
CS405 Introduction to Empirical Modelling 2008

Some answers for Labsheet 2: Script mechanics - eden, donald and scout

Mechanics of definitive scripts

We have seen that a simple piece of script can have many different interpretations, and can be refined in many ways. For

this reason, it is often useful to be able to extract subsets of definitions from existing scripts and incorporate them in your

own models. In order to do this effectively, you need to understand the relationship between the eden, donald and scout

notations and know how to tackle the problem of making sense of what may be a relatively complex script. In this

laboratory, you will get some experience of this activity by looking at roomviewerYung1991. Understanding a script in this

way is clearly analogous to what is described as "program comprehension", an activity that doesn't necessarily have much to

do with understanding how a program is interpreted in its application context. In the case of a well-written definitive script,

we can expect a closer connection between understanding the mechanics of a script and appreciating its relationship to an

external referent.

Each exercise illustrates useful techniques that can be exploited in many models and comprises a set of relatively small

questions. In tackling them, you may find it helpful to first address one or two questions from each.

Exercise 1: Understanding how donald is represented in eden

By examining the observables in the roomviewer.s script, answer the following questions:

What is the current definition of table/SW?

Inspect donald definitions, or execute

?_table_SW;

How would you print out the current value of desk/drawer/k every time that it is changed?

proc wddk : _desk_drawer_k {

 writeln(_desk_drawer_k);

}

%donald

desk/drawer/k = 3

Why is the line that represents the cable dashed?

?A_cable;

A_cable="linestyle=dashed,dash=13";

A_cable ~> [P_cable]; /* A_cable last changed by input */

The observable cableIsShort is set to true when the distance between the socket and the lamp exceeds the length of

the cable. Determine what observables influence the value of cableIsShort and write down some representative

examples of redefinitions that resolve the problem of the short cable, together with their interpretations in the referent.

%eden

?_cableIsShort; etc

_cableIsShort is dist(dot1(_cable), dot2(_cable)) > _cablelength;

/* current value of _cableIsShort is 0 */

cableIsShort ~> [, monCableStr, screen];

/* _cableIsShort last changed by input */

_cable is line(_plug, _table_lamp_centre);

/* current value of _cable is ['L',['C',500,100],['C',650,650]] */

_cable ~> [P_cable, _, _cableIsShort]; /* _cable last changed by input */

_plug is _plug1; /* current value of _plug is ['C',500,100] */

_plug ~> [P_plug, _cable, _, plugMenu]; /* _plug last changed by input */

_table_lamp_centre is scalar_div((vector_add(_table_SW, _table_NE)), 2);

/* current value of _table_lamp_centre is ['C',650,650] */

_table_lamp_centre ~> [P_table_lamp_centre, _table_lamp, _table_lamp_L1, _table_lamp_L2,

_table_lamp_L3, _table_lamp_L4, _table_lamp_L5, _table_lamp_L6, _table_lamp_L7,

_table_lamp_base, _cable]; /* _table_lamp_centre last changed by input */

_table_SW is scalar_div((vector_add(_SW, _NE)), 2);

/* current value of _table_SW is ['C',500,500] */

_table_SW ~> [P_table_SW, _table_S, _table_W, _table_SE, _table_NE, _table_NW, _table,

_table_lamp_centre]; /* _table_SW last changed by input */

_SW is cart(100, 100); /* current value of _SW is ['C',100,100] */

_SW ~> [P_SW, _S, _W, _SE, _NE, _NW, _table_SW, _desk_SW, _] /* _SW last changed by input */

_NE is vector_add(_SW, cart(_width, _length)); /* current value of _NE is ['C',900,900] */

_NE ~> [P_NE, _N2, _E, _table_SW, _]; /* _NE last changed by input */

_width is 800; /* current value of _width is 800 */

_width ~> [_SE, _NE, _]; /* _width last changed by input */

_length is 800; /* current value of _length is 800 */

_length ~> [_NE, _NW, _]; /* _length last changed by input */

_table_NE is vector_add(_table_SW, cart(_table_width, _table_length));

/* current value of _table_NE is ['C',800,800] */

_table_NE ~> [P_table_NE, _table_N, _table_E, _table, _table_lamp_centre];

/* _table_NE last changed by input */

_table_width is 300; /* current value of _table_width is 300 */

_table_width ~> [_table_SE, _table_NE, _table]; /* _table_width last changed by input */

_table_length is 300; /* current value of _table_length is 300 */

_table_length ~> [_table_NE, _table_NW, _table]; /* _table_length last changed by input */

can display this with the DMT

How would you adapt the model so that:

the cable is coloured red when it is not long enough?

%eden

A_cable is "linestyle=dashed,dash=13,color=" // ((_cableIsShort) ? "red": "black");

the door is coloured green when open and red when shut?

A_door_door is "color=" // ((_door_open) ? "green" : "red");

in the improved version of the desk those parts of the drawer that are invisible are displayed as dashed lines?

the fixed desk (from Lab 1):

%donald

within desk {

 within drawer {

 real howopen

 E = [NE, SE]

 W = [NW, SW]

 S = [SW, SE]

 N = [NW, NE]

 SE = SW + {length, 0}

 SW = NW - {0, width}

 NE = NW + {length, 0}

 NW = (~/NE * howopen + ~/NW * (1-howopen))

 length = ~/width

 width = ~/length div 3

 }

}

desk/drawer/howopen = 1.0 ## open

desk/drawer/howopen = 0.0 ## closed

within desk {

 within drawer {

 line outside

 line inside

 point meetsdeskedge

 meetsdeskedge = intersect(S, ~/E)

 outside = [meetsdeskedge,SE]

 inside = [SW, meetsdeskedge]

 }

}

A_desk_drawer_inside is "linestyle=dashed,dash=1,color=grey";

A_desk_drawer_W is "linestyle=dashed,dash=1,color=grey";

A_desk_drawer_inside is "color=grey";

A_desk_drawer_W is "color=grey";

am thinking that whether S or the segments inside, outside get displayed

is fortuitous, as no layering in donald. May be OK here as S ~> inside, outside

alternatively can attempt to hide S side of drawer (these fail!):

within desk {

 within drawer {

 S = [SW, SW]

 }

}

a mistake, as there S no longer intersects ~/E

within desk {

 within drawer {

 S = [SW, SE]

 }

}

%eden

proc P_desk_drawer_S {};

this suppresses the visualisation of the south side of the drawer

but seems to have undesirable side-effects

Place a small circle at the centre of the lamp to indicate a bulb, and set its attributes so that it is coloured solid yellow

or black according to whether the lamp is on or off.

within table/lamp {

 circle bulb

 bulb = circle(centre, 10)

}

%eden

A_table_lamp_bulb is "fill=solid,color=yellow");

A_table_lamp_bulb is "fill=solid,color=" // ((lamp_on) ? "yellow" : "black");

Attach to the centre of the table a donald label that displays its current coordinates.

%donald

label tablePos

%eden

_tablePos is label("X", scalar_mult(vector_add(_table_NE, _table_SW), 0.5));

labelStr is str(tail(vector_add(_table_NE, _table_SW)));

_tablePos is label(labelStr, scalar_mult(vector_add(_table_NE, _table_SW), 0.5));

more elegant solutions might define label in donald and use escape to eden

also good to define the centre of the table as an observable

could use int() to convert result to integer values for display purposes

Explain why nothing happens if you modify the roomviewerYung1991 model by introducing the definition of the

rotated table in the Appendix to this labsheet. How do you resolve this problem? [Hint: you may need to make use of

eden to define some donald observables.]

table/centre is newly declared, hence undefined

to define it without moving the table, must use an assignment - so need eden:

%eden

_table_centre = scalar_mult(vector_add(_table_NE, _table_SW), 2.0);

assuming that table/centre is already declared

can then introduce the rotated table code

can move table e.g. by

table/centre = {500,500}

can rotate table e.g. by

table/tablerotangle = pi div 3

Exercise 2: Understanding how scout describes screen layout

Trace the set (or a representative subset) of the dependencies that determines the windows that make up the screen

display.

Can use

?screen;

in scout and then trace the definitions of the displays and windows encountered

can do the same in eden, and use the output in the DMT to get a graphical trace

Identify which observables determine the size and location of the lefthand window containing the donald floorplan of

the room.

window don1 = {

 type: DONALD

 box: [p1, q1]

 pict: "view"

 border: 1

 sensitive: ON

};

the observables are p1 and q1 (points in scout)

Find the definition that determines the text displayed on the door button (as defined by the doorButton text window

in scout).

window doorButton = {

 type: TEXT

 frame: ([doorButtonPos, 1, strlen(doorMenu)])

 string: doorMenu

 border: 1

 sensitive: ON

};

the definition is that of the string doorMenu defined in scout:

doorMenu = if _door_open then "10:Close Door" else "10:Open Door" endif;

How would you change the background colour and the colour of the text displayed on the door button?

window doorButton = {

 type: TEXT

 frame: ([doorButtonPos, 1, strlen(doorMenu)])

 string: doorMenu

 border: 1

 fgcolor: "red"

 bgcolor: "white"

 sensitive: ON

};

How would you place a single rectangular window behind the windows displaying the floorplan and the enlarged

floorplan in such a way as to provide a blue background?

window background = {

 type: DONALD

 bgcolor: "lightblue"

 box: [p1,q2]

};

NB need to have this last semi-colon!!!

basicScreen = ;

window background = {

 type: DONALD

 bgcolor: "lightblue"

 box: [p1 - {10,10},q2 + {10,10}]

};

Exercise 3: Understanding how donald drawings are displayed in scout windows

Inspect the definitions of the scout windows that display the floorplan and enlarged floorplan. Explain why the pict

field is the same in both windows.

Both windows make use of the same donald room line drawing

How would you interchange the drawings displayed in the two scout windows of type DONALD?

%scout

window don1 = {

 type: DONALD

 box: [p2, q2]

 pict: "view"

 border: 1

 sensitive: ON

};

window don2 = {

 type: DONALD

 box: [p1, q1]

 pict: "view"

 xmin: zoomPos.1 - zoomSize / 2

 ymin: zoomPos.2 - zoomSize / 2

 xmax: zoomPos.1 + zoomSize / 2

 ymax: zoomPos.2 + zoomSize / 2

 border: 1

 sensitive: ON

};

How can you determine the donald coordinates of a point in the floorplan and enlarged floorplan displays solely by

using mouse clicks?

open the Command History window and read off

the coordinates from a mouse click in the window don1 etc

~don1_mouse = [1,4,0,363.184079602, 462.686567164]; ## when depressed

~don1_mouse = [1,5,256,363.184079602, 462.686567164]; ## when released

By assigning new values to the observables zoomPos and zoomSize and observing the impact on the scout window

containing the enlarged floorplan, determine the significance of the xmin, xmax, ymin and ymax fields within the

definition of the window.

The region of a donald picture that is displayed in a Scout window is rectangular.

Its SW corner is at {xmin,ymin} and its NE corner is at {xmax, ymax}

Suppose that a scout window of type DONALD displays a line drawing without any distortion. What relationship must

there be between the dimensions of the window and the values of the fields xmin, xmax, ymin and ymax?

Must have preservation of the aspect ratio

Make use of donald variable of type shape to specify an image of the table rotated through an angle that can be freely

specified via the input window. Revise the definition of the scout window that presently shows the enlarged floorplan

so that it instead displays the rotated table.

%scout

window don2 = {

 type: DONALD

 box: [p2, q2]

 pict: "rotatedtable"

 xmin: zoomPos.1 - zoomSize / 2

 ymin: zoomPos.2 - zoomSize / 2

 xmax: zoomPos.1 + zoomSize / 2

 ymax: zoomPos.2 + zoomSize / 2

 border: 1

 sensitive: ON

};

%donald

viewport rotatedtable

real rotangle

shape rottable

rotangle = pi div 3

rottable = rot(table, (table/NE+table/SW) div 2, rotangle)

%eden

zoomPos is tail(scalar_mult(vector_add(_table_NE, _table_SW), 0.5));

NB using the buttons to adjust zoomPos will remove this definition

Exercise 4: Understanding how GUI agents are specified in scout and eden.

Determine what eden redefinition is executed when the door button is clicked. Confirm that this redefinition can be

entered directly through the input window and explain why it has the effect of opening or shutting the door.

?doorButton_mouse_1;

doorButton_mouse_1=[1,5,256,23,6];

doorButton_mouse_1 ~> [doorButton_to_input, doorButton_mouseButtonPress];

proc doorButton_to_input: doorButton_mouse_1 {

 if (doorButton_mouse_1[2] == 4) input = 10;

}

can achieve same effect in input window via:

input = 10;

?input;

proc handle_user_input: input {

 switch (input) {

 case 1: _table_SW = vector_add(_table_SW, cart(0, 100)); break;

 case 2: _table_SW = vector_sub(_table_SW, cart(0, 100)); break;

 case 3: _table_SW = vector_sub(_table_SW, cart(100, 0)); break;

 case 4: _table_SW = vector_add(_table_SW, cart(100, 0)); break;

 case 5: zoomPos = pt_add(zoomPos, [0, 100]); break;

 case 6: zoomPos = pt_subtract(zoomPos, [0, 100]); break;

 case 7: zoomPos = pt_subtract(zoomPos, [100, 0]); break;

 case 8: zoomPos = pt_add(zoomPos, [100, 0]); break;

 case 9: if (_plug == _plug1) {

 _plug is _plug2;

 } else {

 _plug is _plug1;

 }

 break;

 case 10: _door_open = !_door_open; break;

 }

}

Modify the eden action associated with the door button so that it toggles the colour of the door from red to green.

Explain why this is a less satisfactory way of specifying the colour of the door than using a definition as proposed in

Exercise 1 above.

Determines state by side-effect, so more liable to get out of sync - e.g. if save and reload model

Adapt the eden action associated with the door button so that it counts the number of times the door is opened.

Modify the text on the door button so that it displays this count.

count=0;

proc doorButton_to_input: doorButton_mouse_1 {

 if (doorButton_mouse_1[2] == 4)

 {

 count++;

 input = 10;

 }

}

doorMenu is str(count);

Identify the eden action that is triggered by clicking the mouse in the scout window displaying the floorplan. Explain

how this action moves the table.

The action that is triggered is don1_to_tableSW. This action responds to mouse clicks in the don1

window. The action has two branches: one of which is executed when the second mouse button is

depressed (don1_mouse[2]==4) and one of which is executed when the second mouse button is released

(don1_mouse[2]==5). If the mouse is depressed within the region occupied by the table, the action

sets a flag (move_table) to 1, then records the current position of the table (old_table_SW) and of

the mouse (old_mouse_pos) When the mouse is released and the move_table flag is set to 1, the

action is triggered a second time and the second branch of the action is executed. The current

mouse position is then used to compute the intended displacement of the table from the previous

mouse position and to redefine the table position accordingly.

Explain why the buttons that relocate the table no longer work correctly when the rotating table mentioned in Exercise

1 is introduced. Fix this problem.

the buttons still act on the SW corner of the table

they also break the dependency linking the SW corner of the table to its centre

but its coordinates are now defined relatve to its centre

adapt buttons on interface to act on the centre of the table

proc handle_user_input: input {

 switch (input) {

 case 1: _table_centre = vector_add(_table_centre, cart(0, 100)); break;

 case 2: _table_centre = vector_sub(_table_centre, cart(0, 100)); break;

 case 3: _table_centre = vector_sub(_table_centre, cart(100, 0)); break;

 case 4: _table_centre = vector_add(_table_centre, cart(100, 0)); break;

 case 5: zoomPos = pt_add(zoomPos, [0, 100]); break;

 case 6: zoomPos = pt_subtract(zoomPos, [0, 100]); break;

 case 7: zoomPos = pt_subtract(zoomPos, [100, 0]); break;

 case 8: zoomPos = pt_add(zoomPos, [100, 0]); break;

 case 9: if (_plug == _plug1) {

 _plug is _plug2;

 } else {

 _plug is _plug1;

 }

 break;

 case 10: _door_open = !_door_open; break;

 }

}

%donald

restore the dependency

within table {

 SW = centre - rot({width div 2, length div 2}, {0,0}, tablerotangle)

}

Appendix to Labsheet 2

%donald

first redefine coordinates of table relative to its centre

within table {

 point centre

 SW = centre - {width div 2, length div 2}

 NW = centre - {width div 2, -length div 2}

 SE = centre + {width div 2, -length div 2}

 NE = centre + {width div 2, length div 2}

}

now define the rotation

within table {

 point centre

 real tablerotangle

 SW = centre - rot({width div 2, length div 2}, {0,0}, tablerotangle)

 NW = centre - rot({width div 2, -length div 2}, {0,0}, tablerotangle)

 SE = centre + rot({width div 2, -length div 2}, {0,0}, tablerotangle)

 NE = centre + rot({width div 2, length div 2}, {0,0}, tablerotangle)

}

specify angles in radians - as floating point numbers

table/tablerotangle = pi div 4

