The Interpretation of States: a New Foundation for Computation?

W M Beynon, S B Russ
Dept of Computer Science, University of Warwick, Coventry CV4 7AL

Abstract

Computation is a central concept in computer science. The mathematical theory of
computation, with its historical origins that predate the computer, has been most
influential in the development of programming languages, tools and
methodologies. The study of psychological aspects of computation is by
comparison a new concern that has developed largely as a post hoc investigation
of contemporary methods of programming; it has yet to make a serious impact
upon computer science theory.

In this paper, we shall argue that concerns about perception and interpretation that
are significant in psychology should be a primary source of insight into the new
models of computation that will shape future developments in computer
programming. To this end, we reconsider fundamental issues concerning the
nature of computation and its relationship to mathematics and cognition. In
particular, we shall explain how computation has to be understood with reference
to

« physical processes that are perceived to undergo changes of state
. éonceptual methods for interpreting state changes in computational terms.

Brief references to our work on agent-oriented programming using definition-
based representations of state will be used to explain our thesis.

Introduction
Understanding computation is a fundamental concem for computer science.

The work of logicians such as Turing, Post, Curry and Herbrand has made a major
contribution to the theory of computation. We know what it means for a function to be
computable. We have developed programming languages and techniques to implement
computable functions. We can understand many programs both in abstract mathematical
(declarative) terms and in concrete operational (procedural) terms. We have powerful
methods for transforming functional and logical abstractions into executable programs.

Other aspects of computation are not so well understood. When specifying the user-
interface, describing interaction and concurrency, representing program design or
developing complex electronic / mechanical systems, we view computation in a
different way. In these contexts, human interpretation of computation is at least as
important as automatic execution. The way in which computational state is
communicated — whether to the programmer, the user or to computational agents within
the system itself — becomes significant. It is then harder to make effective use of non-
procedural abstractions based on conventional mathematical variables.

This paper describes our progress towards developing a more general theory of
computation to suit the needs of modern computer science. The principal source of
ideas for this theory is a programme of research into a new method of programming




that is agent-oriented and depends upon the use of scripts of definitions for the
representation of computational state. Detailed discussion of this research programme is
beyond the scope of this paper; for more background, the reader may refer to [3].

Our presentation is influenced by a recent paper of Harel [10] to be discussed in §1.
Harel draws a parallel between one-person programming and reactive systems!. His
paper argues that the incremental developments that so transformed the process of
writing correct and efficient one-person programs in the period 19501975 are a pointer
to how the challenges of engineering reactive systems will be met in the future. Harel
outlines a "vanilla" approach to reactive systems development that presumes no radical
change to our existing theoretical framework. :

Harel’s paper is a good point of reference from which to view our proposals. We aim
to be more discriminating than Harel in explaining why — and to what extent — “the
werewolves of one-person programs have gone, never to return”. In our view, the
programming problems we have resolved since 1950 are primarily those within the
scope of the conventional mathematical theory of computation, whilst the difficulties of
reactive systems engineering stem from the limitations of the present theoretical
framework. On this basis, we seek an approach to reactive systems development based
upon more general foundational principles.

A second influence is a paper by Smith [18], in which he argues — contrary to the
Logicist school of thought in Al — that variants of traditional logic? are an inappropriate
basis for knowledge representation. Smith's concern is expressed in terms of the
relationship between the first and second factors of formal models. For programming
systems, the first factor is associated with program execution and the traditional theory
of computation. The second factor is associated with program interpretation; it has yet
to be satisfactorily formalised. Relating first and second factors is crucial in
requirements analysis for reactive systems. This corroborates our view that alternative
foundations are needed for a satisfactory account of these and other issues encountered
in modern programming practice.

The overall plan and issues in the paper are as follows

+ How does the traditional mathematical theory of computation influence
computer programming in modern applications? (§'s 1.1, 1.2, 1.3))

«  What are the problems, and how can we address them? (§'s 1.4, 2.1,2.2,2.3)

« How can we reconcile the different views of computation? (§2.4)
1. Modern computer science and the classical theory of computation

1.1. Programming and the theory of computation

In [10), Harel makes an informal distinction between two kinds of programming
activity: one-person programming and reactive systems engineering. In this paper, we
examine the relationship between one-person programming and reactive systems
engineering from a different perspective. We shall argue that:

1 the term reactive system was introduced by Pnueli to describe a class of embedded, concurrent and
real-time systems. Such systems are not data intensive, but have a complex interactive behaviour.

2 following Smith [18], we use the term "variant of traditional logic™ in a broad sense to embrace the
exotic forms of modal and non-monotonic logics that have been proposed in Al For us, the factor that
characterises conventional foundations is the presumption that (at some level of abstraction)
mathematical variables with static interpretations are invoked (cf [7]).




» one-person programming and reactive systems engineering are tasks of the
same essential nature

» both involve an interaction between two aspects of programming, the first and
second factors in the sense of Smith [18]

» the second-factor is relatively much more important in reactive systems
engineering than in one-person programming

» the ease of a programming task depends largely upon the extent to which we
can separate first and second factor concerns.

We also propose fundamental concepts for a theory of computation that takes account
of the second factor.

1.2. The first factor of programming

Specifying a program has two aspects. A program has to be executable. It also has to
be interpretable. Paraphrasing Smith [18], we shall regard "what must be directly
realised in a physical substrate if a program is to do any work" as defining the first
factor of a program and "what the symbols in the program mean, what they're about"
as defining the second factor. An adequate theory of computation must allow a high
degree of interaction between these two factors.

The term "programming" is primarily used with reference to the first-factor, as in the
dictionary definition of a program [9]: "the sequence of actions to be performed by an
electronic computer in dealing with data of a certain kind". This definition adequately
characterises the first-factor component of one-person programs. A reactive system can
also be interpreted as a program, subject to substituting "every agent that can potentially
be programmed to change the state of the system" (be it a mechanical, electronic or
human agent) for "electronic computer".

The mathematical theory of computation provides a rigorous concept of "program” that
captures the notion of executability in a most satisfactory manner. This theory formally
identifies programming with the solution of algorithmic problems. Such problems take
the form: given an input of a certain class, compute an output that is a pre-defined
function of this input. The Turing machine was conceived with computational problems
of this nature in mind.

Programming a Turing machine to solve an algorithmic problem supplies the paradigm
for all forms of computer execution. The programmer conceives how a functional
relationship can be encoded in terms of input and output states of the computer and
devises a computer program to define the appropriate transformation from input to
output states. When the program is used, the user specifies the input state, the computer
executes the program and the user interprets the output state.

In computing, the study of algorithmic problems has had a central role. Historically,
computers developed from devices for performing special-purpose computations,
where calculation was performed mechanically without user intervention. The batch
processing paradigm (preparing a program and data, presenting input to the computer,
then consulting the output on termination) reinforced a computational stereotype well-
matched to the classical mathematical model. Essential concepts such as computability
and feasibility necessarily had to be defined with reference to algorithmic problems.

Semantic models for computer programs are generalisations of the algorithmic problem
solving model. To describe a program formally is to preconceive its execution to such
an extent that its behaviour can be described declaratively, that is, using only non-
procedural mathematical variables [7]. Representing ever richer forms of preconceived
knowledge has been an important influence behind the development of standard




computational models and languages for practical use, and of mathematically
sophisticated theoretical models. With ingenuity, functional relationships between input
and output can be interpreted as programs with preconceived patterns of interaction (as
in e.g. the pure functional programming language Haskell [12] §7). Similar
development have occurred in Al, where logicism aspires to encapsulate knowledge

prior to the execution of a plan [14].

Crucially, it is the conventions that define formality as it is generally understood that
limit the scope of such generalisations. Constructing a reactive system involves a
complex process of requirements analysis that must be computer-assisted, yet cannot be
formalised in a conventional formal framework. Extensions of classical logic and
declarative programming may in principle extend the range of programmed activity that
can be preconceived, but interaction between interpretation and execution is essential in
computer-aided design. And, as Smith remarks [18], such interaction between first and
second factors is inconsistent with what most theorists deem to be "formal”.

1.3. The second factor of programming

The second factor of programming is concerned with interpretability, with “what the
symbols in the program mean”. As Smith observes in [18], this is curiously not what is
referred to in computer science as the semantics of the program: “the only factor of
computational systems that [theoretical] computer science talks about is the first”.
Formal techniques for program construction reflect this emphasis; they produce
executable programs, but typically leave second factor concerns to the user's
imagination.

Conventional formal specification does not bind the structure of the model to its
second-factor interpretation; all programs with a particular behaviour are regarded as
equivalent. By way of illustration, a functional specification of a program to compute
an integer function f(n) neither distinguishes between one evaluation and another
derived by first incrementing then decrementing n ten times, nor specifies

 how the value of n is communicated to the machine
« how the value of f(n) is presented to the user
+ how many arithmetic operations are required for evaluation.

Nor does the context in which the computation is to be carried out have an influence;
the fact that e.g. f(n) is the profit from the sale of n items is a separate concern.

Informally, the situation is quite different. In all specification activity, descriptive
identifiers are typically used to suggest interpretations. In programming as most
commonly applied in practice, the design of programs is based on data-structures that
reflect the external interpretation, as when developing abstract data types or object-
oriented models. An important reason for establishing informal connections between
the requirement and the form of the specification is that requirements change.
Prescribing the correct behaviour is no more important than constructing a specification
that can be modified easily to reflect new requirements.

More discriminating techniques for modelling computation are not merely important
from the programmer’s perspective. Specific operational aspects of programs have to
be considered in a theory of complexity or feasibility. Interactive programs have to be
evaluated with respect to how internal behaviour is communicated to the user. In
general, wherever two or more computational agents interact, as in a concurrent
system, there is a need to specify how one agent is to interpret the computation
performed by others.




Second-factor aspects of programming are closely associated with procedural activity.
In interpreting a program in the process of design, we are concerned with a dynamic
object that is subject to change in ways that can not be preconceived. In modelling a
concurrent system, we need to represent those intermediate states of computations that
are to be interpreted by the computational agents. Conventional formal methods can
represent procedural activity only after it has been analysed to such an extent that it can
be preconceived. As Smith argues [18], this is not a satisfactory basis on which to
"formalise"” present programming practice.

The spreadsheet is a particularly interesting example of interaction between first and
second-factor concerns. The values associated with cells in a spreadsheet typically
correspond to observations that can be made of an independent physical system, such
as the profits and costs in a financial model. When the cells representing particular
parameters of the model have been assigned values, the spreadsheet can be interpreted
as specifying a state of an external system. By changing these parameters, we can
predict the effect of changing parameters on the system state.

The principles we propose to apply in "formalising” the second-factor can be derived
by generalising from the spreadsheet. Two features of spreadsheets are significant in
this context:

+ the intuition upon which the interpretation of the spreadsheet depends is
procedural in nature; the values of cells in the spreadsheet designate observed
values of external variables that can attain many values, unlike mathematical
variables

» the functional dependencies in the spreadsheet directly reflect observation of the
external system it models; the correspondence between predictions from the
spreadsheet model and observed relations between parameters in the external
system can be tested by experiment.

1.4. One-person programs vs reactive systems

The discussion of first and second factors points to issues that discriminate between
one-person programming and reactive systems engineering. The present theoretical
foundations of computing are only sufficient to simplify one aspect of the programming
task: specifying the first-factor operational interpretation. This is only part of
programming in practice: it is also necessary to establish the conventions that specify
the relationship between a program and its context. In practice, this knowledge
representation task, associated with analysis of the requirement, has to be accomplished
without the benefit of adequate foundational principles.

Many one-person programming problems can be resolved by dealing with all issues of
external interpretation off-line. When the requirements analysis for a program is simple
and the physical substrate in which the program is to be realised is well-understood,
specification methods based on conventional mathematical foundations are readily
applied. These conditions are rarely fulfilled for reactive systems; interaction between
first and second factors has an essential role. This analysis suggests that Harel’s
optimism about the “vanilla” approach is unjustified; there are reasons to believe that
new mathematical principles are needed to overcome the challenges of reactive systems.

Harel's paper itself bears out this analysis in many respects. His reference to the
progress that was made in one-person programming in the period 1950-1975 is
significant, since this is precisely the period over which practical declarative
programming systems evolved. There have been many practical developments in
software and hardware since 19785, but none that has bridged theory and practice in the
same way as functional pogramming. The division in Al between logicism and
unprincipled programming to which McDermott refers [14] has its counterpart in




software engineering; it centres upon the potential scope of classical formal methods in
software development.

Harel’s “vanilla” approach entails the development of a conceptual model of a reactive
system that is successively refined into a prescription for the components of the
physical system. Harel stresses the importance of a mathematical model of the
behaviour as a means of ensuring executability of models. In other respects, second-
factor issues — the need for visualisation, the role of testing, the importance of a state-
based behavioural model, are the dominant concerns. In effect, conventional
mathematical semantics is invoked to guarantee an unambiguous operational behaviour,
but there are no comparable principles to guide the engineer in matching system

behaviour to observation or intention.

The value of a conceptual model for a reactive system depends on many factors.
Smith's thesis indicates that models based upon conventional mathematical foundations
are inappropriate for this knowledge representation role. Harel's account gives little
insight into how good conceptual models can be devised. The engineer needs to relate
observation and conception of the system and the conceptual model e.g. to enhance the
model to cope with new constraints, to predict the effect of failures in particular
components, or to diagnose which components are faulty after the physical system has
been constructed. In this context, the need for guidelines for refinement is a crucial
concern. The merits of Harel's conceptual model may derive as much from
unrecognised peculiar qualities of his chosen visual formalism (i.e. statecharts) as from
the “vanilla” approach per se — an idea for which further evidence is adduced below.

2. What is computation?

Connecting observation of physical systems with a conceptual model is the central
problem of reactive systems engineering. To understand how this might be done ina
principled manner, we must re-examine the fundamental ingredients of the

computational process itself.

Traditional one-person programming is concerned with sequential interaction with a
conventional computer. In such programming, basic characteristics of the computer as
a computational device are taken for granted. The computer can be instructed to change
its internal state and the state of its environment (e.g. through changing the screen
display) in a reliable and replicable manner. The conventions by which these changes of
state are to be interpreted by the user have already been fixed at some level of
abstraction. For instance, the computer may be able to display strings of text, or draw

families of points and lines.

Observation of the externally accessible state is simplified by the conventions for
interaction and interpretation. The user adapts to the approximate nature of the screen
display e.g. to extract ideal points and lines from patterns of pixels. In understanding
physical systems through scientific experiment, simultaneity of observations is centrally
important; in sequential interaction with the computer, indivisible changes in the
observed state are contrived by restricting the points of entry for the user, whether as
observer or experimentor. For instance, the computer may take several minutes to
generate a line drawing in an incremental fashion, but the user is not intended to

interpret the drawing until it is complete.

One-person programming involves two kinds of state-based activity. There are the
changes to the internal state of the physical computer that are specified in a first-factor
account of the program. At some level of abstraction, how these changes occur is
beyond the programmer's concern; what matters to the programmer is that they do
occur reliably. The internal state changes have the characteristics of primitive machine
operations: they are indivisible and can neither be observed or interrupted in execution.




What the programmer deems to be an indivisible machine operation is a matter of
discretion, depending upon how closely the computational activity has to be observed.

The other kind of state changes involved in one-person programming are those that
communicate internal state to the user and allow the user to change the internal state.
The nature of these state changes is influenced by second-factor issues — i.e.
concerning the relation between the program and the external environment — that are

hard to describe formally. These include:

» the physical capabilities of the computational device: how many pixels there are,
whether it can generate sound, whether there is a mouse or a windowing system

+ the sensory capabilities of the user: whether the user is blind or colour-blind,
whether the user can handle the keyboard or control the mouse

» the knowledge that the user brings to bear in interpreting the state-changes on
the screen: what conventions for interaction are assumed (e.g. the mouse must
be in the window before you type), and for interpretation (e.g. the string
"324.3" denotes a specific decimal number).

In practical programming, the informal nature of the relation between first and second-
factor aspects of a program is frequently exploited. In debugging a program, the
programmer typically adapts the interface so that the internal state of the computer
becomes apparent. If a computer program for drawing a picture has an error, the user
may be able to detect this by observing how the display is generated, despite the fact
that this generation process depends upon the graphical interface rather than the
program. A theoretical framework that does justice to practice should account for such
abuses. Conventional formal specification techniques for generating a program with a
specified IO behaviour typically limit the scope for investigating second-factor concerns
by restricting what the programmer can know about program execution.

Reactive systems force us to examine the relation between state change in physical
systems and its computational interpretation more closely. There are many agents that
can act concurrently to change the system state and these can be of several different
kinds: human, electronic or mechanical. The manner in which agents react to changes in
state is not constrained by simple protocols for sequential interaction; simultaneity of
observations and indivisibility of actions must be explicitly considered. Principled
methods of interrelating first and second-factor aspects are needed to replace the
informal conventions that operate in one-person programming.

Computations performed on unconventional computers are instructive in exposing
issues that conventions typically hide. Children are sometimes taught to multiply the
single digit n by 9 by displaying all 10 fingers and turning down the n-th counting from
left to right. This separates the fingers into two classes: the number of fingers on the
left and the right are the two digits in the decimal representation of the answer. In this
context, the fingers themselves define a computational device with a trivial state-
changing behaviour. "Turning a finger down" is multiplying by 9. The potential
subtlety of interaction between computational agents is vividly illustrated by analysing
what implicit knowledge and capability is expected of the child.

As another example, consider a folk-dance routine for computing the greatest common
divisor:

To calculate GCD(m,n), take m woman and n men

NB m and n must be positive

Match up men and women in pairs
until no more pairs can be formed




If everybody has a partner
stop the dance and count the number of pairs
[This'll be GCD(m,n)]

Otherwise
there's either a spare man or a spare woman
NB of course there may be more than one!

If there's a spare man:
send the men with partners out of the room
NB without their partners

If there's a spare woman:
send the women with partners out of the room
NB without their partners

Repeat the dance, forming new pairs etc

In this mode of computation, the role of particular observations of the physical system
in distinguishing relevant state changes is evident. Within reason, we are not concerned
with what partners do over and above carrying out the instructions specified in the
dance e.g. we assume that they do nothing to generate more men or women. There are
certain hidden assumptions about how the dance instructions are to be interpreted. The
physical models poses implicit constraints on the usefulness of the program: e.g. there
is an absolute bound on the number of women and men that can be involved and there
are feasibility constraints upon synchronisation and evaluation.

State change is all around us, but not all this can be construed as computation. To
interpret the behaviour of a physical system in computational terms, we must first
identify patterns of state change that occur reliably. This process primarily involves
conceiving appropriate observations of the system, specified by protocols for
measurement such as are required in experimental science. This observation is the basis
for interpretation in the second-factor sense. We shall argue that, in interpreting the
behaviour of system X (e.g. a Macintosh computer) as computation, we are appealing
to an exact correspondence between observations of system X and of an independently
specified physical system Y. By this thesis, computation is defined by a
correspondence between two sets of experimental observations: the set of observations
of X that define the program model and those of Y that define the reference model.
Notice that the term program model encompasses observations that are typically
regarded as external to programmable components; for instance, it includes relevant
observations of input-output devices, such as the position of the hands of a clock.

How is the "times 9" computation to be understood in these terms? Self-evident as it
appears, the fact that whenever the 3rd finger is tumed down there are 2 fingers to its
left and 7 to its right must be regarded as an experimental observation in which we can
place great faith, but for which we have no further explanation. The protocols for
observation include "counting fingers": it must be presumed that a child can count up to
7 fingers before its fingers are required for a second multiplication (or other less
educational activity). The answer is 27, and this is the same answer that we could
derive from an independent activity: collating 3 sets of 9 objects and counting the total
number of objects. To be more pedantic, we might say that the total number of objects
can be separated into two groups of 10 with 7 remaining.

Analysing computation in this depth is a way of revealing an essential similarity
between reactive systems engineering and one-person programming. Both involve
establishing a correspondence between a program model that describes the behaviour of
the physical computing system and how it is to be observed and a reference model that
describes what we expect of these observations. The difference between the two
activities lies in the status of these models.




In one-person programming much of the program model is preconceived and is
prespecified by convention, whilst the reference model is typically of such a familiar
form that it can be specified in declarative terms, as a functional relationship for which
an appropriate input-output state-based observation model can be readily conceived.
Multiplying by 9 is an example where this applies. The reference model takes other
forms when non-functional requirements are involved.

In reactive systems specification, much of the program model has to be constructed
from first principles on the basis of particular characteristics of the physical
components, whilst the reference model is typically defined in the early stages of
development by behavioural fragments or scenarios. The program model and the
reference model are developed in parallel; to do this in a principled manner, it will be
necessary to describe how observations of the models correspond. The use of the
spreadsheet principle in formulating a simple correspondence of this nature has been
described above; our objective is to generalise this principle to multi-agent systems.

3. Reactive systems specification: a principled approach

3.1. The development process overview

Observation is the fundamental concept in our view of computation. We also believe it
to be fundamental to a principled approach to the second factor aspects of programming
for reactive systems. The programming principles for realising input-output relations
based on the conventional theory of computation deal with a particular kind of state-
changing activity where only the initial and final observations are significant. A more
general theory of computation has to account for many other kinds of observation.

Our general approach to reactive system specification will first be described without
reference to the role of observation. This account will hide the characteristic features
that distinguish our program model from a "vanilla" conceptual model, such as is
described in Harel [10]. As explained in more detail in [3], the principles that guide the
process of construction put special constraints upon our program model. This is what
we should expect if the model is to reflect second-factor concerns (cf [18]).

Figure 1 depicts the relation between models that is involved in our view of reactive
systems specification. R is the reference model that describes the observations we
would ideally like to make. C is the program model. When C has reached its final form,
it is a model that reflects the actual capabilities to receive and respond to stimuli of the
components of the physical system at an appropriate level of abstraction and to an
appropriate degree of accuracy.

Three types of activity are involved in the process of constructing the reactive system S:

1 the programmer conceives or modifies the "reference model” R that defines the
total behaviour to be realised in terms of desired observations of the system S

2 programmer develops a program model C on the computer that represents the
behaviour of the physical system in terms of observations pertaining to those
components of the system that have currently been conceived

3 the components of the system S are built by using the model C prescriptively to
determine their physical characteristics and how they are programmed to act

The program model C resembles an conventional engineering plan for an object to be
built (cf a design drawing). Rather than being a set of documents, it is a program with
which the designer can interact to simulate possible state changes in the reactive system




as so far conceived. The most important characteristic of this model is its close
correspondence to the physical system as it is conceived at each stage of development.
The representations of state in the program model will involve variables whose values
are represented to the user visually and that can be interpreted as observations. The
correspondence between spreadsheet variables and observations of a physical system is
the archetype.

The reference model is the most informally specified; it is intended to represent the
requirement in all its aspects. It will typically include particular scenarios for system
response; perhaps more formally specified abstract specifications of behaviour, and
aesthetic preferences on the part of the designer that can only be expressed through
interaction with the program model. The model may be influenced during the
development process both by interaction with the program model and by the results of
experimenting with possible components of the system S.

1, 2 and 3 are not to be viewed as phases of the development, but as modes; interaction
between the three activities is to be expected. In its final form, the program model
describes the physical devices of the system with sufficient accuracy to be used
prescriptively; it is not an abstract description of system behaviour that is unrelated to
the engineered system. In conventional one-person programming, activity in modes 1
and 2 is meta-level activity that is often performed off-line, whilst 3 corresponds to the
construction of the program itself.

3.2. Linking specification to observation

There are three aspects to our work on reactive systems specification outlined above:
+ practical studies in prototyping using the methods
«  concepts and techniques that have been developed for this purpose
« foundational issues: what — if any — are the principles behind our approach.

In the context of this paper, as indeed for our program of research as a whole, it is the
third of these aspects that we regard as most important. The reasons for this emphasis
are clarified in [3]. The history of object-oriented programming in particular suggests
that expressive modelling techniques for addressing first and second-factor concerns
independently are not enough to overcome the complex problems of reactive system
engineering. Ideally, a prescription for new programming methods to address these
problems should be supported by proposals for adequate theoretical foundations. This
section briefly summarises the experience that has informed our ideas about reactive
systems engineering and that best illuminates potential foundations.

The programming tcchnique's that provide the basis for our work are:

« definitive (definition-based) state-transition models that exploit a wide-ranging
generalisation of spreadsheet principles

« agent-oriented models, over a language LSD in which to specify the values
bound to agents, those they can observe, those they can conditionally redefine,
and the indivisible functional dependencies associated with their actions.

The practical advantages and characteristic features of these particular techniques has

been well-documented elsewhere [3,4,5,6,7]. They have proved particularly useful in
describing interaction and visualisation.

10




Our research so far has included several case studies on concurrent systems simulation.
Published specifications include simulations of telephone operation, of an electronic
cat-flap, and of a protocol for the arrival and departure of a train. Most recently, we
have developed animations of a vehicle cruise control system and of Harel's digital
watch together with its accompanying statechart [10]. Of particular interest is the fact
that the states in statecharts can be related to persistence of LSD agents.

In the context of this paper, the most interesting aspect of definition state-transition
models and agents is that they are intimately related to observation of physical systems.
A spreadsheet expresses the relation between real-world observations in a manner that
is outside the scope of pure declarative models. The process of developing a program
model for a reactive system described above is motivated by the desire to provide an
environment for the designer that precisely captures observation of a complex physical
system as the spreadsheet does.

Observations have a fundamental role in guiding the construction of the program model:

+ the program model is defined by observations of reliable state-changing devices
The programmer has to conceive state-changing activities that are as reliable and
replicable as machine operations on a conventional computer. Only physical
objects that exhibit such behaviour can serve as computational agents. There is a
role for experiments to determine appropriate characteristics of physical objects,
analogous to the tests of materials that an engineer might perform.

+ observations determine the communication of state-changes between agents
The programmer has to identify what each agent observes of the state of its
environment and how these observations change indivisibly in that agent's view
when actions are performed. The anthropomorphic view of agents reflects the
néed to represent system activities through the eyes of the programmer.

« the process of interpretation involves matching of experimental observations
The programmer must conceive the relation between the program model and the
reference model.

A theory of observation is a plausible basis for a principled method of constructing a
program model for a reactive system. In such a theory the programmer's task is seen as
identifying the observations of a physical system that must be analysed and prescribed
in order to guarantee a particular behaviour. The following principles of observation
lead us to think that the abstractions behind definitive state-transition models and agents
are of fundamental interest. In a physical experiment, once the context and conventions
for observation and action have been specified, experiment alone determines:

« whether observations are indivisibly linked through functional dependency
+ what groups of observations are subject to change independently.

This provides a physical basis on which to specify definitive scripts and agents.

Conclusion

This paper proposes a new perspective on computation and programming. Computation
is viewed as interpreted state-change that can be associated with physical systems of
diverse kinds. In this framework, the problems of one-person programming and
reactive systems can be regarded as having essentially the same nature. General
principles that govern observations of physical systems are a plausible basis for a
theory of computation that can deal effectively with both kinds of programming task.

1n




References

1. P America OOP: a theoretician’s introduction EATCS Bull 29, 1986, 69-84

2. J Backus Can programming be liberated from the Von Neumann style? CACM
21(8), pp.613-641, 1978

3. W M Beynon Programming principles for the semantics of semantics of programs
Computer Science RR#205, Warwick University 1992

4. W. M. Beynon, S. B. Russ, M D Slade, Y P Yung Programming as modelling: new
concepts & techniques Proc ISLIP'90, Queen's Univ. Kingston, 1990 '

5. W M Beynon, M T Norris, R A Orr, M D Slade Definitive specification of
concurrent systems Proc UKIT'90, IEE Conf Publications 316, 1990, 52-57

6. W M Beynon, Y P Yung Definitive Interfaces as a Visualisation Mechanism Proc
GI'90, Canadian Inf Proc Soc, 1990, 285-292

7. W M Beynon, S B Russ The development and use of variables in mathematics and
computer science IMA Conf Series 30, OUP, 1991

8. G Birtwistle, O-J Dahl, B Myrhaug, K Nygaard Simula Begin 2nd ed.,
Studentliteratur, Lund, Sweden, 1979

9. Chambers 20th Century Dictionary, 1972 edition

10. D Harel Biting the Silver Bullet: Towards a Brighter Future for System
Development TEEE Computer (to appear Jan 1992)

11. C A R Hoare Communicating Sequential Processes Prentice-Hall Int. 1984

12. P Hudak et al Haskell: A Non-strict, Purely Functional Language Report Version
1.1, Aug 1991

13. W Kent Data and Reality North-Holland, 1978

14. D McDermott A critique of pure reason Comput Intell 3 (1987) 151-160

15. D Parnas On the Criteria to be used in Decomposing Systems CACM 15 (1972),
1053-1058

16. A Pnueli Applications of Temporal Logic to the Specification and Verification of
Reactive Systems LNCS 224, Springer-Verlag 1986, 510-584

17. B. C. Smith The owl and the electric encyclopedia A 147 (1991) 251-288

18. B. C. Smith Two lessons of logic Comput Intell 3 (1987) 214-218
19. W. A. Woods Don't blame the tool ibid, 228-237




imagined system
defining the
requirement

systems analyst

computer model of the
requirement: an
animation

for devices / protocols

devices and
programs

as extracted from the
computer model C

Figure 1: Modelling in Requirements and Testing for a Reactive System




