
1 of 2

CS405 Introduction to Empirical Modelling 2008

Labsheet 1: Modelling with definitive scripts preliminaries

Using definitive notations to represent state

The notion of a definitive script

A definitive script is a set of definitions (note carefully that 'set' is actually potentially less misleading than 'script', 

which suggests an activity rather than a description, but the term "definitive script" has been used extensively in EM

publications). The LHS of a definition is an observable, and the definition expresses a dependency amongst 

observables. Informally, when we redefine the value of one observable the values of any observable defined in 

terms of this observable are 'instantly' updated. (What 'instantly' means here is a subtle issue to be explored in the 

module.) The observables are of different types, each associated with a definitive notation used to formulate the 

formulae that define values. Different definitive notations have different kinds of values and operators to express 

one value in terms of others.

Preliminaries

First create a personal directory cs405practical for your CS405 practical work. Copy the contents of the directory

/dcs/emp/empublic/teaching/cs405/lab1

into your cs405practical directory. On Linux, you can do this by making cs405practical your current directory 

and using

cp -r /dcs/emp/empublic/teaching/cs405/lab1 .

Exercise 1: Using the EDEN interpreter to create a definitive script

Our first concern is to ensure that everyone is familiar with basic use of the EDEN interpreter. We shall introduce 

EDEN by demonstrating the following features in play-along mode:

The interpreter is launched by

typing tkeden (on Linux)

OR

executing tkeden.exe (on Microsoft Windows)

This sets up an input window and a feedback window.

1.

At any given time, the current state of the interpreter is specified by a script. Initially, you can think of this

script as empty: it has no definitions in it.

2.

When modelling state in the most primitive way, you enter the definitions by hand via the input window. At 

any stage, you can enter new definitions or change existing definitions, and press Accept

3.

Each definition has a variable (or "observable") on its LHS, and a formula as its RHS. It specifies a

dependency.

4.

Definitions in eden are specified using the keyword: is. If you want to define the value of an observable to be 

the explicit value of a formula (as in traditional programming assignment), you replace is by =.

5.

You can inspect the current set of values of observables and dependencies using writeln and ?6.



2 of 2

Exercise 2: Loading and messing about with an existing script

Most EDEN scripts contain definitions for observables with visual significance. We shall illustrate this by playing 

with a simple script that uses the line drawing notation donald. To enter a donald definition, you either precede the 

definition by %donald or select the %donald radio button on the EDEN input window. There are some standard 

potential sources of confusion: unlike an eden definition, a donald definition is not terminated by a semi-colon (;) 

and uses the symbol "=" to denote a definition rather than an assignment.

Launch the EDEN interpreter. Use the Open option on the File menu in the input window to navigate to your 

cs405practical directory and double-click on the name of the file room.d to place the set of definitions in the file 

room.d in the EDEN input window. Press Accept to load the definitive script in room.d.

Open the file sampledefns in a text editor, and test out each of the definitions listed there in turn by copying 

it into the input window and pressing Accept or the keyboard shortcut Alt-A. Consider how each definition 

helps you to assess the plausibility of the computer artefact as a model of a room.

1.

What is unsatisfactory about the redefinition that appears to restore the table to normality? How would you 

make this obvious? How would you restore the table in a more satisfactory way?

2.

Look at the definitions of the desk on pages 2 and 3 of the room.d script. Type redefinitions directly into the 

tkeden input window to change the size and position of the desk. Note the dependency of the drawer size on

the desk. Can you make a better model of the opening and shutting of the desk drawer? (To see a sample 

answer, inspect the file fixdesk.e.)

3.

Change the width of the door. Make it a sliding door. Can you make the opening of the door (in either

version) more realistic than having only two states?

4.

Using donald definitions of the form

point p, q, r
boolean b
p = if b then q else r

arrange for the lamp to appear to be on when the door is open, and off when it is closed.

5.

Questions

Examine sample observables drawn from the room script. Which observables are subject to change, and what 

sort of agent would be able to change them?

1.

What role do dependencies play in determining what we think an EM artefact might refer to?2.

Which of the following would you say best expresses the sense in which the EM artefact represents a room:

the set of current definitions.

those sets of definitions that can be derived from the current definitions by performing a standard 

repertoire of meaningful redefinitions (such as door/open=true).

those sets of definitions that can be derived from the current definitions by open-ended experimental 

interactions that admit an imaginative interpretation as actual interactions with a room.

3.


