
Modelling the IceCube approach to reconciliation of
divergent replicas

Abstract

IceCube is a recent technology developed by Microsoft. Its purpose is to deal with the issue of recon-
ciling divergent replicas of some shared system state, which can occur in e.g. multi-user concurrent
systems. In other words, when users of a computer system each make modifications to a local copy
of some global state, it is necessary at some point to merge these modifications in order to obtain
some new, updated global state. Conflicts between local system updates can make the reconciliation
complex or even impossible, and IceCube attempts to address this issue on an application-independent
basis. Its algorithm relies heavily on the notion of constraints between modifications done by users.
As these constraints have to be specified by the application programmer, the use of IceCube can be a
very difficult task. This paper presents the argument that a model of the IceCube reconciliation process
based on EM principles has applications both as an educational and an experimental tool.

1 Introduction

The process of reconciliation1 is one of interplay
between man (or at least between some intelligent
agent, perhaps AI) and machine, as it inherently in-
volves non-automated decision-making. To design a
process to keep human interaction to a minimum re-
quires tremendous insight into the relationships be-
tween the properties of an application’s state. The
IceCube project has attempted to abstract some of
these relationships. The result is a generalized rec-
onciliation process which can be used across a wide
spectrum of applications, together with a complex in-
terpretation and optimisation task for each applica-
tion developer. The focus of this paper is to describe
how the Eden model (see ?) combined with EM prin-
ciples can assist humans in this context, both in terms
of using IceCube effectively and conducting experi-
ments which could result in improved reconciliation
algorithms in the future. We will commence by giv-
ing a short introduction to IceCube, followed by an
outline of the model which was developed and a dis-
cussion of its possible uses in terms of EM princi-
ples. Finally we will give an account of the theme of
this paper in a wider context and suggest future work
which could enhance the model.

1Reconciliation is here taken to mean merging copies of some
state that have developed independently

1.1 Introduction to IceCube

IceCube is a general-purpose framework for reconcil-
iation of divergent replicas. It is highly generic in the
way that it can be used with any type of system that
has an explicit state. Replicas of this state evolve in-
dividually, each through a sequence of state changes,
called actions, from a pre-defined set of possible ac-
tions. Such a sequence is called a log, and IceCube
can subsequently be used to develop a new global sys-
tem state which is consistent with all the replicas. The
technical details of IceCube are not discussed further
in this paper, but are described in ?. Example appli-
cations that could potentially use IceCube include file
versioning systems (e.g. source code or document de-
velopment) and server-based business software (e.g.
meeting planner systems).

2 Model development

2.1 Modelling approach

The modelling approach taken here is based upon
agent-oriented programming aspects, the most impor-
tant aspect being that of inherent focus on the pro-
cesses of action and perception. Although the real-
world state is abstracted in our model (we will come
back to this later), we are concerned with represent-
ing the observations that can be made of this state, as
well as relationships between these observations. In
this context, the part of the reconciliation engine of



IceCube that we are modelling is seen as an agent.
Other agents will be identified and described later,
however, the artefact’s own agent is special in the way
that it embodies the current state of the reconciliation
process, and actuates autonomous responses to other
agents’ actions consistent with the reconciliation al-
gorithm.

2.2 Applicability of model

It must be noted at this point that the model devel-
oped is not suitable for use by applications that wish
to utilise the IceCube reconciliation approach. The
most obvious reason for this is that it lacks the ability
to run simulations on a given state, which is an inte-
gral part of the reconciliation progress (see ?). This
use was, however, not an intended result of the mod-
elling study. There are different people, each with
a unique role, that provide input to the reconciliation
engine in its real-world use (see figure 1). In our mod-
elling study, these roles map onto agents each with
a different set of actions that have the effect of mod-
ifying the observables within the model. Each agent
also has the opportunity to perceive modifications to
the state resulting from its own and other agents’ ac-
tions, through the system’s graphical interface. The
next section discusses how the model is designed to
aid the external agents’ construal of its state.

Figure 1: The figure shows the different agents in-
volved in the reconciliation process. Integral to the
process are the order functions which describe rela-
tionships between admissible log actions. The logs to
be reconciled, the application state on which they are
based and dynamic constraints between actions are
supplied at runtime.

3 Agency, observables and de-
pendencies

In the context of this modelling study, one of the
main focus points is how observables and dependen-
cies within the model relate to agents. This section
will discuss this in relation to the human agents.

3.1 The application programmer

As mentioned earlier, it is up to the application pro-
grammer to supply the so-called ”order functions”,
which really are constraints on the ordering of pairs
of actions in the output of the algorithm, i.e. the fi-
nal log. There are many factors which influence the
programmer’s choice of order functions. One is strict
rules, such as the fact that two meetings cannot be
planned in the same slot (cf. example in ?). Another
is qualitative reasoning, like ”it makes sense to carry
out meeting cancellations before new requests” (this
could for example imply that the order function for
”request” followed by ”cancellation” ought to be set
to unsafe, as in the example in ?). To experiment with
different order functions in order to find an optimal
one, the programmer needs to be able to interact with
the reconciliation process. The IceCube model offers
such interaction in the form of buttons for input, a
graphical display and text output.

As this model is intended to be an experimental
tool rather than an ”application” in the more main-
stream sense, we will not try to enumerate the ways
in which the programmer could approach this model.
However, one possibility is to try out different or-
der functions for a specific pair of input logs. He
could then use the automation functionality to ob-
tain the successive output actions that the algorithm
suggests. By assuming that dynamic conflicts oc-
cur often, the programmer could perceive the alterna-
tives that the algorithm suggests and thus assess the
success of his choice of order function in restricting
the search space for an admissible output. Another
possibly fruitful approach might be to inspect the di-
rected graph that shows the dependency (red edges)
and safe (blue edges) relations: Many red edges could
be a positive sign because it restricts the possible
orderings of actions and thus constricts the search
space, but loops in the red graph makes the recon-
ciliation problem impossible to solve. Conversely, a
limited number of blue edges could reduce the search
space for the next output action, while both no blue
edges leaving the current node and edges going to
all remaining nodes will leave the search space un-
restrained. Through experience with the model, the



author believes that many more such relationships be-
tween dependencies and observables could be found.

Of course, the programmer also needs to make sure
that the order function he uses always finds a solution
to the reconciliation problem if such a solution does
in fact exist. In this context, it might be useful for him
to use a pen and a notepad to sketch solutions to spe-
cific problems and their successive states after each
action. The Empirical Modelling concept of ”think-
ing with computers” is evident here: As the program-
mer enters order functions through the model’s inter-
face, he can observe the results of the dependencies
within the artifact and connect these perceptions with
the perhaps more concrete state representations on his
notepad. In this way, the combination of the model
and notepad complement each other, and should help
improve the programmer’s construal of the concrete
state of the reconciliation process.

3.2 Other potential agents

As stated earlier, the model abstracts the concrete
state of the process. In other words, it only takes into
account the relationships between successive actions
on a state; it does not consider these actions in rela-
tion to the state itself. During reconciliation, dynamic
conflicts which the stateless algorithm cannot possi-
bly foresee take place, and this is the reason for the
dialogue following each step (see ? for hints about
how to use the model). An application administrator
wants answers to such questions as ”is a certain set
of logs reconcilable based on the current state and or-
der functions” and ”what sort of application-specific
information does the reconciliation engine require”.
Answering the latter of these questions could help in
creating AI agents to supply dynamic information to
IceCube when implemented. Experiments with the
output dialogue could help give the application ad-
ministrator a better understanding of answers to both
these questions.

Other human agents who could potentially benefit
from experimenting with the model include system
programmers with an interest in reconciliation algo-
rithms. For instance, such a person could observe the
dependencies between different inputs and the graph
relations, and use his understanding to invent new re-
lations to improve the algorithm. Such understanding
could also be used to improve the artefact itself, and
this will be further discussed in section 4.

4 Evaluation

Rather than trying to embed the whole reconcilia-
tion process through a closed-world assumption, the
definitive script only captures the dependencies be-
tween the underlying mathematical structures and ob-
servables that attempt to assist the human experi-
menter’s construal. The model takes into account
only a part of IceCube’s functionality; it does not, for
example, consider the process of simulation, which
links the logs with the state upon which they are
based. This is one aspect which could foreseeably
be included in the model in the future. As simulation
is less directly related to human input to the process,
it is perhaps of less importance in this context. An-
other future extension could be expansion in terms
of input size, i.e. the number of order functions, logs,
and permissible actions. Finally, observables that cur-
rently have to be modified indirectly through the in-
terpreter could be brought into the graphic display of
the model in accordance with the ”thinking with com-
puters” principle.

5 Conclusion

The author believes that the model discussed in the
paper is a good starting point for anyone who wants
to experiment with the functionality of IceCube. This
paper has discussed the construction and important
properties of the model, and identified some of the
agents that might have an interest in its use. It has
argued that through EM principles, people in differ-
ent roles can get insight into IceCube’s reconciliation
algorithm and how to use it effectively.


