
CS405 Introduction to Empirical Modelling 2008

Labsheet 2: Script mechanics - eden, donald and scout

Mechanics of definitive scripts

We have seen that a simple piece of script can have many different interpretations, and can be refined in many

ways. For this reason, it is often useful to be able to extract subsets of definitions from existing scripts and

incorporate them in your own models. In order to do this effectively, you need to understand the relationship

between the eden, donald and scout notations and know how to tackle the problem of making sense of what may

be a relatively complex script. In this laboratory, you will get some experience of this activity by looking at

roomviewerYung1991. Understanding a script in this way is clearly analogous to what is described as "program

comprehension", an activity that doesn't necessarily have much to do with understanding how a program is

interpreted in its application context. In the case of a well-written definitive script, we can expect a closer

connection between understanding the mechanics of a script and appreciating its relationship to an external

referent.

Each exercise illustrates useful techniques that can be exploited in many models and comprises a set of relatively

small questions. In tackling them, you may find it helpful to first address one or two questions from each.

Exercise 1: Understanding how donald is represented in eden

By examining the observables in the roomviewer.s model, answer the following questions:

What is the current definition of table/SW?

How would you print out the current value of desk/drawer/k every time that it is changed?

Why is the line that represents the cable dashed?

The observable cableIsShort is set to true when the distance between the socket and the lamp exceeds

the length of the cable. Determine what observables influence the value of cableIsShort and write down

some representative examples of redefinitions that resolve the problem of the short cable, together with

their interpretations in the referent.

How would you adapt the model so that:

the cable is coloured red when it is not long enough?

the door is coloured green when open and red when shut?

in the improved version of the desk those parts of the drawer that are invisible are displayed as

dashed lines?

Place a small circle at the centre of the lamp to indicate a bulb, and set its attributes so that it is coloured

solid yellow or black according to whether the lamp is on or off.

Attach to the centre of the table a donald label that displays its current coordinates.

Explain why nothing happens if you modify the roomviewerYung1991 model by introducing the definition

of the rotated table in the Appendix to this labsheet. How do you resolve this problem? [Hint: you may

need to make use of eden to define some donald observables.]

Exercise 2: Understanding how scout describes screen layout

Trace the set (or a representative subset) of the dependencies that determines the windows that make up the

screen display.

Identify which observables determine the size and location of the lefthand window containing the donald

floorplan of the room.

Find the definition that determines the text displayed on the door button (as defined by the doorButton

text window in scout).

How would you change the background colour and the colour of the text displayed on the door button?

How would you place a single rectangular window behind the windows displaying the floorplan and the

enlarged floorplan in such a way as to provide a blue background?

Exercise 3: Understanding how donald drawings are displayed in scout windows

Inspect the definitions of the scout windows that display the floorplan and enlarged floorplan. Explain why

the pict field is the same in both windows.

How would you interchange the drawings displayed in the two scout windows of type DONALD?

How can you determine the donald coordinates of a point in the floorplan and enlarged floorplan displays

solely by using mouse clicks?

By assigning new values to the observables zoomPos and zoomSize and observing the impact on the scout

window containing the enlarged floorplan, determine the significance of the xmin, xmax, ymin and ymax

fields within the definition of the window.

Suppose that a scout window of type DONALD displays a line drawing without any distortion. What

relationship must there be between the dimensions of the window and the values of the fields xmin, xmax,

ymin and ymax?

Make use of donald variable of type shape to specify an image of the table rotated through an angle that

can be freely specified via the input window. Revise the definition of the scout window that presently

shows the enlarged floorplan so that it instead displays the rotated table.

Exercise 4: Understanding how GUI agents are specified in scout and eden.

Determine what eden redefinition is executed when the door button is clicked. Confirm that this

redefinition can be entered directly through the input window and explain why it has the effect of opening

or shutting the door.

Modify the eden action associated with the door button so that it toggles the colour of the door from red to

green. Explain why this is a less satisfactory way of specifying the colour of the door than using a definition

as proposed in Exercise 1 above.

Adapt the eden action associated with the door button so that it counts the number of times the door is

opened. Modify the text on the door button so that it displays this count.

Identify the eden action that is triggered by clicking the mouse in the scout window displaying the

floorplan. Explain how this action moves the table.

Explain why the buttons that relocate the table no longer work correctly when the rotating table mentioned

in Exercise 1 is introduced. Fix this problem.

Questions

The syntax and structure of the definitive notations associated with eden, donald and scout are very

different. This can be frustrating, especially for novice users. Can you think of reasons why this diversity in

styles of definition might be appropriate? Can you suggest a design for a single unifying definitive notation

that could express all the various types of dependency relationship that can be expressed by using eden,

donald and scout in EDEN?

1.

Making a magic room.

Outline the kinds of EDEN definitions, functions and actions you would need to introduce in order to adapt

the roomviewerYung1991 model so that it could support the following "magic" scenario:

when the lamp is positioned so that cable is not long enough, the table obstructs the door and the

desk drawer is pulled out completely, the drawer is transformed into a magic drawer.

as the magic drawer is put back in the desk, the dimensions of the drawer and the desk converge to

the point where - when it is completely closed - both are square with a side of length equal to the

original width of the desk.

when the magic drawer is completely closed, the square representing it becomes itself another image

of the room such as is displayed in the original floorplan window.

This is the kind of mental exercise that is useful when you are conceiving possible developments of a model.

It is important to be able to think in terms of observables, dependencies and agency you could in principle

model in EDEN without necessarily actually creating the model.

2.

This is not the kind of topic that would be included in an examination question, but may give you some

insight into why using EDEN should be significantly different from using Visual Basic. It may also raise

issues of interest to those who are curious about the design and implementation of EDEN.

a. The way in which donald line drawings are associated with scout windows using "viewports" is not

very well-aligned to the principles of modelling with definitive scripts. It can also cause practical problems

in model development. Why is this? Can you suggest a better way of associating line drawings with

windows?

b. There were significant developments in EDEN after roomviewerYung1991 was created. In earlier

versions of EDEN, the only way to attach a behaviour to a sensitive button was to use the mechanism

illustrated in the roomviewerYung1991 model. That is to say: clicking on a sensitive scout window (say

doorButton) caused the value of an associated mouse-related observable (such as doorButton_mouse_1) to

be redefined. The modeller then had to write their own action (such as doorButton_to_input) to be

triggered by a redefinition of this observable. Later versions of EDEN introduced a "VB-like" feature,

whereby redefinition of a mouse-related observable directly invokes a procedure (such as

doorButton_mouseButtonPress). You can expose this mechanism by querying the observable

doorButton_mouse_1 in roomviewerYung1991, and observing the actions it triggers:

doorButton_mouse_1 ~> [doorButton_mouseButtonPress, doorButton_to_input];

By default, VB features are no longer enabled in current versions of EDEN (see the ChangeLog of the Help

menu option for more info). Can you figure out

how these VB mechanisms were intended to be used?

why their use was to be deprecated?

3.

Appendix to Labsheet 2

%donald

first redefine coordinates of table relative to its centre

within table {
 point centre
 SW = centre - {width div 2, length div 2}
 NW = centre - {width div 2, -length div 2}

 SE = centre + {width div 2, -length div 2}
 NE = centre + {width div 2, length div 2}
}

now define the rotation

within table {

 point centre
 real tablerotangle
 SW = centre - rot({width div 2, length div 2}, {0,0}, tablerotangle)
 NW = centre - rot({width div 2, -length div 2}, {0,0}, tablerotangle)

 SE = centre + rot({width div 2, -length div 2}, {0,0}, tablerotangle)
 NE = centre + rot({width div 2, length div 2}, {0,0}, tablerotangle)
}

specify angles in radians - as floating point numbers

table/tablerotangle = pi div 4

A screenshot taken from roomviewerYung1991

