

Empirical Modelling and the challenge of
enterprise architecture

Charlie Care

About me

● BSc Computer Science (Warwick, 2004)

● Ph.D. Computer Science (Warwick, 2008)

● Software Engineer at BT since 2007

● Graduate Software Engineer/Analyst, 2007-2009
● Senior Software Engineer. 2009-Present

● Things that interest me

● Integration patterns, REST web services, simple integrations
● Java, Python, Ruby, Service/Client side JavaScript
● Convention over Configuration (frameworks and approaches)

This Lecture – outline

● Introduction
● Section 1: Scene setting
● Section 2: Maintaining state within the

application
● Section 3: Maintaining state between

applications
● Section 4: Blue sky
● Conclusions

This Lecture – outline

● Introduction
● Section 1: Scene setting
● Section 2: Maintaining state within the

application
● Section 3: Maintaining state between

applications
● Section 4: Blue sky
● Conclusions

● Management of state within applications
● Management of state between applications

State management in Enterprise Systems

Management Application Finance Application

Consistent state across
records, views, and sessions

Consistent state across
records, views, and sessions

Consistent state across
applications via Integration

Product
catalogueTrouble-ticket

system

Product
catalogue

Product
catalogue

Customer
Management

Intra-application state management

● Traditionally the role
of the database

● Views offer
dependency

● Triggers are an
agency mechanism

● That's fine when
applications pull data
from db...

 Application

Consistent state across
records, views, and
sessions

● What about clustering and
caching outside the db?

● What about no-sql solutions

● What about distributed apps?

Inter-application state management

● Variety of ways of
integrating
● File transfer
● Shared Database
● RPC
● Messaging

● Not as much EM
thinking here...

Consistent state across
applications via Integration

What does EM have to say
about integration...?
● LSD Notation

● Oracles, Handles

● Derivates tell you about
master data etc.

Real-world example

● Agile system for managing demand
● Supports decomposition of 'user stories'
● Reporting provided in a separate data

warehouse

Engineering
activity

Engineering
activity

Example: Hierarchical State

High level
Deliver fantastic product

Customer Demand
I want to be able to

pay via...

Customer Demand
I want to be able to

order via...

Customer Demand
I want to be able to

see my bill as...

Engineering
activity

Engineering
activity

Engineering
activity

Engineering
activity

Engineering
activity

Engineering
activity

Engineering
activity

Events

Inside the application – example hierarchy
Budget management

Roll-up of child costs

Engineering
activity

Engineering
activity

High level
Deliver fantastic product

Customer Demand
I want to be able to

pay via...

Customer Demand
I want to be able to

order via...

Customer Demand
I want to be able to

see my bill as...

Engineering
activity

Engineering
activity

Engineering
activity

Engineering
activity

Engineering
activity

Engineering
activity

Engineering
activity

Propagate information up and down
tree on editing of a record

Inter-Application state management

● Application doesn't exist on it's own
● e.g. ship messages to data warehouse

● What do we send?

Application Warehouse

Engineering
activity

Engineering
activity

Example: Hierarchical State

High level
Deliver fantastic product

Customer Demand
I want to be able to

pay via...

Customer Demand
I want to be able to

order via...

Customer Demand
I want to be able to

see my bill as...

Engineering
activity

Engineering
activity

Engineering
activity

Engineering
activity

Engineering
activity

Engineering
activity

Engineering
activity

Engineering
activity

Engineering
activity

Example: Hierarchical State

High level
Deliver fantastic product

Customer Demand
I want to be able to

pay via...

Customer Demand
I want to be able to

order via...

Customer Demand
I want to be able to

see my bill as...

Engineering
activity

Engineering
activity

Engineering
activity

Engineering
activity

Engineering
activity

Engineering
activity

Engineering
activity

Inter-Application state management

● Application doesn't exist on it's own
● e.g. ship messages to data warehouse

● What do we send?
● One message for each change?
● What about dependent changes?
● Do we replicate the dependency and derivation logic on the far

end?
– Who masters this logic? What about upgrades?

Application Warehouse

● Management of state between applications
● Management of state within applications

State management in Enterprise Systems

Management Application Finance Application

Consistent state across
records, views, and sessions

Consistent state across
records, views, and sessions

Consistent state across
applications via Integration

Dependency

DependencyObservation

Master
Data

Shared
definitions

This Lecture – outline

● Introduction
● Section 1: Scene setting
● Section 2: Maintaining state within the

application
● Section 3: Maintaining state between

applications
● Section 4: Blue sky
● Conclusions

The need for state maintainers

● Dependency (as you've seen it in EDEN) is a
really useful tool
● Simplicity of state relationships...
● ...in a declarative way
● Avoids the classic updateState() function !
● We're not the only ones to realise the benefits of

declarative state!

● What's the general pattern here?

The Observer Pattern

● One of the classic patterns in the GOF book
● Design Patterns: Elements of Reusable Object-

Oriented Software.

Gamma, Helm, Johnson, Vlissides (1994)

● “defines a one-to-many dependency between
objects so that when one object changes state, all
it's dependents are notified and updated
automatically” (p. 293)

● Sounds good... but is this dependency?

Observer (cont...)

● Adobe Flex, Microsoft Xaml
● data-binding expressions are implementations of

Observer.
● General support via events dispatch mechanism

● C#.net
● Support for observer via event pub/sub
● Provides IObservable interface

● Java
● Even Java has had Observer and Observable

interfaces support since JDK 1.0

Demo 1 – Flex data-binding

● Data-binding is like
dependency

● Declarative

Demo 2 – two-way binding

● Declarative two way binding is
possible too

● Need to use agency for this in
EDEN

Demo 3 – binding by event listeners

● Of course, you can implement this
yourself with event listeners

Demo 4 – Multi-target agency

● Custom event listeners will allow you to
break dependency semantics

Demo 5 – Data-binding is NOT definitive

● And a simple investigation shows
that data-binding expression do not
give you definitive behaviour either.

Data-binding reviewed

● Data-binding in Flex is really handy
● You get

● The convenience of dependency
● Declarative expression of state update
● The benefits of being able to do more than EDEN (two way,

multicast etc.)

● However, you don't get
● atomic state change
● introspection of definition
● Clear dependency graph
● Protection from redefinition...

EDEN: Two types of Observer

● In EDEN, Both dependencies and triggered procs are types
observers.

● Can implement data-binding as agency, but without the
semantic guarantees of dependency.

● Modern languages are happy to give you the sugared syntax
without the guarantees...

● What behaviour makes sense?

● Might be the compromise in a traditional language

a is b + c;
proc update_A : b, c {

a = b + c;
})

Some types of observer

● Dependency – guaranteed not to observe inconsistency

– a is b + c

● Triggered updates (agency), trigger on change, no guarantees
when executed

– proc f : a {}

● Some others we might consider

● Definitive state – like dependency – no immediate update
– a is calculated by b + c (dtkeden kind of gives you this)

● Triggered updates that are guaranteed to run before
observation – e.g. like database triggers
– eager_proc trigger : a {}

This Lecture – outline

● Introduction
● Section 1: Scene setting
● Section 2: Maintaining state within the

application
● Section 3: Maintaining state between

applications
● Section 4: Blue sky
● Conclusions

Observation and enterprise integration

● We want applications to observe state in other
applications

● If we're going to expose a tree of observables...
● …why not do it over http?
● Can a simple RESTful exposure can provide the

observable semantics we want?

REST Example: Publication service

● Representational State Transfer (REST)

● Every resource is a url

● Use standard http verbs to manipulate resources

● Access representation of resource 5
● HTTP GET /pubdata/dcs/papers/5

● Create or Update resource 5 (submit message body)
● HTTP PUT /pubdata/dcs/papers/5

● Create a new resource (submit message body)
● HTTP POST /pubdata/dcs/papers/

● Delete an entry
● HTTP DELETE /pubdata/dcs/papers/5

REST publications service

pubdata/dcs/papers/wmb

pubdata/dcs/papers/
All dcs
publications

pubdata/dcs/papers/?tag=empiricalModellingAll EM
publications

Meurig's
publications

pubdata/dcs/papers/ccareCharlie's
publications

● Use case: Access publications within dcs
● Access via http GET

Example: publications repository

pubdata/dcs/papers/wmb

pubdata/dcs/papers/

pubdata/dcs/papers/?tag=empiricalModelling

● Use case: I add this lecture... what's changed?

<publication>
 <title>...</title>
 <type>lecture</type>
 <tags>
 <tag id=”empricialModelling” />
 </tags>
</publication>

HTTP POST

pubdata/dcs/papers/ccare/28

pubdata/dcs/papers/ccare

pubdata/dcs/papers/ccare

Example: publications repository

pubdata/dcs/papers/wmb

pubdata/dcs/papers/

pubdata/dcs/papers/?tag=empiricalModelling

● Use case: I add this lecture... what's changed?

<publication>
 <title>...</title>
 <type>lecture</type>
 <tags>
 <tag id=”empricialModelling” />
 </tags>
</publication>

HTTP POST

pubdata/dcs/papers/ccare/28

pubdata/dcs/papers/ccare

pubdata/dcs/papers/ccare

pubdata/dcs/papers/wmb

pubdata/dcs/papers/

pubdata/dcs/papers/?tag=empiricalModelling

<publication>
 <title>...</title>
 <type>lecture</type>
 <tags>
 <tag id=”empricialModelling” />
 </tags>
</publication>

HTTP POST

pubdata/dcs/papers/ccare/28

pubdata/dcs/papers/ccare

pubdata/dcs/papers/ccare

Example: publications repository
● Use case: I add this lecture... what's changed?

Example: publications repository

pubdata/dcs/papers/wmb

pubdata/dcs/papers/All dcs
publications

pubdata/dcs/papers/?tag=empiricalModellingAll EM
publications

Meurig's
publications

pubdata/dcs/papers/ccareCharlie's
publications

● The nice thing about REST is that I can use
standard cache technology

● But what about cache expiry?

Cache

HTTP Etags – Entity tags
GET pubdata/dcs HTTP/1.1
Host myserver.com

HTTP/1.1 200 OK
Server: ...
Date: Sat, 27 Nov 2010 11:14:40 GMT
Content-Type: text/xml
...
Last-Modified: Mon, 22 Nov 2010 12:00:00 GMT
ETag: "f9b1233494ffc11:b8e"
Content-Length: 9548

<publications>
...

Client Server

GET pubdata/dcs HTTP/1.1
If-None-Match: "e8d8993494ffc11:b8e"
Host myserver.com

HTTP/1.1 304 Not Modified
Server: ...
Date: Sat, 27 Nov 2010 12:00:00 GMT
ETag: "f9b1233494ffc11:b8e"
Content-Length: 0

Client Server

HTTP ETags

● ETags provide a nice way of interrogating the
application for value expiry

● So now we're back to an intra-app problem
● Which we can solve with

● Events
● Observers
● Custom controllers
● Or possibly dependency
● Or one of our other observer types...

This Lecture – outline

● Introduction
● Section 1: Scene setting
● Section 2: Maintaining state within the

application
● Section 3: Maintaining state between

applications
● Section 4: Blue sky
● Conclusions

EM in the cloud

● We have webeden, but this is really a web-enabled
exposure of tkeden.

● Scalable? Depends what you mean.
● What about a web server with built in dependency?
● Web Service with Multiple dependency 'worlds' or

instances.
● Modellers/Programmers submit definitions to a

'world' to change state
● Http subscribers can observe the state

Observe
a

EM over HTTP

Definition
 a is b + c

External Agent

Observe
a

Application
Observe

a
Observe

a
Observe

....

Definition
 a is b + c

Agent
(triggered proc)

RPC Call
call function()

What's out there already?
 What's the relationship with other technologies out there?

 Hadoop – Distributed document DB with map reduce.

 CouchDB – provides JavaScript views
 Incremental map-reduce is a scalable way of maintaining

dependencies
 although no lock down of state (which, for CouchDB, is a good thing)

 MongolDB – more like traditional DB
 Also uses JavaScript in map-reduce

 Persevere-framework
 Server side JavaScript store
 Can call functions via RPC

High level Implementation

● Are we really talking about dependency enabled
caches?
● V. Fast (and transactional) marking of out of date state
● Parallel recalculation of state using thread pool
● No self management of expiry
● Re-use etags mechanism...

● Definitions should be defined using common
language... e.g. EDEN or JavaScript with extensions

● Don't forget triggered procs – agency

eden-ws

● Not sure about name :-)
● Beginnings of a reference implementation
● Restful web service fronting a definitive machine
● Implemented in Java
● Definitive scripts based on JavaScript (Rhino)
● Work in progress

● Not completed decided about integrations
● Not completed decided about client side stuff

cURL – a very quick primer

● Standard command line utility to automate web
requests

● Easily interact with http endpoint

Http GET
 curl http://..../resource
Http PUT
 curl -X PUT http://..../resource
Http PUT or POST with data
 curl -X PUT http://..../resource -d 'request body'
 curl -X POST http://..../resource -d 'request body'

eden-ws – beginnings of a reference
implementation

eden-ws – beginnings of a reference
implementation

create a new dependency world
curl -X PUT http://localhost:8080/services/spaces/myspace -d ""
Define: a is b + c
curl -X PUT http://localhost:8080/services/spaces/myspace/a -d "#b + #c"
Read observable a
curl http://localhost:8080/services/spaces/myspace/a -w "\n"
> NaN
define b and c (b = 1, c = 2)
curl -X PUT http://localhost:8080/services/spaces/myspace/b -d "1"
curl -X PUT http://localhost:8080/services/spaces/myspace/c -d "2"
Read observable a
curl http://localhost:8080/services/spaces/myspace/a -w "\n"
> 3
update b (b = ' a string')
curl -X PUT http://localhost:8080/services/spaces/myspace/b -d "'a string '"
Read observable a
curl http://localhost:8080/services/spaces/myspace/a -w "\n"
> a string 2

Instance name

Observable
name

Definition

What about function invocation?

● PUT to define a function

● GET returns function representation

● POST invokes the function

● curl -X PUT http.../services/myspace/f
-d=”function() { return 'hello world' }”

curl -X POST http.../services/myspace/f
> hello world

curl http.../services/myspace/f
> Function<function() { return 'hello world' }>

Eden-ws architecture

● Definitive principles on the server
● Can use these to provide the intra-app state

management in front of traditional storage
● Other eden-ws apps can integrate via HTTP as agents

using LSD style semantics
● Other applications can integrate over standard HTTP

● Either routine polling of Etags via HTTP
● Or via message-driven middleware driven by HTTP

exposure
● Or another eden-ws app could implement a triggered proc

to enqueue a message

Will it scale?

● Simple to provide dependency/agency in single
thread

● Can imagine k threaded operation
● Single definition thread with worker pool?

● But what about n threaded operation?
● What about enterprise grade
● What about 25,000 redefinitions a minute?

EM over HTTP – redefinition

Definition
World: Foo
 a is b + c

Acquire lock on
Foo

Mark all
dependants out

of date

Release lock
on Foo

Schedule re-
eval of first tier

Agent Maintainer Scheduler

Schedule
triggers

Definition
successful

Thread pool

Execute
code

Execute
code

Execute
code

Execute
code

Bottleneck

EM over HTTP – observation

Observe
World: Foo

 a
Get symbol

Request
recalculation

Agent Maintainer Scheduler

Response
received

Thread pool

Execute
code

Is
current

Return value

Yes

No

Observe whether up to date? (HEAD)

HEAD
World: Foo

 a
Get symbol

Request
recalculation

Agent Maintainer Scheduler

Response
received

Thread pool

Execute
code

Is
current

Return ETAG

Yes

No

EM over HTTP – Fast HEAD

HEAD
World: Foo

 a
Get symbol

Agent Maintainer Scheduler

Response
received

Thread pool

Is
current

Return ETAG

Yes

No

Reset
ETag

Scalable architecture?

Cache using Etags

Shard dependency
worlds over instances

Eden-ws

instance A1

Eden-ws

instance D1

Eden-ws

instance C1

Eden-ws

instance B1

Cache using Etags

Shard dependency
worlds over instances Eden-ws

instance D2

Eden-ws

instance C2

Inter-dependency world
communication using LSD
oracles and handles

SQL DB

No-SQL
DB

Connectors for
clustered persistence

Definitive state
simplifies remote
synchronisation

Multiple caches for high
throughput & resilience

Remote location

EM over HTTP – high throughput

Normal
Observation

Thread pool

Marking out of date

● Simple two-state
model
● Synchronise on

redefinition
● Fast for reads
● Slow for writes
● But can we do better?

Redefinition

EM over HTTP – high throughput

Normal
Observation

Thread pool

Marking out of date

Redefinition

● Multiple redefinitions
at once?
● Synchronise on

redefinition
● Fast for reads
● Slow for writes
● But can we do better?

EM over HTTP – high throughput

Normal
Observation

Thread pool

Marking out of date

Redefinition

● Observe during
redefinition?
● Values can be

observed at any time

Observation
of values

A
is B + C

B C

1 2

D

9

3

?

?

3

EM over HTTP – high throughput

Normal
Observation

Thread pool

Marking out of date

Redefinition

● Does redefinition
require state change
● if it's already out of

date... then it's
possible to redefine.

Redefinition of
out of data

observables

Observation
of values

A
is B + C

B C

1 2

D

9

E
is D + 1

F
is A + E

EM over HTTP – high throughput

Normal
Observation

Thread pool

Marking out of date

Redefinition

● Repeated reads
● Repeated writes
● Lazy calculation
● Definition-driven

caching
● Pre-emptive

calculation?
● Generational?

● Speculative
calculation

Redefinition of
out of data

observables

Observation
of values

This Lecture – outline

● Introduction
● Section 1: Scene setting
● Section 2: Maintaining state within the

application
● Section 3: Maintaining state between

applications
● Section 4: Blue sky
● Conclusions

Conclusions

● Within the Application
● We can be pragmatic, follow patterns, and when coding UIs, use

features like data-binding in an EM way
● Data-binding is nice, but need to understand it's not dependency -

can create Event overload

● Between applications
● Dependency and agency provide an interesting caching technology
● Performance benefit of not constantly walking hierarchical data.
● Key thing is that the engine can do intelligent expiry

● Some things will always be done with traditional integrations

● But an Rest exposure over http opens a lot of doors
● Caching, mash-ups, cheap integrations

And final thoughts...

● Events are difficult to debug
● Dependency is easy to debug
● IllegalStateException should not happen
● Observing state over http makes a lot of sense

Links to code

● Code snippets from this lecture
● https://github.com/ccare/EM-lecture-snippets

● To grab eden-ws code
● https://github.com/ccare/eden-ws

https://github.com/ccare/EM-lecture-snippets
https://github.com/ccare/eden-ws

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

