
Enriching Computer Support for Constructionism

Meurig Beynon

Empirical Modelling Research Group,
Department of Computer Science,

University of Warwick,
Coventry,
CV4 7AL.

+44 2476 523089
{wmb@dcs.warwick.ac.uk}

Chris Roe

Centre for New Technologies Research in Education,
Institute of Education,

University of Warwick,
Coventry,
CV4 7AL.

+44 2476 523855
{Christopher.Roe@warwick.ac.uk}

mailto:%7BChristopher.Roe@warwick.ac.uk
mailto:%7Bwmb@dcs.warwick.ac.uk

Enriching Computer Support for Constructionism

ABSTRACT

The dominant emphasis in current e-learning practice is instructionist in character. This is

surprising when we consider that the benefits of constructionism as a learning paradigm are

so widely recognised. Moreover, though the constructionist philosophy can be seen as

applying to activities that are not necessarily computer-based (such as bricolage and concept

mapping), its modern application in educational technology has been closely linked with

computer use. In particular, Papert's work on mathematical education through LOGO

programming has both informed the original concept of constructionism and been a major

influence over subsequent computer-based constructionist developments. This chapter

questions whether – despite these precedents – traditional computer programming is

well-suited for the constructionist educational agenda. It argues that other approaches to

computer model-building, such as those based on spreadsheet principles, are in fact much

better aligned to the objectives of constructionism. Building on this basis, it proposes that

more effective computer support for the constructionist perspective is offered by Empirical

Modelling (EM) within a conceptual experiential framework for learning (the EFL).

Adopting this approach demands a reappraisal of the relationship between the formal and the

informal with relevance for education, mathematics and computing. It also offers better

prospects for e-learning in a constructionist idiom.

KEYWORDS – Technology Enhanced Learning, Educational Technology, Constructivism, Active

Learning, Electronic Spreadsheets, Modelling Languages, Electronic Learning (E-Learning).

INTRODUCTION

The development of e-learning environments has been driven by the needs of universities,

where the lecture is the dominant teaching method. The Internet can serve as an efficient

mode of effecting lecture delivery. In some situations, the delivery of factual information is

entirely appropriate. On the other hand, educationalists recognise the importance of

interaction, and constructionists go further to propose a range of principles to facilitate active

learning. In this chapter, we reflect on two complementary experiences: of developing

microworlds as part of an e-museum; and of deploying a novel approach to constructing

computer-based models for educational use. From these experiences, we draw inferences

about issues related to using web-based environments for teaching and learning across a

range of domains.

The broad aim of the e-Muse project was to investigate the concept of developing an

Internet museum. A museum consists primarily of exhibits, supplementary explanatory

material related to the exhibits together with hands-on activities to engage visitors. The

e-Muse website is in essence a large collection of assets related to the ancient Olympic

Games that has been developed with both museum and schools environments in mind. It

comprises text, images, videos, together with interactive areas where visitors can participate

in discussions and use facilities for uploading and downloading each other's work.

From the first, the project engaged with two tensions. In developing a virtual museum that

bridged museum and school environments, there was an underlying cultural conflict.

Whereas museologists were concerned primarily with accuracy and appropriate presentation,

classroom practitioners’ foremost concern was promoting interaction and engagement. Of

course this is something of a caricature, in that both cultures had concerns about both

accuracy and engagement, but their priorities were nonetheless distinctive. The second

tension stemmed from the first. Museologists might be characterised as most interested in the

efficient delivery of accurate materials – an aspiration they have in common with the

designers of so-called e-learning environments. In contrast, the development of e-Muse as an

educational environment was heavily influenced by the constructionist literature (Harel &

Papert, 1991), which puts its emphasis on ownership of ideas by the learner. In this respect,

the development perspective was more closely aligned to that of the classroom practitioners,

who place the accent on learning rather than delivery.

In e-Muse, two microworlds have been developed. These provide an interactive experience

for e-museum visitors aimed at engaging and stimulating exploration of the e-museum. The

microworlds are based on the throwing events of the Olympics, and are targeted at children

of 10 years old and upwards. The practical development of these microworlds was carried

out by the second author, working in collaboration with Dave Pratt, the director of the

CeNTRE. The development made use of the Imagine Logo programming environment

(Kalas & Blaho 2000), and was guided by observation and feedback obtained at a local

school, where prototypes were trialled with schoolchildren. Our objective in this chapter is to

relate this experience of developing microworlds to the broader question: How can we best

exploit constructionist principles in a web-based situation? We are also led to consider the

e-Muse development in relation to the more general issue of giving computer support for

constructionism in other contexts, and, in particular, to the alternative approach to

computer-based model building studied by the second author in his doctoral thesis (Roe,

2003).

One of the primary findings of the e-Muse project was that the realisation of

constructionist principles was obstructed to some considerable degree by the lack of a

facility for children to build their own models (Roe, Pratt & Jones, 2005). Though the

Imagine Logo environment offered many features to assist the developers in empowering the

user to interact with models in imaginative ways, the task of adapting models in response to

children's perceived and expressed needs was typically too technical to be undertaken by any

participant other than the primary developer. For this reason, the e-Muse environments

afforded less flexibility and openness in interaction than was ideally envisaged.

The predominant delivery model for e-learning exhibits similar restrictions and lack of

flexibility in interaction, though perhaps to an even more marked extent. As Bannan-Ritland

et al (2002) have observed, designers of e-learning environments typically structure content

in a particular sequence for delivery to the learner. This leads them to remark (p.12) that:

... there are alternative theoretical foundations other than a traditional instructional system

design perspective that can be applied to learning object systems based on constructivist

philosophy of learning. To the best of our knowledge, a learning object system based in

theoretical approaches steeped in constructivism has not yet been developed.

Of course, it is not self-evident that the level of interaction advocated by a constructivist

philosophy is achievable. Indeed, Ehrmann (2000) has argued that the idea of attaining

interactive courseware that can give full support to constructionist principles is a mirage. He

claims that this is due to the high human costs needed to achieve appropriate levels of

interactivity. In this chapter, we argue that, whatever ultimate limits may have to be set on

the aspirations of computer support for constructionism, the use of constructionist principles

in conjunction with a more appropriate approach to computer-based modelling offers the

potential for far greater levels of interactivity in e-learning environments. In the next section,

we provide the background and motivation for this argument by considering the relationship

between conventional programming and constructionism, both in its historical context, and

in relation to the findings of the e-Muse project.

PRINCIPLES OF CONSTRUCTIONISM

Throughout its history, educational software has progressed through many phases,

mirroring the development of cognitive theories of learning. Early instructional software was

dominated by programs that reflected a behaviourist outlook – the inspiration for much

'drill-and-kill' software – where the computer acts as a replacement teacher, simply asking

questions and gauging learning from the pupil’s responses. Over recent years, educational

software has tended to reflect a constructionist approach, where learners are given an

environment to explore, make hypotheses and guide their own learning.

Examples of the careful design of microworlds began to emerge in the 1960's when a team,

headed by Papert and Feurzeig, was developing the Logo programming language at MIT.

This early work was primarily concerned with programming and problem-solving in the

context of mathematical education (see Papert, Watt, diSessa and Weir, 1979; Watt, 1979).

In particular, it advanced the radical notion that children need to play with and use

mathematical concepts within a supportive computer-based environment before being

introduced to formal work with those concepts (Papert, 1972, p.18):

When mathematizing familiar processes is a fluent, natural and enjoyable activity, then is

the time to talk about mathematizing mathematical structures, as in a good pure course on

modern algebra.

These initial ideas led Papert (1980) to conceive a radically new vision for mathematical

education that was subsequently elaborated into a new paradigm for the teaching and

learning of mathematics – the constructionist approach (Harel & Papert, 1991). Following

(Roe, Pratt and Jones, 2005), we shall discuss model-building with reference to six

underlying features of constructionist learning distilled from the literature:

1) Quasi-Concrete Objects – Turkle and Papert (1991) refer to how the computer allows

formal ideas to be accessed in a concrete way, through developing iconic

representation of abstract mathematical ideas that can be manipulated directly by the

user;

2) Integrating the Informal and the Formal – diSessa (1988) has suggested that

incorporating formal representations of mathematical objects in models in different

ways may enable a child to make connections between the various formalisations and

their informal use;

3) Using Before Knowing – In our everyday lives, we typically use tools for particular

purposes. Through such use, we learn about the effectiveness of a tool, its limitations,

how well it serves its purpose, and may sometimes gain some insight into how it

works. In schools, mathematics is a subject where, in general, you learn how to

generate the object before you use it. In practice, the task of object generation proves

too difficult, especially when disconnected from purpose. The computer makes it

possible to invert the activity of learning mathematics so that use precedes generation

(see the Power Principle, Papert, 1996);

4) Dynamic Expression – When Papert proposed the turtle as a tool for constructing a

dynamic notion of angle (and of course much else), he acknowledged that the

computer offers a medium which – unlike paper and pencil – can incorporate

dynamic representations of the world. He suggests that systems which are expressive

of dynamic and interactive aspects of the world are more engaging to learn than static

and abstract formalisms;

5) Building – Constructionism is based on the tenet that encouraging the building of

artefacts is a particularly felicitous way of teaching mathematics. Pratt (2000) has

demonstrated how this approach can be modified to apply to related activities such as

mending;

6) Purpose and Utility – The microworld approach can encourage purposeful activity

through the building and modification of artefacts. Through such interaction,

emergent knowledge is imbued with utility (Ainley, Pratt & Hansen, in press), so that

the usefulness of the relevant abstractions is appreciated and their limitations are

gradually discriminated.

The constructionist paradigm has much to teach developers of e-learning platforms (Roe,

Pratt and Jones, 2005). To illustrate this, we consider the qualities of the Shotput

microworld, a case study from the e-Muse project where learners can explore aspects of

projectile motion. The Shotput microworld is intended as a multidisciplinary environment,

bringing together physics, maths and physical education (Logotron, 2005). The primary

objective in constructing the microworld is to enable children to explore factors involved in

projectile motion in a situated learning context where they can in parallel address the

challenge of throwing an actual shotput as far as possible. Learners can measure

characteristics of actual throws and input these values within the microworld to simulate the

flight path of their actual throw (see Figure 1).

Figure 1 – The Shotput microworld

Learners can then explore the question of how they could go about improving their throw

by altering suitable parameters. Since the characteristics that can most easily be directly

measured (Distance thrown, Time of flight) are those that are typically considered to be

outputs, the microworld allows input and output parameters to be freely swapped in such a

way that any two of the five important variables can be designated as outputs. The main

challenge for the learner is to understand the distinctive roles for inputs and outputs,

knowing which variables in the physical environment it is sensible to change, and how they

might be changed. The microworld also offers facilities for children to tabulate interesting

results, compare multiple flight paths in parallel, and produce graphs of the table of results.

The typical development step for the Shotput microworld was based on an educational

iterative design methodology (Pratt 1998, Cobb et al 2003). In such an approach,

development and testing phases are iterated so that after each development phase testing

with children is undertaken to establish required changes to the interfaces or the tools

provided and determine whether any misconceptions are promoted by the microworld. In

each subsequent phase, the development becomes more stable and the number of children in

the test phase is increased so as to generate evidence that the microworld can be used to

learn in the intended domain. This integrated design and testing involves learners (and

teachers) closely in the software development cycle. However, it is the software developer

who makes the required adaptations, and once a final design is settled upon, teachers cannot

adapt the software to suit their own individual requirements.

The Shotput microworld exhibits most of features of constructionist learning cited above.

The formal concept of the parabola of projectile motion is expressed visually by the iconic

shotput flight on screen, a concrete instantiation based on a formal idea. Interaction with the

model allows the learner to step through the simulation instant-by-instant and compare the

locations of shotputs thrown subject to different input parameters at any particular point in

time, illustrating diSessa's principle of incorporating formal representations in several

different ways. Learners can use the model before – and indeed without – knowing how the

model works, since the sliders afford informal experimentation with shotput motion prior to

conceptualisation of the underlying formal model of the dynamics. Because of the close

correspondence between the positions of the sliders just beneath the main window in Figure

1 and the dynamic visual representation of the shotput behaviour, any changes to the model's

parameters are immediately discernible in the microworld, and this functionality illustrates

dynamic expression in the model. The learner uses the microworld with a sense of purpose,

namely to improve their shotput throwing performance.

Experience of the e-Muse project endorsed many of the above ideas about the virtues of a

constructionist approach. The cooperative activity through which the e-museum exhibits

were developed promoted a high degree of engagement from pupils and stimulated them to

think about the dynamics of motion in association with interaction in real-world

environments. The qualities of the Imagine Logo environment often meant that interactive

features could be introduced into prototype models relatively easily, so that pupils could

have a degree of control over interaction beyond that normally available in an e-learning

environment.

In addition to these positive qualities, the e-Muse project also disclosed problematic issues.

The main constructionist element missing in the Shotput microworld is the ability for

learners to build their own models. Learners are limited to manipulating predefined

parameters within the world, and extensions to the basic model that might be readily

encountered in open exploration (e.g. altering the mass of the shotput, experimenting with

gravity to simulate throwing on the moon) would be difficult to incorporate into the model.

It is difficult to know how to take due account of the high level of commitment and expertise

on the part of the educator and developer when trying to make an objective assessment of the

quality of the learning activity and degree of engagement afforded by the microworld. Much

of the actual model-building process was technically challenging and not closely allied to

learning about the target domain of projectile motion. Even if a learner had the skills of the

developer, it is not clear that the required model-building to alter the model in the examples

described would promote domain learning rather than 'learning about computer

programming'. In the following section, we explore this theme in more detail.

CONSTRUCTIONISM AND PROGRAMMING

Of particular significance in the constructionist tradition are environments that support

‘active learning’, in which learners are actively involved in building their own public

artefacts. The emphasis in active learning is on the mental processes that occur during the

construction of the artefact, not on the quality of the final product. The situated and public

nature of the construction activity is also identified as important. For instance, in developing

his vision for constructionism, Seymour Papert stresses that the active building of knowledge

structures in the head often happens especially felicitously when it is supported by

construction of a more public sort ‘in the world’ (Papert & Harel, 1991). There are many

reasons why active learning is seen as particularly beneficial: learners can pursue their

particular interests, can see a tangible result with potential application and relevance, and are

motivated to communicate their understanding to others.

The advent of computer technology for learning has opened up new avenues for

developing concrete models in the form of interactive computer-based artefacts. To meet the

requirements for (computer-mediated) active learning, it must be possible for ordinary

computer users to construct such artefacts, so that meaningful learning of a domain can

proceed in tandem with the construction of the interactive artefact. In her study of end-user

programming, Bonnie Nardi (1993) claims that those who are not computer specialists can

create personally meaningful computer models if the programming environment eliminates

much of the accidental computational complexity. By way of example, she cites end-users

creating computer-aided design models, LOGO programs and spreadsheet models.

In our view, the issues surrounding computer support for active learning have yet to be

adequately addressed. Ever since Papert first developed the LOGO environment, there has

been some ambiguity about the relationship between computer programming and the

educational objectives of constructionism. Is computer programming to be viewed as an

activity that – of itself – serves the educational objectives of the constructionist agenda, as

the LOGO environment might suggest? Or is computer programming simply the means to

set up environments for model making using techniques that are not – or at any rate are not

perceived as – computer programming? In practice, the distinction between ‘learning about

computer programming’ and ‘learning about a domain independent of computer

programming’ is not always clearly respected in computer-based environments that support

active learning. What is more, educationalists and computer scientists alike seem relatively

insensitive to the potential implications of adopting different perspectives and approaches to

constructing computer models.

In this chapter, we argue that there are highly significant distinctions to be made between

the different perspectives we can adopt on providing computer support for active learning. In

particular, there is a fundamental conceptual distinction to be made between using

spreadsheet principles and other programming paradigms (both procedural and declarative)

that focus on programs as recipes for performing goal-directed transformations. Our thesis is

that programming paradigms rooted in the classical view of computation are not well-suited

to providing support for the constructionist learning agenda. On this basis, we propose an

alternative framework that builds on the principles for spreadsheet engineering identified by

Grossman (2002). The remainder of the chapter is in two principal sections: the first

discusses the relationship between classical computer programming and constructionism; the

second briefly introduces and illustrates our alternative perspective on computer-based

modelling building (“Empirical Modelling”).

The relationship between computer programming and constructionism is conceptually

complex. Papert's aspiration for the use of LOGO is that constructing a program should be a

valuable learning experience in which a pupil becomes familiar with geometric concepts and

with strategies for problem solving and design (Papert, 1993). There is an implicit

assumption that the process of program construction is well-aligned to useful domain

learning and to constructionist principles, but there are potentially problematic issues to be

considered:

 extraneous activity – Much of the learning associated with model-building is

computer-programming specific: it is concerned with manipulating programming

language commands, procedures and parameters rather than with developing

knowledge of geometric concepts or abstract thinking strategies;

 planning rather than exploration – Classical programming is not conceived as an

iterative experimental process: programmers are encouraged to plan and preconceive

their application rather than to develop a model in an open-ended fashion where its

significance can emerge during the development.

Extraneous activity in computer supported domain learning is a problem for which many

different remedies have been proposed. Soloway (1993) raises “the heretical question:

Should all students learn to program?”, and advocates the use of domain-specific, scaffolded,

computer-aided design environments as an appropriate substitute for “those pesky

semi-colons”. The educational experts who respond to his question are positive about the

importance of learning to program, and about the valuable – if not essential – contribution it

can make to broader domain learning. The diversity of opinions about how to teach

programming so that it does not obstruct domain-learning highlights such issues as: how best

to provide programming interfaces for end-users; whether or not to use graphical front-ends;

whether to use object-oriented principles or recursion, linked lists and trees.

The significance of being able to treat computer programming as an exploratory activity,

rather than a planned activity, is likewise well-recognised. Ben-Ari (2001) discusses how

computer programming, as practised, contains the element of re-design in response to

interaction with the partially-developed program that is characteristic of bricolage

(Levi-Strauss, 1968). This is endorsed by Fred Brooks’s observation (1995) that

programmers see their work as a craft where they wrestle with incompletely understood

meaning, and by proposals for software development based on techniques such as ‘eXtreme

Programming’ (Beck, 2000).

The thesis of this chapter is that a proper appreciation of the problem of providing

computer support for constructionism can only be gained through looking at a deeper issue

than the flavour of programming paradigm, the interfaces for the end-user, or the method of

software development. There is a profound ontological distinction between an artefact that is

developed in active learning and a computer program. To interpret computer support for

constructionism effectively it is necessary to shift attention from the concept of computer

program that is endorsed by the classical theory of computation, and focus instead upon the

way in which the programmed computer itself serves as a physical artefact. This is best

appreciated by comparing the thought processes that accompany contemplation of the

artefact in active learning with those associated with developing a computer program.

In active learning, the artefact under development is a source of experience. Throughout

its development, the learner is invited to project possible interpretations and applications on

to the artefact as it evolves. The learner asks such questions as "what can I do with this

now?" and "how can this particular kind of interaction with the artefact now be interpreted?".

In so far as some reliable interactions with the artefact are familiar to the learner, it implicitly

embodies knowledge. At the same time, since many of the plausible interactions

contemplated may be as yet unexplored, the artefact in some respects embodies the learner’s

ignorance. The educational qualities of interaction with the artefact mirror those exhibited in

an informal exposition of a proof. Such an exposition is mediated by artefacts, so that the

reader can be invited to anticipate the next step, and introduced to the situations in which

false inferences can be drawn or unsuccessful strategies adopted.

By contrast, developing a program is understood (from the perspective of the classical

theory of computation) with reference to assertions of the form "this is what the program is

intended for; these are the kinds of interaction that it admits; these are the ways in which

responses to this interaction are to be interpreted". It is of course the case that, in any

complex programming task, essential knowledge of the domain is developed through

experimental activity involving artefacts (as represented by use cases, UML diagrams

(Jacobson et al, 1992), and prototypes of various kinds). But while this domain knowledge

plays a fundamental role in programming, it is primarily directed at the intended

functionality and interpretation of the program. For this reason, the artefacts developed in

framing requirements serve only for reference purposes once the program implementation

begins. A computer program resembles a formal proof in that it follows an abstract pattern of

steps whose meaning is entirely contingent upon adhering to a preconceived recipe that is

invoked in the correct – fastidiously crafted – context.

The above discussion suggests that the conventional perspective on computer

programming is unhelpful in understanding how to give computer support to

constructionism. This is not to deny the practical value of computer-based environments that

have already been developed for active learning, but to observe that they ideally demand a

conceptual framework quite different from that offered by classical computer science. With

the possible exception of domains in which learning is primarily concerned with

understanding processes, it is in general inappropriate to think of a learning artefact as a

computer program. For reasons to be briefly explained and illustrated in the following

sections, we prefer to characterise computer-based artefacts for active learning as construals.

Our proposal to discard the notion of program in favour of ‘construal’ is in the first

instance significant only as a meta-level shift in perspective. In practice, spreadsheets

already provide examples of such construals. It is also likely that, in asserting that “we need

to fundamentally rethink how we introduce programming to students”, “we require new

types of programming tools”, and “we need new programming paradigms”, Resnick and

Papert (Soloway, 1993) have in mind a much broader notion of ‘program’ than the classical

view of computation supports. Nevertheless, making the explicit distinction between

programs and construals liberates a radically different view of what computer support for

constructionism entails, and lays the foundation for a better understanding with implications

for theory and practice. For instance, it can help to identify more effective principles and

tools for building learning artefacts, and may help to explain practical developments, such as

the success of spreadsheets and the relative lack of popularity of programming as a learning

tool for the non-specialist (cf. Nardi, 1993), and the emergence and subsequent

disappearance of Logo from the UK National Curriculum (cf. Noss & Hoyles, 1996).

CONSTRUCTIONISM AND EMPIRICAL MODELLING

Our description of a learning artefact as a construal borrows from the work of David

Gooding, a philosopher of science. Gooding (1990) used the term to describe the physical

artefacts and procedures for interaction, observation and interpretation that Faraday

developed to embody his understanding of electromagnetic phenomena, as it evolved

through practical experiment and communication with other experimental scientists. In that

context, experiment has a significance beyond the popular understanding of the scientific

method (as in Sanella (1997): "One develops a theory that explains some aspect of reality,

and then conducts experiments in order to provide evidence that the theory is right or

demonstrate that it is wrong."). Though Faraday's experiments did eventually underpin

Maxwell's mathematical theory, they initially had a far more primitive role. For instance,

they served to distinguish transient effects from significant observables, and to relate

Faraday's personal construals of a phenomenon to those of others who had typically

employed different modes of observation and identified different concepts and terminology.

Such experiments were not conducted post-theory to ‘explain some aspect of reality’, but

rather to establish pre- theory what should be deemed to be an aspect of reality.

A construal is typically much more primitive than a program. It is built with a referent in

mind. The conventions for interacting with it and interpreting these interactions are quite

informal and fluid. In general, whether a particular interaction has an interpretation can only

be appreciated by consulting the immediate experience it offers and recognising this as

corresponding to an experience of the referent. A possible construal for the electromagnetic

phenomenon associated with a wire coil might be a depiction (e.g. by means of a diagram on

a computer screen) of the direction and strength of the electric current, and the disposition

and density of the lines of the magnetic field. A primitive interaction with such a construal

would involve observing the impact of changing the current on the strength of the magnetic

field in both the computer model and its referent. The relationship between current and field

would be perceived as a direct correspondence between dependencies in the model and its

referent. In this context, the counterpart of a program would be a much more sophisticated

construction – such as a model of an electric motor – that has some autonomous reliable

behaviour that cannot be experienced through being present in just one situation.

Empirical Modelling (EM) describes the characteristics of a construal (cf. a spreadsheet)

with reference to three key concepts: observables, dependencies and agency. An observable

is a feature of the situation or domain that we are modelling to which we can attach an

identity (cf. a spreadsheet cell). The main requirement of an observable is that it has a

current value or status (cf. the value of a spreadsheet cell). A dependency is a relationship

amongst observables that expresses how they are indivisibly linked in change (cf. the

definition of a cell). Unlike constraints, which express persistent relationships between

values in a closed world, dependencies express the modeller’s current expectation about how

a change in one variable will affect the value of another in an open-ended exploratory

environment. Observables and dependencies together determine the current state of an EM

model. An agent is an entity in the domain being modelled that is perceived as capable of

initiating state-change. In developing an EM model, our perspective on agency within the

domain evolves with our construal.

Developing a construal in EM is a voyage of discovery, a creative activity that is quite

unlike conventional programming, where the emphasis is on representing well-understood

behaviours. An EM model is empirically established (informed by experience and subject to

modification in the light of future experience) and experimentally mediated (our experience

with it guides its evolution). A construal must be testable beyond the limits of the expected

range of interactions with it. In specifying a conventional program, the modeller has to

preconceive its behaviour, thereby restricting the exploratory interactions that can be

undertaken. In contrast, EM model construction privileges experimental interaction.

Interactions can take account of the changing real-world situation; can probe unknown

aspects of a referent; and may even be nonsensical in the world.

The potential implications of adopting an EM perspective on computer support for

constructionism will be briefly illustrated with reference to a simple example. A beam

detector for the unit circle is a set of points that intercepts all lines crossing that circle.

Eppstein (1998) describes a beam detector constructed by taking a regular hexagon

ABCDEF that circumscribes the unit circle, joining the points ABDE using a Steiner tree,

and dropping line segments from the two vertices C and F on to the nearest side of the

quadrilateral ABDE. The length of such a detector is 2/√3 + 4 = 5.1547. Eppstein observes

that this is non-optimal and conjectures that non-regular hexagons can be used to reduce this

length.

A teacher wishing to exploit Eppstein's beam detector as an aid to active learning might

consider many issues:

 motivating the search for a detector of optimal length. To this end, Ian Stewart (2004)

devises a detective story, recasting the problem as digging trenches of minimal size that

are guaranteed to detect a drainage pipe in the neighbourhood of a statue. To exploit this

interpretation, it might be helpful to construct a virtual reality model;

 situating the problem within computational geometry. Eppstein’s construction is an

application for Steiner trees. This motivates making a model that incorporates and builds

on a method of Steiner tree construction. For further investigation, this model could be

extended to display critical lines that pass through just one of the five straight-line

segments of the given beam detector;

 using the beam detector to illustrate school geometry. Modelling the detector is an

exercise in geometric construction that helps students to learn about tangency,

trigonometric relationships, perpendicular lines etc;

 using the detector as a case study for modelling tools. Students could make a geometric

model of the detector using a special-purpose tool such as Cabri Geometry, or study it as

an optimisation problem using a spreadsheet.

Issues of presentation are also relevant. The teacher might wish to present the construction of

the beam detector, as described by Eppstein, using an interactive whiteboard, to distribute

instances of the construction to the pupils for them to experiment and compete to find the

best solution, and to monitor and to display the details of the detector of smallest total length

encountered to date concurrently in real-time (e.g. as might be done in a sporting event).

If we regard these potential applications as specifications for independent programming

exercises to be addressed, there is a prohibitive overhead. Model-building directed at

capturing the different functional requirements involved in developing a VR environment,

setting up a spreadsheet, or emulating CABRI, cannot exploit abstraction above the level of a

general-purpose programming language. By building a construal, on the other hand, it is

possible to build an integrated family of models adapted for each of these different purposes.

Screenshots and extracts from variants of an EM model of Eppstein's beam detector are

shown in Figures 2 and 3. A full account of the principles behind the construction of the

model and its variants is beyond the scope of this chapter. The details of the models can be

inspected and exercised more closely by accessing the beamdetectorRoe2004 directory of

the EM repository at http://empublic.dcs.warwick.ac.uk/projects/. Other models

from the repository illustrate that the features needed to make the extensions of the Beam

Detector model envisaged above are broadly within the scope of the current EM tools. The

following brief discussion will highlight some of the most salient points about the

development of the Beam Detector models.

The original source for the Beam Detector model was developed by the first author at the

suggestion of a colleague who was studying beam detection as an abstract optimisation

problem in computational geometry. The model was constructed over a period of two or

three days, and involved some three or four hours development. The listings in Figure 2

illustrate the kind of activity that was involved – the creation of a script of definitions to

record the key observables (such as points, lines and labels) and dependencies (such as

relationships of incidence and perpendicularity) in Eppstein's construction. The script

creation was an incremental process, so that the definitions in Listing 2(a) were devised first,

and those in Listing 2(b) were developed subsequently (see beamdetectorRoe2004 for all

the sub-scripts involved in building up the entire model stage by stage, from which the

listings in Figure 2 have been extracted).

Figure 2 illustrates some general characteristics of EM. The script of definitions for the

model evolves in conjunction with the visual artefact as the modeller's understanding is

clarified. At any stage of the development, there is a script and an associated visualisation

that records such observables and dependencies as the model-builder has so far explored.

Some experimental interaction, guided by the visualisation, is typically involved in each step

of the incremental construction. In introducing the definitions in Listing 2(b), for instance,

some experimentation was used to establish and confirm how the principal value of the angle

denoted by the acos function was being selected. The overall character of EM in this

context is consonant with the way in which Edwards and Hansom (1989) identify modelling

as an iterative process comprising understanding the particular phenomena to be modelled,

identifying the key variables and explicitly defining the relationships amongst the variables.

Figure 2 – The original Beam Detector model and some of its script definitions

As Figure 2 also illustrates, a script of definitions serves both as a description of the model

in its current state of development, and as a record of the interaction that has led to this

current state. This dual role lends to the script the rather loose and messy quality that is

characteristic of much of learning activity. The evolution of the models reflects different

stages in the understanding, for which different configurations and visualisations of

observables are generally appropriate. In Listing 2(b), for instance, the observable SE in the

model, which refers to the geometric location of the point labelled "L" in the diagram, has

been redefined. This redefinition has been made in order to ensure that whenever the points

N and S are relocated, the angle NSL is 120o, as is appropriate in a Steiner tree.

The attentive reader will note that in diagram 2(c), which depicts one of the possible states

of the basic Beam Detector model in (EMRepository: beamdetectorRoe2004), the angle

NSL is no longer 120o. This is because, at a subsequent stage in the model-building, the

definition of SE was restored to that in Listing 2(a). The explanation for this is that – without

loss of generality – any location of the points N and S leads to a beam detector configuration

that is congruent to one in which the line NS is vertical. On this basis, a full exploration of

the design space of optimal beam detectors on Eppstein's pattern can be carried out without

needing to re-orient the line NS at any stage. With this fact in mind, there is a useful

educational purpose in neither constraining angle NSL as in Listing 2(b), nor preventing NS

from taking up a non-vertical orientation. Allowing a student to displace N and S arbitrarily

then supplies experimental evidence that deviating from a Steiner tree can only make the

length of the beam detector sub-optimal.

The above discussion illustrates the complexity of the issues that are involved in building

models to support learning, and in particular the subtle role played by placing constraints on

interaction. The virtue of the basic Beam Detector model as an interactive artefact for

experiential learning is that, unlike a conventional program, it is not developed with closed

learning objectives and ease-of-use in mind. However, in making extensions to the basic

Beam Detector, our purpose may be to make the model less open-ended and more self-

explanatory, as is appropriate in giving greater prominence to specific targets for the

learning. Figure 3 illustrates an extension of the Beam Detector model, carried out by the

second author at a much later date, that incorporates features to assist the learner. In this

model, points and lines can be manipulated dynamically, rather than merely relocated in a

discrete fashion, so that experience of a different quality is brought to bear on the task of

trying to minimise the length of the beam detector. The geometric components of the beam

detector and a representation of the beam itself have also been added, as have spreadsheets

and textboxes for displaying significant values. This process of extension has precisely the

same character as the creation of the original model, and exploits re-use of other models

apart from the basic Beam Detector.

Figure 3: An extension of the basic EM model of a Beam Detector

PERSPECTIVES ON CONSTRUCTIONISM

In the previous section, we have compared and contrasted the support for constructionist

principles afforded by EM and by conventional programming. Our illustrative examples, the

Beam Detector model and the Shotput microworld, both relate to implementing a

constructionist approach to mathematics education. In this section, we review our findings

from a broader perspective, briefly discussing how they relate to topical perceptions of

education, mathematics and computing. In this way, it becomes apparent that some of the

specific tensions between learner, teacher and developer perspectives alluded to in the

previous section are symptomatic of more profound conflicts in thinking about mathematics,

education and computing, both interdisciplinary and intradisciplinary. When trying to bring

these disciplines together, these conflicts are not merely unresolved – they are to a large

extent unacknowledged.

From an educational perspective, model-building by computer is an activity that

superficially appears best aligned to teaching mathematics, or a mathematical science. There

are a number of plausible reasons for this. Computer support for constructionism has its

historical roots in mathematics education. Programming computers is perceived as primarily

a logical exercise in framing sequences of action that, like formal mathematics, requires

great precision and abstract thought. The kind of model-building with computers that has

most educational credibility is model-building that is based on mathematical theory, as when

Newton's Laws of Motion are implemented in the Shotput microworld.

Orthodox computer science thinking endorses this attitude to computer use in education

only partially. Having regard to the still unresolved problems of the 'software crisis', building

software from a theory is perceived by many as the only way forward for computing (see for

example Turski and Maibaum, 1987). In this context, the issue of which computer

programming techniques are to be commended, and which deprecated, is a matter of great

controversy. It is widely recognised that what is actually involved in instructing the

computer by way of programming is far less significant than how these instructions are

linked to the key observables of the domain in which the program operates.

The difference in viewpoint between educationalist and computer scientist can call the

educational value of computer-supported constructionism into question. For instance, in

rule-based programming in the context of a microworld (Goldstein et al, 2001), the

educationalist sees value in engaging a bright pupil in discussion of whether a particular rule

should be attached to one object or another. The computer scientist, by contrast, recognises

the kind of uncomfortable pragmatic decision that is typically encountered in thinking about

applying programming paradigms; decisions for which the lack of principled grounds for

judgement underline the very disconnection of program from domain understanding that

computer science seeks to avoid.

In fact, the formal computer scientist's dream of building software from theories is far from

being realised in practical computing. On the contrary, as critics such as Brian

Cantwell-Smith (2002) have argued, theoretical computer science is most ill-suited to

accounting for contemporary computing practice. What is even more discomforting for

computer science as it is presently understood is that – whilst much practice remains

unconvincing and incoherent – some aspects of practice deliver results unanticipated and

unexplained by computational theory. In particular, classical thinking about computation has

little relevance for one of the most widely used and powerful techniques for computer based

model-building – modelling with spreadsheets. It is indicative of how far practical

experience has outstripped theoretical explanation in computing that Baker and Sugden

(2003) conclude their extensive review of the applications of spreadsheets in education by

observing: "There is no longer a need to question the potential for spreadsheets to enhance

the quality and experience of learning that is offered to students."

It is against the background of such highly confused and contradictory visions for making

sense of the relationships between mathematics, computing and education that EM has been

conceived. In EM, the aspiration is to develop principles and tools that can support

computer-based model-building that is intimately connected with domain learning. The

precedents for EM are drawn not from traditional computer programming or formal

mathematics, but from other disciplines where practical activities have a well-developed

role, such as laboratory sciences, engineering design, the humanities and the arts. In these

domains, practice also takes mature forms, more difficult to formalise than mathematical

model-building, but established on far sounder conceptual foundations than computer

programming. Consider for instance, the 'scientific method', architectural design and musical

analysis.

A key observation is that, though the association of mathematics education with computer

programming and with constructionism is very natural, it is also potentially misleading.

Because both mathematics and conventional computer programming operate with precise

and abstract concepts, traditional computer programming can offer good support for

mathematical model-building in some respects. In the Beam Detector model, many of the

functional relationships that feature in definitions use simple mathematical operators whose

implementation requires relatively straightforward procedural code. However,

constructionism is not essentially about precise and abstract concepts; on the contrary, it is

motivated by the desire to engage with pre-articulate experience and tacit knowledge that is

made accessible only through exposure to situations. Whilst the educator is able to envisage

imaginative ways of introducing mathematics into the world of experience (cf. the e-Muse

microworlds), classical computer programming – with its roots in logic and abstract

computation – is a reluctant fellow-traveller.

The application of EM in educational technology is conceived in terms of a broad range of

learning and model-building activities that engage with both private subjective experience

and public objective knowledge. The way in which learning activities of various different

kinds depend upon each other is set out in the Experiential Framework for Learning (EFL)

depicted in Figure 4. For instance, the learner can only progress to using symbolic

representations meaningfully when they have a degree of experience gained through

interaction in the domain. The interdependency between learning activities does not

prescribe the learning pattern completely, but it imposes some loose constraints on the order

in which they become topical. For instance, as we learn about a domain, the focus of

attention typically moves gradually from private experience to public knowledge.

Figure 4 – An experiential framework for learning

As discussed and illustrated in more detail in (Roe, 2003), the EFL serves as a useful

framework within which to identify learning activities that connect knowledge with sense

experience. Learning begins from private experience. Our preliminary interactions are

informed by our previous experience. We begin to understand the persistent and important

features of the domain and acquire the practical skills to manipulate them. Our interactions

can lead us to understand the dependencies between our actions and events and understand

how other agencies can affect the situation. With experience we come to understand that

particular patterns of interaction are common and stable and we can communicate within the

domain through non-verbal means. We are continually extending and refining our

understanding of the situated language of the domain. Learning can eventually lead us to be

able to establish the empirical basis for common experience and objective knowledge, which

can in turn be representable as formal languages and have public conventions for

interpretation.

In learning, there are identifiable ways in which we move from one category of learning

activity to another within the EFL. Practising to develop a skill, experimenting to frame a

theory or hypothesis and identifying new concepts in deriving new words are characteristic

of moving from the empirical to the theoretical within the EFL. Practising to refine and

debug skills, experimenting to test theories and hypotheses and devising situations in which

to test the integrity of new vocabulary are characteristic of moving from the theoretical to the

empirical within the EFL. These characteristic aspects of learning can be regarded as

metaphorically ‘moving down and up between levels’ within the EFL in a way that may tend

to stability. We may understand a concept and its application so thoroughly that exploratory

interaction with it is unnecessary – but it is unnecessary precisely because we possess the

experience of interaction with it that informs its use. When we are learning about a new

concept, it then becomes important to support the learning activities that enable us to gain

the broad base of experience required to interact with it in the fullest possible way.

In keeping with the features of constructionism identified earlier in the chapter, EM

typically entails blending the formal and informal. As the discussion of the Beam Detector

has shown, EM can support this integration of the formal and the informal without in any

way compromising its own integrity. In this respect, it resembles the ‘scientific method’,

which is fundamentally concerned with interaction in the world, yet (in the context of the

school science laboratory, if not necessarily in its more authentic setting of the research

laboratory) is typically exercised in conjunction with abstract theoretical understanding. EM

is also distinguished from mathematics and from computer programming as they are

conventionally conceived, in that its characteristic movement is from the informal to the

formal (cf. Beynon et al, 2000), rather than from the formal to the informal.

The adoption of an EM perspective on computer-based model-building involves a switch

of priorities where pre- and post-theory understanding is concerned. In the context of

mathematics education, this is consistent with the "re-evaluation of the concrete" to which

Turkle and Papert (1991) refer in their discussion of constructionist practices. Such a shift in

perspective also has a philosophical aspect concerned with whether we take a Platonistic or

intuitionist view of the foundations of mathematics (Goodman, 1994). Where the Platonist is

merely setting formal ideas in the context of concrete experiences in order to make them

more accessible (cf. the discussion of characteristic features of constructionism earlier in the

chapter), the intuitionist regards their very meaningfulness as contingent at some level upon

experience. Of the "two versions of constructivism" in the foundations of mathematics

alluded to by Goodman (1994), EM seems best aligned with what Goodman describes as

"Among philosophers the most influential contemporary version of constructivism ... the

intuitionism of Michael Dummett (1977)". Dummett's intuitionism follows "an essentially

Wittgensteinian philosophy of language: to understand mathematics is primarily to

understand mathematical speech, the meaning of which must be constituted by its use".

More specifically, Dummett advocates a version of phenomenalism with respect to which:

"The phenomenalist ... must interpret the sentence 'the book is on the table' by explaining

what sense experiences would justify the assertion of the sentence". Also relevant in this

context is Goodman's observation that, according to the mathematical empiricism of

Lakatos: "... mathematics is expounded in an order almost the reverse of that in which it is

discovered".

CONCLUDING REMARKS

The main thrust of this chapter has been to identify current orthodoxy about the nature of

computer programming and its relation to formal mathematics as obstructive where

enhancing computer support for constructionism is concerned. In our view, the use of EM to

build construals can better approach the ideal of integrating the roles of learner, teacher and

developer to which constructionism aspires. To fully understand the prospects and

implications for EM in this respect requires a more mature and coherent understanding of the

relationship between mathematics, education and computing than we have at present.

Shifting the emphasis away from mathematical model-building based on pre-existing

theory echoes the philosophy of engineering developed by Vincenti (1990). Vincenti

characterises engineering as a species distinct from applied science, where there is a role for

blind variation – interaction 'without complete or adequate guidance' potentially leading to

discovery. When seeking to support personal engagement and creativity in learning, the

motivation for a perspective of model-building in which there is no preconceived and fixed

framework for interpretation is clear. Modelling activity that enables us to manage cognitive

conflict and construct new meanings to resolve such tensions is an essential foundation of

constructionist learning. It will not prove easy to gain full acceptance for such an approach to

modelling, as it superficially appears to encourage just such practices – experiment without

abstract specification, exploration without preconception – as are deprecated in conventional

software development. Existing modelling tools that exploit dependency, like spreadsheets

and engineering design packages, can do much to provide practical evidence for the efficacy

of alternative development techniques. Effective model-building to support learning

demands something conceptually much more radical than merely adding dependency to the

arsenal of conventional programming techniques however – in this connection, EM

principles are vital in helping to discriminate between emerging understanding and

incoherence in interaction (Beynon, 2005).

Where e-learning is concerned, the general application of constructionist principles will

require a model-building approach that can be adapted to a much broader range of

disciplines. The range of topics addressed in the EM repository already indicates that EM

has much wider potential application than has been illustrated in this chapter. Some

preliminary thinking about how EM might be applied in modelling for the humanities is

further described in Beynon, McCarty and Russ (2005).

An interesting development in the use of the web for learning is that adopted by the

WebLab project (Weblabs). The WebLab portal has been designed to encourage children to

share their projects, written in ToonTalk (Kahn 1996), with other children both local and

remote. Such sharing involves posting a project onto the website, commenting directly on

other peoples' projects, running projects directly on the web, and downloading them to allow

re-programming in ToonTalk.

The Weblab project clearly highlights the enormous potential for collaborative e-learning

within a constructionist framework, but the arguments advanced in this chapter suggest that

it will be exceptionally difficult to deliver to this potential with the chosen programming

paradigm. In the longer term, we believe that EM will prove far more effective at meeting

the challenge of implementing the kind of interaction envisaged in the WebLabs project. For

this purpose, we would favour interaction through multi-user – potentially concurrent –

redefinition in scripts, such as has been illustrated in distributed EM models, and is

commended for collaborative Web based modelling in Cartwright et al (2005).

ACKNOWLEDGEMENTS

We are indebted to Dave Pratt and Ian Jones for their reflections on the e-Muse project.

REFERENCES

Ainley, J., Pratt, D., Hansen, A. (in press). Connecting engagement and focus in pedagogic task design, British

Educational Research Journal.

Baker, J., Sugden, S. (2003). Spreadsheets in Education: The first 25 years. In Baker, J., Sugden, S.

Spreadsheets in Education e-Journal, Vol. 1, No. 1, 18-43.

Bannan-Ritland, B., Dabbagh, N., Murphy, K. (2002). Learning Object Systems as Constructivist Learning

Environments: Related Assumptions, Theories and Applications. In D.A.Wiley (Ed.) The Instructional Use of

Learning Objects: Online Version. Available at http://reusability.org/read/chapters/bannan-ritland.doc

Beck, K. (2000). eXtreme Programming explained. Addison Wesley.

Ben-Ari, M. (2001). Constructivism in Computer Science Education. In Journal of Computers in Mathematics

and Science Teaching, 20 (1), 45-73.

Beynon, W.M. (1997). Empirical Modelling for Educational Technology. In Proceedings of Cognitive

Technology 1997, 54-68, University of Aizu, Japan, IEEE.

Beynon, W.M. (2005). Applying Dependency in Technology Enhanced Learning, to appear in Proc EISTA

2005, Florida.

Beynon, W.M., McCarty, W., Russ, S.B. (2005). Human Computing: Modelling with Meaning, in Proc. ACH/

ALLC Conference 2005, Vancouver (to appear)

Beynon, W.M., Rungrattanaubol, J., Sinclair, J.E. (2000). Formal specification from an observation-oriented

perspective, Journal of Universal Computer Science, Vol. 6 (4), 407-421.

Brooks Jr., F.P. (1995). The Mythical Man-Month: Essays on software engineering. Addison-Wesley.

http://reusability.org/read/chapters/bannan-ritland.doc

CABRI geometry. http://www.cabri.com/web/nsite/html/home.html.

Cantwell-Smith, B. (2002). The Foundations of Computing. In Scheutz, M., Computationalism: New

Directions, MIT Press.

Carter, B. (2000) Solids Animation Simulator And Modelling Interface. Final year project, Department of

Computer Science, University of Warwick.

Cartwright, R., Adzhiev, V., Pasko, A., Goto, Yuichiro., Kunii, Tosiyasu.L. (2005, to appear) Web-based shape

modelling with HyperFun. IEEE Computer Graphics and Applications.

Cobb, P., Confrey, J., diSessa, A.A., Lehrer, R., Schauble, L. (2003). Design Experiments in Educational

Research, Educational Researcher, Vol. 32, No. 1, 9-13.

diSessa, A. (1988). Knowledge in pieces. In G. Forman, P. Pufall (Eds.), Constructivism in the Computer Age,

Hillsdale, NJ: Lawrence Erlbaum Assoc., 49-70.

Dummett, M.E. (1977). Elements of Intuitionism, Oxford: Clarendon Press.

Edwards, D., Hansom, M. (1989). Guide to Mathematical Modelling, Boca Raton, FL: CRC Press.

Ehrmann, S. (2000). Technology & Revolution in Education: Ending the Cycle of Failure. Liberal Education,

Fall, 40-49.

Empirical Modelling: Model Repository. http://empublic.dcs.warwick.ac.uk/projects

Empirical Modelling Website. http://www.dcs.warwick.ac.uk/modelling

e-Muse Project: e-learning for museum and schools environments, http://emuse.cti.gr. EC e-learning initiative:

2002-4084/001-001 EDU-ELEARN.

Eppstein, D. (1998). The Geometry Junkyard: http://www.ics.uci.edu/~eppstein/junkyard/beam.

Goldstein, R., Noss, R., Kalas, I & Pratt, D. (2001). Building Rules, in Beynon, W.M., Nehaniv, C.L., &

Dautenhahn, K. (Eds.), Proceedings of the 4th International Conference of Cognitive Technology CT2001, 267-

281. University of Warwick, Coventry: UK.

Gooding, D. (1990). Experiment and the making of meaning, Kluwer Academic Publishers.

Goodman, N.D. (1994) Some current positions in the philosophy of mathematics, in Grattan-Guinness, I. A

Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences, Routledge, London

Grossman, T.A. (2002) Spreadsheet Engineering: A research framework. In Proceedings EUSPRIG 2002, 23-

34, 18th-19th July.

Harel, I., Papert, S. (Eds.) (1991), Constructionism, Ablex, Norwood, New Jersey.

http://www.ics.uci.edu/~eppstein/junkyard/beam
http://emuse.cti.gr/
http://www.dcs.warwick.ac.uk/modelling
http://empublic.dcs.warwick.ac.uk/projects
http://www.cabri.com/web/nsite/html/home.html

Jacobson, I., Christeron, M., Jonson, P., Overgaard, G. (1992). Object-oriented Software Engineering: A use-

case driven approach. Addison-Wesley.

Kalas, I., Blaho, A. (2000). Imagine… New Generation of Logo: Programmable pictures. In Proceedings of

WCC2000, Beijing, 427-430.

Kahn, K. (1996). ToonTalk™ – An animated programming environment for children. Journal of Visual

Languages and Computing 7, 197-217.

Lakatos, I. (1976). Proofs and Refutations. In Worrall, J., Zahar, E. The Logic of Mathematical Discovery,

Cambridge University Press.

Levi-Strauss, C. (1968). The savage mind. University of Chicago Press.

Nardi, B. (1993). A small matter of programming: Perspectives on End User computing. MIT Press.

Noss, R. Hoyles, C. (1996). Windows on mathematical meanings: Learning cultures and computers. Dordrecht:

Kluwer.

Papert, S. (1993). The children’s machine. New York: Basic Books.

Papert, S. (1996). An Exploration in the Space of Mathematics Educations, International Journal of Computers

For Mathematical Learning, 1(1), 95-123.

Papert, S., Harel, I. (1991). Situating constructionism. In Harel, I., Papert, S. (Eds). Constructionism: Research

reports and essays, Ablex Publishing, 1-11.

Papert, S., Watt, D., di Sessa, A., Weir, S. (1979). Final report of the Brookline Logo Project: Parts 1 and 11

(Logo Memos Nos. 53 and 54). Cambridge, MA: MIT Artificial Intelligence Laboratory.

Pratt, D. (1998). The construction of meaning in and for a stochastic domain of abstraction. PhD Thesis,

Institute of Education, University of London.

Pratt, D. (2000), Making sense of the total of two dice, Journal for Research in Mathematics Education, 31 (5),

602-625.

Roe, C. (2003). Computers for learning: An Empirical Modelling perspective. PhD Thesis, Department of

Computer Science, University of Warwick.

Roe, C., Beynon, W.M. (2002). Empirical Modelling principles for learning in a cultural context. In

Proceedings 1st International Conference on Educational Technology in Cultural Context, University of

Joensuu, Finland, 151-172.

Roe, C., Pratt, D., Jones, I. (2005, to appear) Putting the learning back into e-learning. Proceedings of

CERME4, Spain, February 2005.

Roe, C., Pratt, D., Jones, I. (2005, to appear) The Shotput Microworld. Published by Logotron Ltd, Cambridge,

UK.

Sannella, D. (1997). What does the future hold for theoretical computer science? In Proc. 7th Intl. Conf. On

Theory and Practice of Software Development (TAPSOFT’97), LNCS Vol.1214, 15-19, Springer.

Soloway, E. (1993). Should we teach students to program? Log On Education, CACM, 36 (1), 21-24.Stewart, I.

(2004). The great drain robbery, in Math Hysteria – Fun and games with mathematics, OUP.

Turkle, S., Papert, S. (1991). Epistemological Pluralism: Styles and Voices within the Computer Culture. In

Harel, I., Papert, S. (Eds.) Constructionism. Norwood, N.J. Ablex Publishing Corp, 161-191.

Turski, W.M., Maibaum, T.S.E. (1987). The Specification of Computer Programs, International Computer

Science Series, Addison-Wesley.

Vincenti, W. (1990). What engineers know and how they know it: analytical studies from aeronautical history ,

Johns Hopkins Studies in the History of Technology, Johns Hopkins University Press.

Watt, D. (1979). Final Report of the Brookline Logo Project Part III: Profiles of Individual Student's Work,

Logo Memo No. 54, MIT, 4.10 - 4.17.

Weblabs project website: http://www.weblabs.eu.com/

http://www.weblabs.eu.com/

