
1

Programming from an
Empirical Modelling

perspective

From modelling with definitive scripts to programming …

- how to use EDEN

- comparative studies

- Logo

- object-orientation

- functional programming

How to use procedural EDEN …

Hybrid notation

procedural and definitive

Procedural aspects

- procedures and procedurally expressed functions:
use traditional C-like code

- parameters [para] and local variables [auto] in the

bodies of procedures and functions

How to use definitive EDEN …

Hybrid notation

procedural and definitive

Definitive aspects

- observables that refer directly to the external situation -
have direct external counterparts

- relationships between them reflect observed

dependencies between their counterparts

- cf. global observables (deprecated in programming)

Aspiration for definitive programming

The only state changes that can be observed externally

are associated with meaningful interpretable changes of
state to external observables associated with the
artefact or the situation in which it is being used …

… this was also the original motivation for object-
oriented programming (in the days of Simula - 1967)

… hence significance of using auto to hide local vars

How to use definitive EDEN …

Definitions of observables express dependencies to
create the state of the environment mediating interaction:
note that these can relate to the artefact or the context

Functions serve to enrich the range of operators available
in the formulae that express dependencies

Actions (“triggered procedures”) reflect actions of agents

that are automatically invoked in appropriate states

Procedural aspects of JUGS

Parameters and local variables, procedural code

func repeatChar {

auto s, i; ## local variables

s = substr("", 1, $2);

note use of $2 – second parameter

for (i = 1; i <= $2; i++) s[i] = $1;

return s;

}

… using user-defined function to enrich formulae

cA is repeatChar('~', widthA*contentA);

2

Definitive aspects of JUGS

Observables and dependencies in the JUGS model

Observables:

capB, contentA, width, status, target

Afull, updating, valid1, …

Dependencies

valid1 is !Afull;

Afull is capA==contentA;

Definitive aspects of JUGS

Agents and actions in the jugsBeynon2008 model:

proc fillingB: tick, option {

if ((option==2) && avail(2)) {

contentB = contentB + 1;

jugBfilling = 1;

}

else if (jugBfilling==1)

jugBfilling = 0;

}

Points of contrast

Initialisation and specification

- a program classically has an initial and a final state

- it has a well-defined function that is conceptually prior
to its interpretation (though it may be emergent)

cf. What is the natural set of initial values for JUGS?

contentA = ? capA = ? etc

- an environment without a canonical initial state

Points of contrast …

“Run time”

… in traditional programming, there is a clear notion of 'this
piece of code is currently executing'

… in MWDS or "definitive programming"

the primitive execution activity is an ongoing dependency
maintenance that is not interpreted: in this sense all
definitions in a script are potentially "currently executing"

Mode of interpretation …

Conventions for interpretation

in traditional programming, what is to be interpreted and when
it can be interpreted has to be contrived and conveyed

in MWDS or "definitive programming"

the interpreted state-changes are those that involve
redefining an observable rather than updating its value
according to its definition (and associated mechanisms)

Conventions for interpretation …

… in MWDS or "definitive programming"

how a state-change is interpreted ("construed") is a matter
for the human interpreter to determine (even on the-the-fly)

state changes within the definitive script correspond to

changes observed in the referent, and may be attributed to
different external agents and interpreted in a wide, open
variety of ways – in particular, as in traditional programming

3

Conventions for interpretation …

… in MWDS or "definitive programming"

different types of interpretation are only available to the
human modeller subject to exercising discretion

cf. providing an LSD account to describe the framework for

interaction (+ maybe an interface to impose this framework)

Role of LSD as adjunct to script

Interpreting external agent actions and LSD …

actions triggered by observables ("oracles")

making redefinitions (of "handles")

subject to suitable dependencies (reflected in the
current definitive script)

Illustrations from JUGS

- pouring actions are automated in jugsBeynon1988 so as to
effect state changes identified as "program-like“

- pupil can fill jug A, pour from jug A to jug B etc, only teacher
can change jug capacities, only modeller can set contentA
to exceed capA

- buttons limit what the “pupil user” of the JUGS model can do

Illustrations from JUGS

In “making redefinitions subject to suitable dependencies”:

may need to set up the dependencies to suit a particular action

See the observables mediating the pouring activities in JUGS:

to pour from one jug to another rather than fill or empty a jug …

if (int(input) == 5) { ## pouring option selected

content5 = contentA + contentB;

contentB is content5 - contentA;

option = valid6 ? 6 : 7;

} else …

Linking definitive and procedural

When bridging internal to external state changes …

internal variables in a procedure attaining values that
are not be viewed externally (e.g. local variables)

… should be treated differently from

external observables whose values are manipulated

in a procedure

Linking definitive and procedural

A traditional procedure will typically not disclose the
intermediate values of the variables it manipulates …

… cf. good programming practice – “information hiding”

BUT if a procedure affects the values of external
observables this is then by default not computed …

… use eager() to expose intermediate state changes
to values of external observables

4

Illustrating eager() in JUGS

if (avail(option)) {

switch (option) {

case 1:

contentA = contentA + 1; break;

….

}

eager();

updates contentA externally

step++;

}

Discretion over agent action

With effective use of definitive programming principles
can exploit the flexibility of agent interaction in EDEN …

modeller intervention on-the-fly / “at run-time”

free interleaving of agent interactions

potential for concurrency

…. contrast jugsBeynon1988 and jugsBeynon2008

as a case study in use and development of EDEN

Contrasting characteristics

procedural perspective

function

abstraction

optimisation

algorithm

efficiency

goal-driven

definitive perspective

artefact

instrument

evolving interpretation

experiment

skilful interaction

flexibility

Programming as specialisation

Modelling with definitive scripts allows the modeller to
explore many possible scenarios in an open-ended
fashion …

... this may lead to the identification of particular
patterns of interaction and interpretation that can be

imposed upon a potential ‘user’ of the model

… this is what is meant by a definitive program

Illustration from JUGS

Following the conventions of the JUGS program, the
user never encounters a situation in which the state is
stable (‘awaiting input’) and it is possible both to pour
from jug A to jug B and vice versa.

This means that we only need a Pour button, though in

fact the underlying mechanism is derived from a
previous version of the model that admitted both kinds
of pouring. These can still be accessed by entering:

input = 6; or input=7;

