AUTHOR: Yih-Chang Chen

DEGREE: Doctor of Philosophy

TITLE: Empirical Modelling for Participative Business Process Reengineering

DATE OF DEPOSIT: 14 January 2002

I agree that this thesis shall be available in accordance with the regulations governing the University of Warwick theses.

I agree that the summary of this thesis may be submitted for publication.

I agree that the thesis may be photocopied (single copies for study purposes only).

Theses with no restriction on photocopying will also be made available to the British Library for microfilming. The British Library may supply copies to individuals or libraries, subject to a statement from them that the copy is supplied for non-publishing purposes. All copies supplied by the British Library will carry the following statements:

“Attention is drawn to the fact that the copyright of this thesis rests with its author. The copy of the thesis has been supplied on the condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the author’s written consent.”

AUTHOR’S SIGNATURE: ____________________________

USER’S DECLARATION

1. I undertake not to quote or make use of any information from this thesis without making acknowledgement to the author.

2. I further undertake to allow no-one else to use this thesis while it is in my care.

DATE __________________ SIGNATURE __________________ ADDRESS ____________________
dedicated to Jung-He and Ming-Mei, my dad and mum
Contents

Table of Contents ... ii
List of Tables.. vii
List of Figures... viii
Acknowledgments.. x
Declarations... xi
Abstract.. xii
Abbreviations ... xiii

Chapter 1 Introduction .. 1
1.1 Research Motivation and Aims... 1
1.2 Research Background ... 7
 1.2.1 Business Process Reengineering .. 7
 1.2.2 System Development .. 10
1.3 Thesis Outline.. 12

Chapter 2 System Development Re-Considered 16
2.1 System Ideas and System Development .. 16
 2.1.1 The Concept of ‘System’ ... 17
 Systems Thinking .. 18
 Systems Theories .. 21
 Systems Approach ... 22
 Systems Classes ... 24
 Checkland’s Soft Systems Methodology .. 26
 Computer ‘Systems’ and Software ‘Systems’ 29
 2.1.2 Software System Development .. 32
 The Systems Boundary ... 32
 System Development Process ... 33
 Structured Analysis and Design .. 37
2.2 Object-Orientation ... 39
 2.2.1 The Origins and Key Concepts of Object-Orientation 40
 The Difference between Structured and OO Methods 42
<table>
<thead>
<tr>
<th>2.2.2 The Claims and Problems of Object-Orientation</th>
<th>44</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.3 The Influence of Object-Orientation on System Development</td>
<td>47</td>
</tr>
<tr>
<td>New Culture of System Development</td>
<td>47</td>
</tr>
<tr>
<td>Human Factors and Organisations Affected by Object-Orientation</td>
<td>48</td>
</tr>
<tr>
<td>2.3 Circumscription</td>
<td>50</td>
</tr>
<tr>
<td>2.3.1 The Concept of Circumscription</td>
<td>50</td>
</tr>
<tr>
<td>Mathematical Models for Circumscribed Behaviour</td>
<td>51</td>
</tr>
<tr>
<td>Humans versus Computers</td>
<td>52</td>
</tr>
<tr>
<td>2.3.2 Open Development versus Closed World</td>
<td>54</td>
</tr>
<tr>
<td>Knowledge Construction versus Knowledge Representation</td>
<td>56</td>
</tr>
<tr>
<td>Open-Ended Modelling for System Development</td>
<td>57</td>
</tr>
<tr>
<td>2.3.3 The Evolutionary Paradigm for System Development</td>
<td>60</td>
</tr>
<tr>
<td>The Theory of Evolutionary Design</td>
<td>61</td>
</tr>
<tr>
<td>The E-Type Systems</td>
<td>63</td>
</tr>
<tr>
<td>2.4 Concluding Remarks</td>
<td>66</td>
</tr>
</tbody>
</table>

Chapter 3 Business Process Reengineering 68

3.1 Business Process Reengineering: Introduction 68

3.1.1 What is BPR? 69

3.1.2 The Key Concepts 72

3.2 Problems Facing BPR 76

3.2.1 Picking an Application and Changing Business Processes to Fit 77

3.2.2 Human Factors in BPR 78

3.3 System Development and Business Process Reengineering 81

3.3.1 The Relationship between Information Systems and Organisations 81

3.4 EM Approach to BPR: Preliminary 88

3.4.1 Participative BPR 88

3.4.2 Modelling Business Process 91

3.4.3 Requirements for BPR Models 93

3.5 Concluding Remarks ... 96

Chapter 4 Empirical Modelling Principles 97
4.1 Introduction ... 97
4.2 The Essential Empirical Modelling Concepts 100
 4.2.1 General Concepts and Principles ... 100
 Definitive Representation of States ... 102
 4.2.2 Software Tools for Empirical Modelling 104
4.3 Modelling Activities in EM .. 107
 4.3.1 The Modelling Process under the Definitive Notations 107
 4.3.2 Model Construction .. 109
 Computer-Based Model as Artefact .. 112
 4.3.3 The Comparison with Other Modelling Methods 115
 The Key Features of EM Modelling Process 116
4.4 Concluding Remarks .. 120

Chapter 5 Empirical Modelling, Object-Orientation and Use Cases. 122
5.1 Introduction ... 122
5.2 Object-Oriented Software Engineering (OOSE) 123
 5.2.1 General Concepts and Modelling Process 124
 Requirements Analysis .. 124
 Robustness Analysis ... 125
 Design .. 126
 Implementation and Testing .. 127
 5.2.2 The Use Case Concepts .. 127
 5.2.3 The Object Advantage .. 128
 Reverse Business Engineering and Forward Business Engineering .. 129
 Object Advantage and OOSE .. 131
 5.2.4 Some Potential Problems of Applying Use Case Approach 131
 Functionality Orientation vs Object-Orientation 132
 No Clear Definition ... 133
 Restricted to User Interface .. 134
5.3 The Comparison between EM and OOSE 134
 5.3.1 Comparison between the Development Processes 135
 Understanding of the Domain .. 142
 Functional Requirements Description 146
 Programming through Modelling vs Modelling through Programming 150
 5.3.2 Comparison between the Models .. 150
 The Concept of State .. 151
 Issues of Modularity and Reusability 152
5.4 Concluding Remarks ... 154

Chapter 6 Empirical Modelling for Participative BPR 155

6.1 Introduction ... 156
6.2 Participative Process Modelling and Participative BPR 157
 6.2.1 Participative Process Modelling .. 158
 6.2.2 Participative BPR ... 162
6.3 The SPORE Framework .. 165
 6.3.1 The SPORE Framework for Cultivating Requirements 166
 6.3.2 Applying EM to SPORE .. 167
6.4 Applying EM to System Development and BPR 172
 6.4.1 Understanding System Environment with LSD 175
 From Process Redesign to System Development 180
 6.4.2 EM for System Development .. 182
 LSD and ADM in System Development 182
 Requirements Elicitation and Validation 183
 The Construction of ISMs as Scenario-Based Design 186
 Process Modelling with ISMs .. 188
 The ISM as a Rapid Prototype ... 190
 ISMs for Decision Making Support 192
 6.4.3 Using SPORE for Participative BPR 194
 The Shifting Focus of Participative BPR 195
 The Characteristics of EM in BPR 197
6.5 Concluding Remarks ... 200

Chapter 7 Case Studies ... 203

7.1 Introduction .. 203
7.2 The Digital Watch ... 204
 7.2.1 The ISM for a Digital Watch .. 205
 7.2.2 The EM Development of the Digital Watch Model 206
 Participative Process Modelling for the Digital Watch Model 211
7.3 The Warehouse Management System 211
 7.3.1 Introduction to the Warehouse Example 213
 7.3.2 Business Process Model for Warehouse 216
 7.3.3 The ISMs for Representing the State in the Warehouse 224
 7.3.4 The Development of Warehouse Management System 229
 Introduction to EDDI ... 229
 Introduction to the Useful System 232
 The Development Process of the Useful System 236
 Participative BPR in the Warehouse Case Study 239
7.3.5 Concluding Remarks ... 243
Chapter 8 Conclusions and Further Work ... 245

8.1 Research Summary ... 245
 System Development and BPR .. 246
 Review of Empirical Modelling ... 247
 Participative Process Modelling and Participative BPR 249

8.2 Summary of Contributions .. 250
 Primary Contributions .. 250
 Limitations of the Research ... 251

8.3 Further Work .. 252

Appendices ... 254

A. LSD Account for the Warehouse .. 254
B. Details of the Agency in the Warehouse Process 259
C. Paper-Based Tables/Forms Used During the Warehouse Process 262
D. Scripts for the Warehouse System .. 265

Bibliography .. 279
List of Tables

Table 2.1 A Comparison of Paradigms ... 43
Table 2.2 A Comparison between Project Culture and Component Culture 48
Table 2.3 Current Statement of the Laws of Software Evolution 65
List of Figures

Figure 1.1 Various Roles of Participants in the Process of BPR .. 6
Figure 1.2 Requirements Engineering and Software Engineering 10
Figure 2.1 The Hard and Soft Systems Stances ... 29
Figure 2.2 Different Abstraction Levels over Time .. 35
Figure 2.3 The Waterfall Model Lifecycle .. 38
Figure 2.4 The Spiral Model Lifecycle ... 39
Figure 2.5 The Relative Efficiencies of Unstructured, Structured and Object-Oriented Development .. 44
Figure 3.1 Linking the World and Software ... 82
Figure 4.1 The Framework for the Modelling .. 103
Figure 4.2 Empirical Modelling and its Tools and Notations ... 108
Figure 5.1 The Process and Models in the Use Case Driven Development 125
Figure 5.2 The Lifecycle of the Use Case Driven Development 135
Figure 5.3 The Unified Development Procedure in Empirical Modelling 137
Figure 5.4 Contrast between OOSE and EM Approaches to System Development 139
Figure 5.5 The Requirements Process and Models in OOSE 140
Figure 5.6 Empirical Modelling and its Tools and Notations ... 141
Figure 5.7 The Scenarios in System Development ... 148
Figure 6.1 The SPORE Framework ... 166
Figure 6.2 The Experimental Interaction of a Participant ... 169
Figure 6.3 A Collaborative Working Environment for Cultivating Requirements 171
Figure 6.4 The Challenge of Realistic System Engineering ... 173
Figure 6.5 Normal Operation, Routine Rework and Exceptional Rework 175
Figure 6.6 The Real World and Abstract World in System Development 177
Figure 6.7 The EM Development Procedure as a Scenario-Based Design 188
Figure 7.1 The Digital Watch .. 205
Figure 7.2 The Visualisation of Mental Model of the Digital Watch 210
Figure 7.3 The Warehouse... 212
Figure 7.4 The Overview of a Warehouse .. 214
Figure 7.5 Forklift Truck ... 215
Figure 7.6 Snapshot of the Warehouse Process .. 216
Figure 7.7 Diagram of the Initial Warehouse System with Actors Identified 217
Figure 7.8 A Collaborative Working Environment for Manual Redistribution Between Warehouses .. 220
Figure 7.9 (A) Detailed View of the Forms Used in the Warehouse Artefacts 221
Figure 7.9 (B) Detail of Panels Representing Observables (handles and oracles) for Some Warehouse Agents ... 221
Figure 7.10 A Diagrammatic Summary of an LSD Account of Warehouse Processes 225
Figure 7.11 (A) Physical State of Warehouse ... 226
Figure 7.11 (B) Form Showing Individual Item Status ... 226
Figure 7.12 Tables Showing Comprehensive Item Status .. 227
Figure 7.13 A Snapshot of EDDI Script .. 230
Figure 7.14 The Window Interfaces for Foreman and Office Personnel 234
Figure 7.15 The Window Interface for Warehouse Worker .. 235
Figure 7.16 Two Tables for the Comparison by the Office Personnel 242
Acknowledgments

I am deeply indebted to many persons who have provided help, support and encouragement. First of all, I would like to thank my supervisor Dr Steve Russ for his unvaluable help, advice, patience, and unselfish support throughout the preparation of this thesis. I would surely not have been able to finish this thesis without his help. Warm thanks also to Dr Meurig Beynon, my adviser, for his fruitful discussions and comments during this research. I would also like to thank my colleagues and other friends both in Empirical Modelling Group and in this department.

I also owe thanks to all my friends here during the period of my MSc study in LSE and doctoral programme in Warwick, who made my life of study rich and joyful: Dr James Backhouse (my supervisor in LSE), Dr Sedat Agan, Harun Esen, Russell Lewis, James Nyman, all members of WTC, and to all other friends in UK, Taiwan and Turkey for their help and friendships.

Finally, I would like to express my heartfelt gratitude to my dear parents Jung-He and Ming-Mei for sharing their life-wisdom and giving crucial advise in difficult situations. Also warm thanks to my elder brother Yih-Lang. Without their support this thesis would never have been completed.

Further thanks goes to Dr Chrystopher Nehaniv for his constructive comments during the viva and to Steve Russ and Meurig Beynon for their useful help on this final version.
Declarations

This thesis is presented in accordance with the regulations for the degree of Doctor of Philosophy. It has been composed by myself and has not been submitted in any previous application for any degree. The work in this thesis has been undertaken by myself except where otherwise stated.

The perspective of Empirical Modelling for Business Process Reengineering has been published in (Chen et al., 2000a). The various aspects concerning the application of EM to Participative Process Modelling have been presented in (Chen et al., 2000b). The view of Interactive Situation Models relating to software system development and the framework of SPORE have been proposed in (Sun et al., 1999). Some of the technical work for the example of the warehouse management system has been described in (Chen et al., 2000a), (Chen et al., 2000b) and (Sun et al., 1999).
Abstract

The purpose of this thesis is to introduce a new broad approach to computing – Empirical Modelling (EM) – and to propose a way of applying this approach for system development so as to avoid the limitations of conventional approaches and integrate system development with business process reengineering (BPR). Based on the concepts of agency, observable and dependency, EM is an experience-based approach to modelling with computers in which the modeller interacts with an artefact through continuous observations and experiments. It is a natural way of working for business process modelling because the modeller is involved in, and takes account of, the real world context. It is also adaptable to a rapidly changing environment as the computer-based models serve as creative artefacts with which the modeller can interact in a situated and open-ended manner.

This thesis motivates and illustrates the EM approach to new concepts of participative BPR and participative process modelling. That is, different groups of people, with different perceptions, competencies and requirements, can be involved during the process of system development and BPR, rather than just being involved at an early stage. This concept aims to address the well-known high failure rate of BPR. A framework SPORE (situated process of requirements engineering), which has been proposed to guide the process of cultivating requirements in a situated manner, is extended to participative BPR (i.e. to support many users in a distributed environment). Two levels of modelling are proposed for the integration of contextual understanding and system development. A comparison between EM and object-orientation is also provided to give insight into how EM differs from current methodologies and to point out the potential of EM in system development and BPR. The ISMs (interactive situation models), built using the principles and tools of EM, are used to form artefacts during the modelling process. A warehouse and logistics management system is taken as an illustrative case study for applying this framework.
Abbreviations

ADM Abstract Definitive Machine
AI Artificial Intelligence
AMORE A Methodology based on Object-Orientation for Reengineering Enterprises
BPR Business Process Reengineering
BPRC Business Processes Resource Centre
CORBA Common Object Request Broker Architecture
CREWS Cooperative Requirements Engineering With Scenarios
DEM Distributed Empirical Modelling
DoNaLD Definitive Notation for Line Drawing
DSS Decision Support System
EDDI Eden Definition Database Interpreter
EDEN Evaluator for Definitive Notations
EM Empirical Modelling
GST General System[s] Theory
HCI Human-Computer Interaction
IS Information System[s]
ISM Interactive Situation Model
IT Information Technology
LSD Language for Specification and Description
LSE The London School of Economics and Political Science
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIS</td>
<td>Management Information Systems</td>
</tr>
<tr>
<td>MIT</td>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>OMG</td>
<td>Object Management Group</td>
</tr>
<tr>
<td>OMT</td>
<td>Object Modelling Technique</td>
</tr>
<tr>
<td>OO</td>
<td>Object-Orientation; Object-Oriented</td>
</tr>
<tr>
<td>OOBEB</td>
<td>Object Oriented Business Engineering</td>
</tr>
<tr>
<td>OOSE</td>
<td>Object Oriented Software Engineering</td>
</tr>
<tr>
<td>RE</td>
<td>Requirements Engineering</td>
</tr>
<tr>
<td>SCCS</td>
<td>Source Code Control System</td>
</tr>
<tr>
<td>SCOUT</td>
<td>Notation for Screen Layout</td>
</tr>
<tr>
<td>SPORE</td>
<td>Situated Process of Requirements Engineering</td>
</tr>
<tr>
<td>SSM</td>
<td>Soft System Methodology</td>
</tr>
<tr>
<td>TQM</td>
<td>Total Quality Management</td>
</tr>
<tr>
<td>UML</td>
<td>Unified Modelling Language</td>
</tr>
</tbody>
</table>