The Abstract Definitive Machine

(See Lectures 5 and 7 in the EM for Concurrency series)

Many perspectives

« animation of LSD accounts

definitive parallel programming

conceptual framework for EM in EDEN

* machine-computing-oriented viewpoint
* human-computing-oriented viewpoint

Many variants

« first design / implementation Slade 1990
* various translators from ADM to EDEN
—Y P Yung, P-H Sun

« underlying concept obscured, recovered
by Ward: The Authentic ADM (2004)

Basic architecture of the ADM

The Abstract Definitive Machine: entity = definitions + actions

Linking LSD agents to ADM entities ...

LSD agents’
state and derivate
observables

STATE

LATENT
STATE CHANGE

v

agent_1

3

|Deﬁnitions_1] |

Actions_1

agent_2

|Deﬂnition572] : |

Actions_2

agent_3

|Deﬂni(ions_3]

Actions_3

agent_n

Definitions_n |

Actions_n

LSD agents’
protocols

Core features of the ADM 1

entity = set of definitions + set of actions
* have instances of abstract entities

* action is guarded sequence of form:
(redefinition + entity invocation/deletion)*

* in some contexts actions have been
interpreted as atomic; better conceived
as interleaving asynchronously

Core features of the ADM 2

model of “true” concurrent interaction
definitions can be performed in parallel
scope for syntactic checks on interference

changes of state admit free interpretation:
— “computational step” in machine

— redesign / reprogramming step

— manual, automated and semi-automated

Some illustrative examples

A systolic array simulation

Parallel programming

Model of systolic array
for sparse matrix
multiplication ...

Input matrices A and B
at top-left and top-right

Output matrix C=A.B
at top centre

EM paper 010: Parallel computation in definitive models

The Railway Station
Animation

LSD account of the stationmaster

agent sm{) (
oracle (vime) Limit, Tine, /7 ¥mowledge of time to clapse before departure due
(bool) guard_raised_flag, /7 ¥nowledge 0f whether the guard has raised his flag
(bool) driver_ready, /¢ xnowledge of whether the driver is ready
(bosl) aroundldl, /¢ ¥mowledge of whether thers's anybody around doorvay
(beol) door_cpen(d]; // the open/close Status of A@or @ (Lo d = 1 .. Dunber_of_doors)
state (time) tarrive = |time|, /¢ the 5-N registers time of arrival
{bool] can move, /7 the signal observed by driver for starting engine
(bool) whistle = false, /7 the whistle iz not blowing
(bool) whistled = false, /¢ the whistle has not blown
(bosl) sm_flag = false, /¢ SN lovers Tlag

(hool] ew_raised flag = falss; /7 5-1 has not raised flag

handle (hool) can_move,
(bool) whistle,
(bool) whistled,
(bool) =m_flag,
(bool) em_raised flag:

(beol) door_cpen(d]; // the open/close Status of Aeor @ (£or d = 1 .. number_of_doors)

aerivate
nurber_of_doors
(bool) resdy = /AT (Taoor_openfal) ; // are all doors shut?
a=1

(bool) timeout = (Time - tarrive) > Limit: // departure due
protacel

door_open(d] * ‘'around[d] -> door_open[d] = false; (d = 1 .. number_of_doors)

ready * timeout * lvhistled —> whistle = true; whistled = true; guard(); vhistle = false;

ready * whistled * Ism_raised flag -> Sm_flag = true; s _raised flag = true:
sm_flag * guard raised flag —> sm flag - false;
ready * guard raised_flag * driver_ready * engaged * lean move -> can_move = true:

entity sm() {
definition
whistle = false, whistled = false, sm_flag = false,
sm_raised_flag = false, can_move = false,
ready is !door_open{1} && !door_open{2}, tarrive,
Limit = 20, timeout is (Time - tarrive) > Limit,
level = 0, init = true
action
init — tarrive = Time; init = false,
door_open{1} && laround{1}
print("Station master shuts door 1")
— door_open{1} = false,

entity sm() {
definition
whistle = false,
whistled = false,
sm_flag = false,
sm_raised_flag = false,
can_move = false,
ready is !door_open{1} && !door_open{2},
tarrive,
Limit = 20,
timeout is (Time - tarrive) > Limit,
level =0,
init = true
action

entity sm() {

definition
action
init — tarrive = Time; init = false,
door_open{1} && laround{1} print("Station master shuts door 1")
— door_open{1} = false,
door_open{2} && !around{2} print("Station master shuts door 2")

— door_open{2} = false,

ready && timeout && !whistled print("Station master whistles to call guard”)
— whistle = true; whistled = true; guard(); level = 1,

level == 1 print("Station master stops whistling") — whistle = false; level = 0,

ready && whistled && !sm_raised_flag print("Station master raises his flag")
— sm_flag = true; sm_raised_flag = true,

sm_flag && guard_raised_flag print("Station master lowers his flag")
— sm_flag = false,

ready && guard_raised_flag && driver_ready && engaged && !can_move

print("Train can move now") — can_move = true

Human and Machine
Perspectives on the ADM

@f‘i‘%mgmmw%z ﬁa,ﬁa’mmi ' g

\\\\;& BEEHIRTRAFFRLER T I.I_lli!lﬁ“lllllll;dﬂli!l‘!ﬁ .

Vews | Tefedacas | hslmeth J
gm Do et | Ledaobesies

The ADM from a machine perspective (Rungrattanaubol, 2002)

Machine perspective on ADM

Machine-like execution:
* true guard as obligation to perform action
+ action performed automatically / atomically

Examples

* gystolic array

* railway statio
* telephone an

n animation
imation

About the examples

Systolic array v
* highly structured, synchronised, clocked
Railway station animation x

* too regimented, clock cycle metaphor
“init > tarrive = [Time|; init = false” is atomic

Telephone animation °

» embellish actions with probabilities to reflect
delay, timeliness of response; introduces
artificial observables / actions

RN EEYRB A

A RN A R j‘g

/
ag.&,

i

Sk | Dabieait | At
;}ﬁf‘é}iﬁ Cmprpvesenyd | Labentoplns

The ADM from the human perspective (Rungrattanaubol, 2002)

Human perspective on ADM

“Free agent” style execution (cf. AADM):

» true guard as entitlement to perform action
» action not atomic — intermediate states

» re-evaluation of guards during execution
Further from implementation ...

execution / interpretation needs human input
... modeller takes a role in directing / acting
necessary to capture semantics of EDEN use

Entity
name

Human Pupil

NS Toncher

Il Definition set

| Action set |

[Burton] valid — select bumtonl ... |

[e — capA, capB targer=. . |

(" Buttonl

Interface | Bygiona

butten!_eclour is vahd1? “white™ “black”™
butten!_label is “1: FillA’
butten!_position is

valid] — imput =1

Buiten2_celour is valid2? “white™. “black ™

alidl — mput =2

elements’
Tughwin [Scout dgfmition of a winde fo dizplay Jug
JUGS | sugbren
in the BT il ikl
< Supplementary alternative visualisation e.g. for text message on mobile phone
ADM TugAxt ‘ juz A 15 juzdiplay(heizht capA widthA content): | jugd rouched — redizplay jugd: ‘
Internal [mu_pour [mput = 1 input touched
state- LIVE,,, i updating: — step , option , updating =1, . 1;
transitior pour o=
Model | (o BT VARAT = contentAconteniA
caphA=3

External [JueA

relationship?
model | Enyiron.
 ment

B [

validl 15 |Afull; valid4 is contentB =0

valid7 is validl d&ede validd:

The Authentic Abstract
Definitive Machine

Ashley Ward
(after Beynon and Slade)

Ambiguity in ADM writings

The description of the ADM in Slade refers to execution
in which sequences of commands in ADM actions are
executed atomically

This originates from the need to cope with instantiating
observables and initialising entities, or resetting
observables and deleting entities, in a single step

In the application of the ADM in ‘animating LSD’, it is
appropriate to think of a guard as a cue that enables an
entity to initiate a sequence of actions to be performed
asynchronously: this is the execution model for what
Ward terms the authentic ADM ...

Execution model for the
Authentic ADM

In each step:
(The state is now S)
For each action a:
If the action a is currently executing and there is no
command from a already in the runset (pending execution)
Add the next command in action a to the runset
Else:
Evaluate guard of ain state S
If guard of aiis true:
Add the first command in action a to the runset
Check the runset for an invalid transition
If the transition is invalid,
Stop and ask the modeller to resolve the conflict before
proceeding
Select a subset of the commands from the runset and execute
these, conceptually in parallel, making a transition to the state S'
(The state is now S')

In each step:
1. (The state is now S)
2. For each action a:
3. If the action aiis currently executing and there is no
command from a already in the runset (pending execution)
4. Add the next command in action a to the runset
5. Else:
6. Evaluate guard of a in state S
7. If guard of ais true:
8. Add the first command in action a to the runset
9. Check the runset for an invalid transition
10. If the transition is invalid,
11. Stop and ask the modeller to resolve the conflict before
proceeding
12. Select a subset of the commands from the runset and execute
these, conceptually in parallel, making a transition to the state S'
13. (The state is now S')

Notes on selection of actions

At step 12, selection of the subset of commands can be
determined non-deterministically by the algorithm or
determined by the modeller in the ‘super-agent’ role

Due to the guarantee given by the invalid transition check,
there is no interference between actions in the runset

... in an implementation

Commands can therefore be performed sequentially or in
parallel

If commands are performed sequentially, the state will transit
intermediate states before it reaches S'. Evaluations can be
performed in these intermediate states or in S without
influencing the result as there is no interference between
commands.

