
10/8/2010

1

Empirical Modelling ("EM") is a body of principles 

and tools concerned with computing activity based 

on observation and experiment (hence 'empirical') ... 

... the principal theme of CS405 is alternative ways to 

think about "computing-in-the-wild" 

… with special attention to computer programming

and computer science

Empirical Modelling as Construction

Agenda suggested by Lab 1 …

Making a multi-paradigm programming environment 

coherent is a fundamental unresolved research problem.

Dealing with the relationship between the operational state-

based semantics and the declarative denotational semantics 

is a challenge for classical programming.

The emphasis in classical computer science is on how 

meanings can be made formal and non-negotiable ... in 

contrast modern practices demand ways of thinking about 

computing that acknowledge its dependence on specific 

environments and human interpreters.

Empirical Modelling as Construction

… contrast this with ….

"The classical answer“ to What is a program?

A program is a recipe for action that computes 

an input-output relationship

Turing’s machine model

Machine models of a computer always have

• means to store data

– e.g objects in Java, files and variables in UNIX

• means to manipulate data

– e.g. methods in Java, processes in UNIX

• ways to program data manipulation

– e.g. JAVA programs, UNIX shell scripts



10/8/2010

2

The Turing Machine model (1936)

• store is represented by an unbounded tape

• processor is represented by a read/write head

• program is represented by a set of rules

Suzanne Skinner (1996) Java applet simulator 
at:

http://ironphoenix.org/tril/tm/

A Turing computation in progress … recognising a odd length palindromes

A Turing computation in the halt state … rejecting a non-palindromic string

The Church-Turing thesis

There is no computational model that is in principle 

more powerful than the Turing machine …

… all algorithmic data processing is equivalent to 

Turing computation

… by this criterion, very simple notations can define

“a full programming language”

A procedural program explicitly expresses a recipe 

as a sequence of actions ... 

A problem with procedural programs …

Procedural variable

- has a value that can be elusive e.g. when debugging

- always changing, possibly in ways that are hard to track

Procedural version of isprime

func factors {

para n;

auto r, result;

result = [];

for (r=1; r<=n/2; r++)

if (n % r == 0) result = result // [r];

return result;

}

func isprime {

para n;

return ((factors[n])# == 1);

}



10/8/2010

3

Program (e.g.) by specifying the required input-

output relation in a mathematical form:

out = f(in)

This is called functional programming ("FP"). 

FP exploits a special-purpose interpreter that can 

compute the function f

FP uses very powerful operators ("λ - calculus") in order 

to frame the function f

Functional programming (FP)

A “functional” program to compute prime numbers:

factors n = [r | r<-[1..n div 2]; n mod r = 0]

isprime q = (# factors q) = 1

functional ≡ based on specifying functions

The functions in this context are

factors() and isprime()

The programming language is Miranda

Procedural version of isprime

func factors {

para n;

auto r, result;

result = [];

for (r=1; r<=n/2; r++)

if (n % r == 0) result = result // [r];

return result;

}

func isprime {

para n;

return ((factors[n])# == 1);

}

factors n = [r | r<-[1..n div 2]; n mod r = 0]

isprime q = (# factors q) = 1

Key virtues of declarative programming …

it hides internal states of the computation

have referential transparency

frame computational problems in terms of the external 

domain, not the computer

BUT issues for declarative programming …

Makes interaction tricky 

‘lazy evaluation’ / dataflow as potential solutions

Supporting rich input-output challenging

Legacy of the TM concept of computation:

a highly abstract conception of programming

Not well-suited to “emerging computing”

- diverse and rich contexts for computer use

- non-standard devices, modes of interaction

- reactive systems

- real-time, distributed computing, concurrency

- new challenges for software development …



10/8/2010

4

Legacy of the TM concept of computation:

a highly abstract conception of programming

Not well-suited to “emerging computing”

- new challenges for software development …

- computer + devices + human

- team work, user participation in design

- computer as instrument

Need software that is comprehensible and 

manipulable even by the non-specialist / even 

whilst its being constructed

Techniques to help address these goals …

object-orientation

agent-based analysis and conception of systems

design patterns

service-oriented architecture

spreadsheet principles

CADENCE as reflecting many programming paradigms ….

Prototype-based object-oriented code:

this sgobjects puddle

primitive = cube

width = 3.3

height = 3.3

depth = 0.1

visible = true

position = (new x=0.0 y=0.0 z=-3.0

z is { @stargate position z }

)

orientation = (new x=0.0 y=2.5 z=0.0

y is { @stargate orientation y }

)

;

Data-flow 

#How fast the hole appears

holespeed = 0.8

#The hole animation definition

hole = 1.0

hole := {

if (.ready) {

if (..active) -1.0 else {

..hole - (..holespeed * (@root itime))

}

} else 1.0

}

active = false

active is { .hole < -0.9999 }

A "real-time" ingredient:

match = false

ready = false

locked = false

rotspeed = -0.3

rotation = 0.0

rotation := {

if (.dial and (.match not or (.locked))

and (.ready not)) {

..rotation + (..rotspeed * (@root itime))

} else {

..rotation

}

}



10/8/2010

5

Spreadsheet-style dependencies

position = (new x=0.0 y=0.0 z=-3.0

z is { @stargate position z }

)

orientation = (new x=0.0 y=2.5 z=0.0

y is { @stargate orientation y }

)

Going beyond classical programming ….

Characteristics of tools to be introduced in the module ... 

they are concerned with modelling in which we

• observe meaningful things

• adopt a constructivist stance

• exploit an empirical approach

that we wish to reconcile / can be reconciled with the 

more abstract, rationalist, theoretical framework that 

characterises classical computer science

Reconceptualise by introducing the human dimension ... key 

shift in emphasis towards questions such as:

? what is the experience of the people engaging with Turing 

computation, procedural programs, functional programs etc. 

Consider people's experience ('programmers', 'users', 'modellers' 

or 'analysts' etc.) with reference to

* What are the significant things that they observe?

* How are they able to interact and manipulate?

* What is the context for their interaction and interpretation?

when they are engaged in some variety of programming / model-

building activity. 

The CADENCE environment and the DOSTE engine


