation
of .NET dependency properties in the Windows Presentation
Foundation (WPF).

In pragmatic terms, we believe that our approach and orientation
has wider applicability than is sometimes acknowledged. In the ear-
liest stages of a project, where there is a typically poor understand-
ing of the domain, it is best to remain as concrete as possible rather
than start premature abstraction. As the model progresses it is pos-
sible that higher-level concepts and structures will emerge from the

initial chaos. Gradually it may (but equally may not) be possible to
come up with a complete and formally verifiable model - if that is
the aim.

From a more philosophical perspective, it is fashionable in some
circles to conceive the world as a computational process. Whether
or not we subscribe to this view, not all human experience of
the world has the same character as participation in a rule-based
activity. If thereare rules that govern everything we observe, we
are not necessarily aware of them.Software for humanityhas to be
developed with this fact in mind.
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