
An Empirical Modelling Approach to Text Processing

0821769

Abstract

This paper discusses the application of Empirical Modelling(EM) principles and techniques to text
processing. The paper then presents a specification for such an environment. The corresponding model
is a partial implementation of this in EDEN(Engine for Definitive Notations). Finally, the model is
evaluated and further improvements are suggested.

1 Introduction and Discussion of
Problem

Text processing remains one of the most widespread
uses of computers in both professional and personal
work. As such, there is a wide range of text pro-
cessors available, with variations depending on the
ultimate aim of the user.

The aspect of Empirical Modelling(EM) con-
sidered by the paper is the construction of models
focused around dependencies between observables
in an environment.

In this paper, I will look at how an approach
based around Empirical Modelling(EM) could be
used to create a syntax or piece of software that
would allow for a both powerful and intuitive form
of text processing. In addition to this, I would also
like to consider how the software could be used to
develop models for a piece of EM software, such as
EDEN.

In EM, much focus is placed on ’Modelling
with Definitive Scripts’, necessarily leading to the
need to process text in some way. This form of devel-
opment can lead to problems and habits encountered
to conventional programming. The user may identify
dependency within the text, but be unable to act upon
it without the use of specialized editors or macros.
This may lead to tedious ’copy paste’ behaviour or
extensive editing.

The user may also want to use unrefined con-
tent in the text editor without committing it to the
final document. An EM framework would allow for
incomplete or redundant text to be marked as such
and omitted from the final document.

N. Pope (2010) discuss how EM principles lend
themselves to software development. This paper aims

to embody some of these principles in a tool that
would allow the user to process text in the more intu-
itive manner provided by EM.

2 Formulation of Approach

Fundamentally, I would the EM text framework
developed will consist of two parts; the text itself and
the ’script’ necessary to describe the relationships
and dependency in the text.

This approach allows the user to take conven-
tional text and add structure to it, by building up
a complementary script and perhaps adding ’meta
characters’ to the text to identify the observables as
the user wishes to describe them.

The syntax must also be able to address the
most common forms of variation in this context:
corresponding numbers to a list of names or letters,
generating desired permutations and combinations of
numbers and so on.

The EM project Lines, Beynon (1991), provides an
example of where this could be applied:

d1213 i s 1 i f t h e c r o s s i n g i n d e x of
l i n e s 1 and 2 d i f f e r s from t h a t o f

l i n e s 1 and 3 and l i n e 4 doesn ’ t
c r o s s l i n e 1 between i t s p o i n t s

o f i n t e r s e c t i o n wi th l i n e s 2 and 3
d1334 = i f ! (x13==x34) && ((r23−r13) ∗ (

r23−r34) >0) t h e n 1 e l s e 0
d2334 = i f ! (x23==x34) && ((r13−r23) ∗ (

r13−r34) >0) t h e n 1 e l s e 0
d1224 = i f ! (x12==x24) && ((r23−r12) ∗ (

r23−r24) >0) t h e n 1 e l s e 0
d1223 = i f ! (x12==x23) && ((r24−r12) ∗ (

r24−r23) >0) t h e n 1 e l s e 0
d1323 = i f ! (x13==x23) && ((r34−r13) ∗ (

r34−r23) >0) t h e n 1 e l s e 0

d1424 = i f ! (x14==x24) && ((r34−r14) ∗ (
r34−r24) >0) t h e n 1 e l s e 0

d2434 = i f ! (x24==x34) && ((r14−r24) ∗ (
r14−r34) >0) t h e n 1 e l s e 0

d1434 = i f ! (x14==x34) && ((r24−r14) ∗ (
r24−r34) >0) t h e n 1 e l s e 0

d1213 = i f ! (x12==x13) && ((r14−r12) ∗ (
r14−r13) >0) t h e n 1 e l s e 0

d1214 = i f ! (x12==x14) && ((r13−r12) ∗ (
r13−r14) >0) t h e n 1 e l s e 0

d1314 = i f ! (x13==x14) && ((r12−r13) ∗ (
r12−r14) >0) t h e n 1 e l s e 0

d2324 = i f ! (x23==x24) && ((r12−r23) ∗ (
r12−r24) >0) t h e n 1 e l s e 0

Note that in the above section of code from the EM
project, the overall structure of each line is very sim-
ilar; the only difference is some parts of observable
names changing. The ultimate aim of this paper is
provide a notation that could represent text similar to
the above code in a single line.

3 Technical Layout

At the core of the idea of the Empirical Modelling
Text Notation(EMTN) is the decomposition of the
source text, whether it be from a source text or
directly from the user, into smaller text fragments
(henceforth just ’fragments’ for brevity).

Throughout the text the beginning and ends of
fragments will be denoted by the characters ’< ’ and
’>’ respectively. Due to the possible applications of
EMTN in programming, ideally, these start and end
characters should be changeable as to not conflict
with the code in cases where the text contains the
characters ’< ’ and ’>’ itself. As a solution to this
problem, the user should be able to escape these
characters by prepending a backslash character or
similar.

Once the text has been divided as such, a tree-
like structure will emerge. The text that remains at
the top level fragment will be at the root of the tree
and fragments at lower levels will belong to a parent
fragment.

Diagram 1 is a visual example of this struc-
ture.

The fragments will be linked with definitive
statements, which can be modified by the user as
necessary. (In the model, this will be done through
EDEN statements.)

Most importantly, once the text has been divided
into fragments, the user will be able to replace text
fragments with ’function fragments’. The function
fragments are one of a number of functions that will
specify a range of values.

The functions are listed below:

• seq(A-B) - Outputs a natural number sequence
from A ∈ N to B ∈ N. (Inclusive)

• per(S) - Outputs all possible permutations of an
input string S. Hence there will be the number of
characters in S factorial outputs.

• shft(S) - Outputs all permutations of an in-
put string S that maintain relative order. e.g.
S=”123” shft(S) = ”123”,”231”,”312”.

• cyclelist(L) - Outputs all the elements of an input
list L individually.

• uchar(n) - References a function with a numeric
output n ∈ N and returns the nth letter of the
alphabet in upper case. (modulo 26)

• lchar(n) - References a function with a numeric
output n ∈ N and returns the nth letter of the
alphabet in lower case. (modulo 26)

Once the user has added these function fragments,
the user can then ’compile’ the final text.

Any fragment with a function fragment as a
child is replicated. Each replication of this fragment
will contain the text of the original fragment with
one of the output values of the child function. If
there are multiple instances of the same function as
the children of a fragment, the output values from the
function are placed in each of the occurrences. For
example:

AAA<BB<seq (1−2)>CC<seq (1−2)>DD>EE

becomes:

AAABB1CC1DDBB2CC2DDEE .

Once all the function fragments have been processed,
the fragments can be assembled into the final text.

4 Model Implementation
I decided to implement a partial version of the
specification described above in EDEN(Engine for
Definitive Notations). The definitive structure of
EDEN lends itself well to the framework necessary

for the above structure. Additionally, the proposed
piece of software should aid in the further develop-
ment of scripts for EDEN.

EDEN was originally developed for a text edi-
tor model, Yung (1987), although this text editor
worked in a more conventional style - using vi key
commands, the definitive functionality was mainly
used internally by the program, to track screen size
and cursor location. In this model, we hope to
create something more akin to a tool to help with
development in an EM style, than a conventional tool
developed in an EM style.

Only a simple GUI structure is necessary for
the model. I will be using two text boxes and two
buttons.

The first text box will contain the user’s input
and the second will contain the output of the model.
One of the button will invoke the pre-processing
that needs to be performed on the text. This pre-
processing will parse the text containing the ’< ’ and
’>’ characters and pass the result into an appropriate
data structure.

Ideally this pre-processing would take place au-
tomatically in response to valid user input. In
this model however, in order to demonstrate the
principles of the proposed notation, this must be
done manually.

The second button will perform the final ’com-
pile’ of the text. After the user has made changes
to the structure of the code and inserted function
fragments, this button will output the final result to
the second text box after processing the function
fragments.

The two most crucial processes in the model
are the functions that are called by the buttons: the
process text function and the compile text function.

Due to these functions involving significant amounts
of string processing, they may have a more procedu-
ral flavour than many empirical modelling programs.
This is necessary in order to create the environment
in which the user of the model can interact with text
as observables with dependencies.

The model may also have reduced functionality
compared to the outline above. The model is more
important as a proof of concept; a demonstration of

the feasibility of the proposed syntax.

5 Assessment of Model
The final model has a number of shortcomings, but
ultimately performs as intended when the functions
that have been implemented are invoked.

5.1 Replication of text through seq
• Let the input text be

” (code) < v a r i a b l e <x>=0> (more code
) ” .

• Perform text pre-processing.

• Set B1f=

” seq (1−12) ” .

Previously B1f=

” x ” .

• The compiled text then becomes:

” (code) v a r i a b l e 1 =0 v a r i a b l e 2 =0
v a r i a b l e 3 =0 v a r i a b l e 4 =0
v a r i a b l e 5 =0 v a r i a b l e 6 =0
v a r i a b l e 7 =0 v a r i a b l e 8 =0
v a r i a b l e 9 =0 v a r i a b l e 1 0 =0
v a r i a b l e 1 1 =0 v a r i a b l e 1 2 =0 (
more code) ”

This process replicates a line of code with the correct
variation specified by a function fragment.

5.2 Comments and ignoring text
• Let the input text be

” Th i s i s c o n t e n t . < Thi s i s a
comment.>Thi s i s more c o n t e n t . ”

• Perform text pre-processing.

• Set A1f=

” ” .

Previously A1f=

” Th i s i s a comment . ”

• The compiled text then becomes:

” Th i s i s c o n t e n t . Th i s i s more
c o n t e n t . ”

This is perhaps a trivial use of the functionally
available in EDEN, but demonstrates the ease with
which unwanted sections of the text can be removed.

5.3 Multiple references to a function
fragment

• Let the input text be

” (t e x t)< Thi s i s l i n e < x>. I
r e p e a t , l i n e < x>.>(more t e x t)
” .

• Perform text pre-processing.

• In EDEN, set:

B2f i s B1f ;
B1f = ” seq (1−3) ” ;

• The compiled text then becomes:

” (t e x t) Th i s i s l i n e 1 . I r e p e a t ,
l i n e 1 . Th i s i s l i n e 2 . I r e p e a t
, l i n e 2 . Th i s i s l i n e 3 . I
r e p e a t , l i n e 3 . (more t e x t) ”

The model allows the user to place multiple refer-
ences to a single function fragment throughout a
parent fragment by using the definitive notation of
EDEN.

5.4 Replication of text through a comma
separated list

• Let the input text be:

” H e l l o < name> ,
Th i s i s a l e t t e r .
Regards ,
Ro be r t S t e e l e
”

• Perform text pre-processing.

• Set A1f=

” c y c l e l i s t (James , Alex , Fred , Leon) ” .

Previously A1f=

”name ” .

• The compiled text then becomes:

” H e l l o James ,
Th i s i s a l e t t e r .
Regards ,
Ro be r t S t e e l e

H e l l o Alex ,
Th i s i s a l e t t e r .
Regards ,
Ro be r t S t e e l e

H e l l o Fred ,
Th i s i s a l e t t e r .
Regards ,
Ro be r t S t e e l e

H e l l o Leon ,
Th i s i s a l e t t e r .
Regards ,
Ro be r t S t e e l e ”

This demonstrates the usage of the model as a mail-
merge tool. This can easily be adapted to a more
general version of the seq function, but requiring
additional input.

5.5 Shortcomings of the Model
Of the function fragments described in the previous
section, only seq, shft and cyclelist have been
implemented.

Additionally, the number of text fragments at
each ’level’ is limited. The main text may only
contain 3 child fragments, each of which can only
contain 3 child fragments. Furthermore, these
fragments cannot contain child fragments.

The maximum fragment tree is as in diagram 2,
attached at the end of the paper. In this diagram, the
fragments are labelled by the index they appear in
the model as.

The current model does not recognise escaped
characters. Any ’< ’ or ’>’ characters will be treated
as fragment markers.

A major drawback of the model is the inability
to perform ’two dimensional’ loops. Currently,
the model lacks the ability for a fragment to have

multiple function fragments as children. This means
that, for example:

A<seq (1−2)>B<seq (3−4)>C

does not output the desired:

A1B3C
A2B3C
A1B4C
A2B4C

I firmly believe that this is an achievable aspiration
for the model. Further development of the model
should manage this, but a fundamental restructuring
may be required, which I do not have the time to im-
plement.

6 Conclusion

In this report I have outlined a framework for an EM
text processing environment. The model in EDEN
included with the report demonstrates the feasibility
and functionality of this.

The model has multiple shortcomings, many of
which I believe could be remedied with extended
development. If completed, the program described
in the specification would provide a powerful text
manipulation tool that both embodies the principles
of EM and would aid the development of further
models.

References

M. Beynon. Lines. Empirical Modelling Archive,
1991.

M. Beynon N. Pope. Empirical modelling as an un-
conventional approach to software development.
Proc. SPLASH 2010 Workshop on Flexible Mod-
eling Tools, 2010.

E. Yung. Unconventional text editor. Empirical Mod-
elling Archive, 1987.

