
CS405 Introduction to Empirical Modelling - 2010-11

Empirical Modelling ("EM") is a body of principles and tools concerned with computing

activity that is based on observation and experiment (hence 'empirical') ...

... the principal theme of CS405 is alternative ways to think about "computing-in-the-wild"

- with special attention to computer programming and computer science

Introductory notes for Lab 1

Orientation

Initial focus will be on "programming" in a non-standard style

More appropriate to regard this as "model-building" rather than traditional programming

Compare the aspirations in:

 object-oriented programming - seeing programming as modelling

 agile development approaches: emphasis on evolving specifications and programs

CS405 draws attention to the semantic / philosophical issues that are raised by making these

moves

- e.g. what is the status of the traditional story about specification, and program/PL

semantics?

Tools

Will be making use of two environments for EM in the course of the module:

 the EDEN interpreter, a well-established tool that has been used for over 20 years

 CADENCE, an environment comprising a suite of modules based on the DOSTE

engine, a research prototype being developed by Nick Pope

Some familiarity with EDEN will be essential, as many of the illustrative models to be

discussed in the module make use of it. In the assessed work, students can make use of either

CADENCE or EDEN. Since one of the modules that is being developed for CADENCE is

based on a variant of EDEN, it is also possible to make use of both in the same model-

building exercise. The DOSTE engine does not itself have interfaces for input and graphical

output, but these can be supplied. When using CADENCE without EDEN, textual input can

be given by the DASM notation, and visualisation can exploit the Warwick Games Design

(WGD) module.

How tools are used in the module

Characteristics of tools to be introduced in the module ... they are concerned with modelling

in which we:

 observe meaningful things

 adopt a constructivist stance

 exploit an empirical approach

that we wish to reconcile / can be reconciled with the more abstract, rationalist, theoretical

framework that characterises classical computer science

Key notions

In Empirical Modelling, we build construals rather than programs. A construal is an artefact

you can interact with which helps to make sense of something else. In this lab, the computer

model we study is a construal of the Stargate - interacting with it helps to understand what a

Stargate is, whether or not you already have some idea of this.

In building construals rather than programs, we need different concepts. The key concepts we

introduce are:

 observable - dependency - agent ("ODA")

 an observable: - something perceived as having an identity and being subject to

change (e.g. a chevron in the Stargate)

 a dependency: - a relationship that is perceived to connect a change to one observable

to a change to another (e.g. when the orientation of the Stargate changes, so does the

orientation of the "puddle" within it)

 an agent: - something that can be deemed to initiate change (e.g. the person who

presses the "dial" button in the Stargate)

A key issue is that these notions are subjective - they are relative to an observer and a mode

of observing and interacting.

About the assessed work - variety of different ways in which can relate to the module

 can choose your own topic for the assessment - which comprises a paper + a model

 can assign a weighting to the written and practical work in the assessment in ratio

from 70:30 to 30:70

 can contribute through

o model development (using a variety of tools available)

o extension / commentary / analysis of existing models

o extension of the tools

The module is wide-ranging in scope, covering many different themes (to include non-

logicist foundations, educational technology, concurrent systems modelling and software

development), and spanning issues both technical, methodological and philosophical. You

will not be expected to understand everything in depth, or to master all the techniques.

