
CS405 Introduction to Empirical Modelling - 2010-11

Reflecting on Lab 1: CADE"CE in context ...

Recall the observation that:

Empirical Modelling ("EM") is a body of principles and tools concerned with computing

activity that is based on observation and experiment (hence 'empirical') ...

... the principal theme of CS405 is alternative ways to think about "computing-in-the-wild"

- with special attention to computer programming and computer science

Will explore this further by looking closely at the concept that has probably been most influential in

framing the science of computing - the notion of "a computer program". One particular aim is to show why

"programming" / modelling in the CADENCE environment (as introduced in Lab 1) is radically different

from traditional programming. This is a first step towards tackling the agenda suggested by Lab 1.

What is a program?

"The classical answer": A program is a recipe for action that computes an input-output relationship

Turing's abstract view of a computation

checking for palindromes as a simple illustrative example ...

A procedural program explicitly expresses a recipe as a sequence of actions ...

each action assigns a value to a variable, or invokes another procedure

transfer of control ("sequence of execution and invocation") determined by logic conditions.

These are framed using constructs like while and if ... then ... else ...

A problem with procedural programs

variable has a value that can be elusive e.g. when debugging

always changing, possibly in ways that can't easily be tracked

Declarative programming approaches offer a potential solution

Program (e.g.) by specifying the required input-output relation in a mathematical form:

 out = f(in)

This is called functional programming ("FP").

FP exploits a special-purpose interpreter that can compute the function f

FP uses very powerful operators ("λ - calculus") in order to frame the function f

[Aside: Another form of declarative programming is logic programming, in which the I/O relation is

specified by a predicates framed using special logical constructions and interpretation is automated

deduction.]

Key "virtues" of declarative programming:

it hides internal states of the computation

have referential transparency

frame computational problems in terms of the external domain, not the computer

BUT

1 of 6 08/10/2010 11:04

Declarative programming doesn't make interaction easy have to introduce mechanisms to support

interaction

One technique that can be introduced in FP is 'lazy evaluation', which gives opportunities for user

intervention

A data-flow approach gives more flexibility, by making the internal steps in the computation of f

more explicit

Another aspect of declarative programming that is challenging is supporting the input and output

The legacy of the TM concept of computation has been a highly abstract conception of programming

This doesn't chime well with "emerging computing" ...

Some issues

non-standard peripheral devices and modes of interaction

non-terminating programs maintaining relationships over time

the transition from "one-person programming" to "programming of reactive systems" [Harel]

the relevance of real-time, distributed computing and concurrency concerns

new processes for developing software e.g. with team work and user participation

to accommodate the continuously evolving nature of software products [cf. Manny Lehman])

To understand software development in these broader domains, need

to think more broadly about computing with many interacting objects

to consider design and interaction from many perspectives

to construct software in such a way that it is comprehensible and manipulable potentially even by

the non-specialist

Some techniques that can contribute to addressing these goals:

object-orientation

agent-based analysis and conception of systems

design patterns

spreadsheet principles

The CADENCE environment offers scope for interpretation reflecting the influence of all of these

programming idioms and features Some prototype-based object-oriented code:

this sgobjects puddle

 primitive = cube

 width = 3.3

 height = 3.3

 depth = 0.1

 visible = true

 position = (new x=0.0 y=0.0 z=-3.0

 z is { @stargate position z }

)

 orientation = (new x=0.0 y=2.5 z=0.0

 y is { @stargate orientation y }

)

;

Some data-flow in the gate.dasm script:

2 of 6 08/10/2010 11:04

 #How fast the hole appears

 holespeed = 0.8

 #The hole animation definition

 hole = 1.0

 hole := {

 if (.ready) {

 if (..active) -1.0 else {

 ..hole - (..holespeed * (@root itime))

 }

 } else 1.0

 }

 active = false

 active is { .hole < -0.9999 }

A "real-time" ingredient:

 match = false

 ready = false

 locked = false

 rotspeed = -0.3

 rotation = 0.0

 rotation := {

 if (.dial and (.match not or (.locked)) and (.ready not)) {

 ..rotation + (..rotspeed * (@root itime))

 } else {

 ..rotation

 }

 }

Examples of spreadsheet-style dependencies

 position = (new x=0.0 y=0.0 z=-3.0

 z is { @stargate position z }

)

 orientation = (new x=0.0 y=2.5 z=0.0

 y is { @stargate orientation y }

)

Going beyond classical programming ...

As mentioned in the introduction ...

Characteristics of tools to be introduced in the module ... they are concerned with modelling

in which we

observe meaningful things

adopt a constructivist stance

exploit an empirical approach

that we wish to reconcile / can be reconciled with the more abstract, rationalist, theoretical

framework that characterises classical computer science

The key move in reconceptualising programming is introducing the human dimension ...

... key shift in emphasis towards questions of the following kind:

? what is the experience of the people engaging with Turing computation, procedural

programs, functional programs etc.

Consider people's experience (whether they are 'programmers', 'users', 'modellers' or 'analysts' etc.) with

reference to

3 of 6 08/10/2010 11:04

What are the significant things that they observe?

How are they able to interact and manipulate?

What is the context for their interaction and interpretation?

when they are engaged in some variety of programming / model-building activity.

For the present, we describe these informally in natural language ...

[Aside: part of the point of EM is to develop ways in which we can convey these characteristics in a more

effective way - though (we claim!) we can never expect to express them formally in the spirit of

traditional theoretical computer science. Compare the discussion in Peter Naur's paper Intuition in

software development, and the commentary in EM paper #105.]

Experience in relation to programs for a Turing machine

The context for observation is some desired transformation of state ...

Programmer and user are concerned with how a symbolic rule-based process achieves a

specific family of transformations of state, and have to understand and trust the reliable

machine that can execute the rules. Only the programmer needs to understand the rule-based

process intimately, but both need to have trust in the machine

Both programmer and user are concerned with the fact that and how abstract symbolic

representations correspond to external referents (e.g. "how is a number represented on the

tape?" "what indicates that the computation has terminated?" "what is on the tape on

termination when the number is / isn't prime?)

What do the human agents engaged in Turing computation observe?

The programmer also has to pay attention to highly abstract rules + processes they define

Both programmer and user have to appreciate the potentially subtle and complex

interpretation of the I/O representation

How do the human agents engaged in Turing computation interact and manipulate state?

In developing a TM program, there is characteristic "geeky" code generation for the

programmer - framing rules

The user cannot influence the rules - can only specify the initial state of the tape

Neither the programmer nor the user can intervene in the automatic execution of the rules,

unless the development environment is such that new rules can be introduced even when the

Turing machine is executing

It's possible to ask the same question of programming in different paradigms: e.g.

? what's the experience of the functional programmer

? what's the experience of a dataflow programmer

? what's the experience of spreadsheet user

Doing this in detail is beyond the scope of this lecture (!), but it's good for you to reflect on these questions

yourself.

What is readily clear is that human experience of programming can be very diverse, according to which

programming paradigm is used. For instance:

4 of 6 08/10/2010 11:04

The overarching concern in programming a Turing machine, and in traditional procedural

programming, is with how a process achieves a specific family of transformations of state

Classical procedural programming is very similar, but the machine execution and interpretation of

the rules in the program is more complex and prone to misconception / error

In FP, we are (ideally) not concerned with observing operations and recipes on the computer at all.

In spreadsheets, we don't typically have an I/O relationship of the classical programming variety in

mind, and observation of situations external to the computer (e.g. the marks that students achieved

in exams etc) have a much more direct role in observation and interaction.

What is quite apparent is ...

There is a major problem of incoherence in interpretation if these paradigms are used in conjunction ...

How does CADE"CE aspire to address this?

There is a human experiential activity of creating a computer model of something ...

... this model develops incrementally through representing key observables and fashioning the changes

they undergo

... the changes may relate to design decisions (e.g. specifying the dimensions of the Stargate) or to

characteristics that are subject to change continuously (e.g. the orientation of the Stargate when it's

rotating)

... imagine the whole activity of building up the Stargate from its components, fixing values by design,

testing the behaviour of the prototype, formulating relationships between its components that are useful

in making the design ...

... can regard this as a blend of programming and using that takes place in one continuous stream of

experience of the evolving, emerging Stargate model

... the computer representation used is so generic, primitive and anodyne ('computation is navigation')

that it is enormously flexible and can carry all these interpretations throughout the history of the model-

building, from initial conception to final form

... the computer is a reliable finely tuned instrument that delivers rich visual experience in an efficient

manner through a continuous process of updating state from one moment to the next according to rules

that can themselves be adapted on-the-fly moment-by-moment

Some exceptional qualities of DOSTE:

modelling/tracking continuous / "analogue" quantities

managing change of context, reference and content

recording histories of a modelling trajectory

Useful analogy with creating artefacts and interactive experiences using a potter's wheel

Has to do with a certain kind of construal of experience, that arguably can be more or less appropriate in

any particular context. Issues (limitations?) possibly relate to

the correspondence between the model and its referent?

where the referent is itself in the process of being identified

where the context for the human modelling activity is unstable

5 of 6 08/10/2010 11:04

where the model-building is not taking place on a conventional reliable computer

The theme of this lecture is 'from programming to construal'. In much of the module, we'll be concerned

with going in the opposite direction 'from construal to programming'. This is where other aspects of the

modelling tool become relevant.

References

Peter Naur, Intuition in Software Development, TAPSOFT, volume 2, 60-79, 1985

Meurig Beynon, Russell Boyatt, Zhan En Chan, Intuition in Software Development Revisited, Proceedings

of 20th Annual PPIG conference, September 2008. [EM paper #105 as indexed in the publication list on

the EM website].

David Harel, Biting the Silver Bullet: as referenced in Lecture 13, CS405-0708

Manny Lehman, see e.g. http://www.doc.ic.ac.uk/~mml/feast2/papers/pdf/556.pd

6 of 6 08/10/2010 11:04

